package core_kernel

  1. Overview
  2. Docs
Industrial strength alternative to OCaml's standard library

Install

Dune Dependency

Authors

Maintainers

Sources

core_kernel-v0.15.0.tar.gz
sha256=34a0288f16027c6b90e4ad16cb5cc677d7063d310faf918748ce70f1745116c0

doc/src/core_kernel.timing_wheel/timing_wheel.ml.html

Source file timing_wheel.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
(* Be sure and first read the implementation overview in timing_wheel_intf.ml.

   A timing wheel is represented as an array of "levels", where each level is an array of
   "slots".  Each slot represents a range of keys, and holds elements associated with
   those keys.  Each level is determined by two parameters: [bits], the number of key bits
   that that level is responsible for distinguishing, and [bits_per_slot], the size of the
   range of keys that correspond to a single slot in the array.  Conceptually, each level
   breaks up all possible keys into ranges of size [2^bits_per_slot].  The length of a
   level array is [2^bits], and the array is used like a circular buffer to traverse the
   ranges as the timing wheel's [min_allowed_key] increases.  A key [k], if stored in the
   level, is stored at index [(k / 2^bits_per_slot) mod 2^bits].

   The settings of the [bits] values are configurable by user code using [Level_bits],
   although there is a reasonable default setting.  Given the [bits] values, the
   [bits_per_slot] are chosen so that [bits_per_slot] at level [i] is the sum of the
   [bits] at all lower levels.  Thus, a slot's range at level [i] is as large as the
   entire range of the array at level [i - 1].

   Each level has a [min_allowed_key] and a [max_allowed_key] that determine the range of
   keys that it currently represents.  The crucial invariant of the timing wheel data
   structure is that the [min_allowed_key] at level [i] is no more than the
   [max_allowed_key + 1] of level [i - 1].  This ensures that the levels can represent all
   keys from the [min_allowed_key] of the lowest level to the [max_allowed_key] of the
   highest level.  The [increase_min_allowed_key] function is responsible for restoring
   this invariant.

   At level 0, [bits_per_slot = 0], and so the size of each slot is [1].  That is, level 0
   precisely distinguishes all the keys between its [min_allowed_key] (which is the same
   as the [min_allowed_key] of the entire timing wheel) and [max_allowed_key].  As the
   levels increase, the [min_allowed_key] increases, the [bits_per_slot] increases, and
   the range of keys stored in the level increases (dramatically).

   The idea of the implementation is similar to the hierarchical approach described in:

   {v
     Hashed and Hierarchical Timing Wheels:
     Efficient Data Structures for Implementing a Timer Facility

     Varghese & Lauck, 1996
   v}

   However, the code is completely new. *)

open! Core
open! Import
open! Timing_wheel_intf
module Pool = Tuple_pool
module Time_ns = Core_private.Time_ns_alternate_sexp

let sexp_of_t_style : [ `Pretty | `Internal ] ref = ref `Pretty

(* [{max,min}_time] are bounds on the times supported by a timing wheel. *)

let max_time = Time_ns.max_value_representable
let min_time = Time_ns.epoch

module Num_key_bits : sig
  type t = private int [@@deriving compare, sexp]

  include Comparable with type t := t
  include Invariant.S with type t := t

  val zero : t

  (* val min_value : t *)

  val max_value : t
  val to_int : t -> int
  val of_int : int -> t
  val ( + ) : t -> t -> t
  val ( - ) : t -> t -> t
  val pow2 : t -> Int63.t
end = struct
  include Int

  let min_value = 0

  (** We support all non-negative [Time_ns.t] values. *)
  let max_value = Int63.num_bits - 1

  let invariant t =
    assert (t >= min_value);
    assert (t <= max_value)
  ;;

  let of_int i =
    invariant i;
    i
  ;;

  let ( + ) t1 t2 =
    let t = t1 + t2 in
    invariant t;
    t
  ;;

  let ( - ) t1 t2 =
    let t = t1 - t2 in
    invariant t;
    t
  ;;

  let pow2 t = Int63.shift_left Int63.one t
end

module Level_bits = struct
  type t = Num_key_bits.t list [@@deriving compare, sexp]

  let max_num_bits = (Num_key_bits.max_value :> int)
  let num_bits_internal t = List.fold t ~init:Num_key_bits.zero ~f:Num_key_bits.( + )
  let num_bits t = (num_bits_internal t :> int)

  let invariant t =
    assert (not (List.is_empty t));
    List.iter t ~f:(fun num_key_bits ->
      Num_key_bits.invariant num_key_bits;
      assert (Num_key_bits.( > ) num_key_bits Num_key_bits.zero));
    Num_key_bits.invariant (num_bits_internal t)
  ;;

  let t_of_sexp sexp =
    let t = sexp |> [%of_sexp: t] in
    invariant t;
    t
  ;;

  let create_exn ?(extend_to_max_num_bits = false) ints =
    if List.is_empty ints then failwith "Level_bits.create_exn requires a nonempty list";
    if List.exists ints ~f:(fun bits -> bits <= 0)
    then
      raise_s
        [%message "Level_bits.create_exn got nonpositive num bits" ~_:(ints : int list)];
    let num_bits = List.fold ints ~init:0 ~f:( + ) in
    if num_bits > max_num_bits
    then
      raise_s
        [%message
          "Level_bits.create_exn got too many bits"
            ~_:(ints : int list)
            ~got:(num_bits : int)
            (max_num_bits : int)];
    let ints =
      if extend_to_max_num_bits
      then ints @ List.init (max_num_bits - num_bits) ~f:(const 1)
      else ints
    in
    List.map ints ~f:Num_key_bits.of_int
  ;;

  let default = create_exn [ 11; 10; 10; 10; 10; 10; 1 ]

  let trim t ~max_num_bits =
    if Num_key_bits.( <= ) (num_bits_internal t) max_num_bits
    then t
    else (
      let rec loop t ~remaining =
        match t with
        | [] -> []
        | b :: t ->
          if Num_key_bits.( >= ) b remaining
          then [ remaining ]
          else b :: loop t ~remaining:(Num_key_bits.( - ) remaining b)
      in
      loop t ~remaining:max_num_bits)
  ;;
end

module Alarm_precision : sig
  include Alarm_precision

  val num_key_bits : t -> Num_key_bits.t
  val interval_num : t -> Time_ns.t -> Int63.t
  val interval_num_start : t -> Int63.t -> Time_ns.t
end = struct
  (** [t] is represented as the log2 of a number of nanoseconds. *)
  type t = int [@@deriving compare, hash]

  let equal = [%compare.equal: t]
  let num_key_bits t = t |> Num_key_bits.of_int

  let to_span t =
    if t < 0
    then
      raise_s
        [%message
          "[Alarm_precision.to_span] of negative power of two nanoseconds" ~_:(t : int)];
    Int63.(shift_left one) t |> Time_ns.Span.of_int63_ns
  ;;

  let sexp_of_t t = [%sexp (t |> to_span : Time_ns.Span.t)]
  let one_nanosecond = 0
  let about_one_microsecond = 10
  let about_one_millisecond = 20
  let about_one_second = 30
  let about_one_day = 46
  let mul t ~pow2 = t + pow2
  let div t ~pow2 = t - pow2
  let interval_num t time = Int63.shift_right (time |> Time_ns.to_int63_ns_since_epoch) t

  let interval_num_start t interval_num =
    Int63.shift_left interval_num t |> Time_ns.of_int63_ns_since_epoch
  ;;

  let of_span_floor_pow2_ns span =
    if Time_ns.Span.( <= ) span Time_ns.Span.zero
    then
      raise_s
        [%message
          "[Alarm_precision.of_span_floor_pow2_ns] got non-positive span"
            (span : Time_ns.Span.t)];
    span |> Time_ns.Span.to_int63_ns |> Int63.floor_log2
  ;;

  let of_span = of_span_floor_pow2_ns

  module Unstable = struct
    module T = struct
      type nonrec t = t [@@deriving compare]

      let of_binable = of_span_floor_pow2_ns
      let to_binable = to_span
      let of_sexpable = of_span_floor_pow2_ns
      let to_sexpable = to_span
    end

    include T
    include Binable.Of_binable_without_uuid [@alert "-legacy"] (Time_ns.Span) (T)
    include Sexpable.Of_sexpable (Time_ns.Span) (T)
  end
end

module Config = struct
  let level_bits_default = Level_bits.default

  type t =
    { alarm_precision : Alarm_precision.Unstable.t
    ; level_bits : Level_bits.t [@default level_bits_default]
    ; capacity : int option [@sexp.option]
    }
  [@@deriving fields, sexp]

  let alarm_precision t = Alarm_precision.to_span t.alarm_precision

  (* [max_num_level_bits alarm_precision] returns the number of level bits needed for a
     timing wheel with the specified [alarm_precision] to be able to represent all
     possible times from [Time_ns.epoch] onward.  Since non-negative times have 62 bits,
     we require [L <= 62 - A], where [A] is the number of alarm bits and [L] is the
     number of level bits. *)
  let max_num_level_bits alarm_precision =
    Num_key_bits.( - )
      Num_key_bits.max_value
      (Alarm_precision.num_key_bits alarm_precision)
  ;;

  let invariant t =
    Invariant.invariant [%here] t [%sexp_of: t] (fun () ->
      assert (
        Num_key_bits.( <= )
          (Level_bits.num_bits_internal t.level_bits)
          (max_num_level_bits t.alarm_precision));
      let check f = Invariant.check_field t f in
      Fields.iter
        ~alarm_precision:ignore
        ~capacity:ignore
        ~level_bits:(check Level_bits.invariant))
  ;;

  let create ?capacity ?(level_bits = level_bits_default) ~alarm_precision () =
    let level_bits =
      Level_bits.trim level_bits ~max_num_bits:(max_num_level_bits alarm_precision)
    in
    { alarm_precision; level_bits; capacity }
  ;;

  let microsecond_precision () =
    create
      ()
      ~alarm_precision:Alarm_precision.about_one_microsecond
      ~level_bits:(Level_bits.create_exn [ 10; 10; 6; 6; 5 ])
  ;;

  let durations t =
    List.folding_map
      t.level_bits
      ~init:(Alarm_precision.num_key_bits t.alarm_precision |> Num_key_bits.to_int)
      ~f:(fun num_bits_accum level_num_bits ->
        let num_bits_accum = num_bits_accum + (level_num_bits |> Num_key_bits.to_int) in
        let duration =
          Time_ns.Span.of_int63_ns
            (if num_bits_accum = Int63.num_bits - 1
             then Int63.max_value
             else Int63.shift_left Int63.one num_bits_accum)
        in
        num_bits_accum, duration)
  ;;
end


(** Timing wheel is implemented as a priority queue in which the keys are
    non-negative integers corresponding to the intervals of time.  The priority queue is
    unlike a typical priority queue in that rather than having a "delete min" operation,
    it has a nondecreasing minimum allowed key, which corresponds to the current time,
    and an [increase_min_allowed_key] operation, which implements [advance_clock].
    [increase_min_allowed_key] as a side effect removes all elements from the timing
    wheel whose key is smaller than the new minimum, which implements firing the alarms
    whose time has expired.

    Adding elements to and removing elements from a timing wheel takes constant time,
    unlike a heap-based priority queue which takes log(N), where N is the number of
    elements in the heap.  [increase_min_allowed_key] takes time proportional to the
    amount of increase in the min-allowed key, as compared to log(N) for a heap.  It is
    these performance differences that motivate the existence of timing wheels and make
    them a good choice for maintaing a set of alarms.  With a timing wheel, one can
    support any number of alarms paying constant overhead per alarm, while paying a
    small constant overhead per unit of time passed.

    As the minimum allowed key increases, the timing wheel does a lazy radix sort of the
    element keys, with level 0 handling the least significant [b_0] bits in a key, and
    each subsequent level [i] handling the next most significant [b_i] bits.  The levels
    hold increasingly larger ranges of keys, where the union of all the levels can hold
    any key from [min_allowed_key t] to [max_allowed_key t].  When a key is added to the
    timing wheel, it is added at the lowest possible level that can store the key.  As
    the minimum allowed key increases, timing-wheel elements move down levels until they
    reach level 0, and then are eventually removed.  *)
module Priority_queue : sig
  type 'a t [@@deriving sexp_of]
  type 'a priority_queue = 'a t

  module Key : Interval_num

  module Elt : sig
    (** An [Elt.t] represents an element that was added to a timing wheel. *)
    type 'a t [@@deriving sexp_of]

    val at : 'a priority_queue -> 'a t -> Time_ns.t
    val key : 'a priority_queue -> 'a t -> Key.t
    val value : 'a priority_queue -> 'a t -> 'a
    val null : unit -> 'a t
  end

  module Internal_elt : sig
    module Pool : sig
      type 'a t
    end

    type 'a t

    val key : 'a Pool.t -> 'a t -> Key.t
    val max_alarm_time : 'a Pool.t -> 'a t -> with_key:Key.t -> Time_ns.t
    val min_alarm_time : 'a Pool.t -> 'a t -> with_key:Key.t -> Time_ns.t
    val is_null : _ t -> bool
    val to_external : 'a t -> 'a Elt.t
  end

  val pool : 'a t -> 'a Internal_elt.Pool.t

  include Invariant.S1 with type 'a t := 'a t

  (** [create ?level_bits ()] creates a new empty timing wheel, [t], with [length t = 0]
      and [min_allowed_key t = 0]. *)
  val create : ?capacity:int -> ?level_bits:Level_bits.t -> unit -> 'a t

  (** [length t] returns the number of elements in the timing wheel. *)
  val length : _ t -> int

  (** [min_allowed_key t] is the minimum key that can be stored in [t].  This only
      indicates the possibility; there need not be an element [elt] in [t] with [Elt.key
      elt = min_allowed_key t].  This is not the same as the "min_key" operation in a
      typical priority queue.

      [min_allowed_key t] can increase over time, via calls to
      [increase_min_allowed_key]. *)
  val min_allowed_key : _ t -> Key.t

  (** [max_allowed_key t] is the maximum allowed key that can be stored in [t].  As
      [min_allowed_key] increases, so does [max_allowed_key]; however it is not the case
      that [max_allowed_key t - min_allowed_key t] is a constant.  It is guaranteed that
      [max_allowed_key t >= min_allowed_key t + 2^B - 1],
      where [B] is the sum of the b_i in [level_bits]. *)
  val max_allowed_key : _ t -> Key.t

  val min_elt_ : 'a t -> 'a Internal_elt.t
  val internal_add : 'a t -> key:Key.t -> at:Time_ns.t -> 'a -> 'a Internal_elt.t

  (** [remove t elt] removes [elt] from [t].  It is an error if [elt] is not currently
      in [t], and this error may or may not be detected. *)
  val remove : 'a t -> 'a Elt.t -> unit

  val change : 'a t -> 'a Elt.t -> key:Key.t -> at:Time_ns.t -> unit

  (** [clear t] removes all elts from [t]. *)
  val clear : _ t -> unit

  val mem : 'a t -> 'a Elt.t -> bool

  module Increase_min_allowed_key_result : sig
    type t =
      | Max_allowed_key_did_not_change
      | Max_allowed_key_maybe_changed
  end

  (** [increase_min_allowed_key t ~key ~handle_removed] increases the minimum allowed
      key in [t] to [key], and removes all elements with keys less than [key], applying
      [handle_removed] to each element that is removed.  If [key <= min_allowed_key t],
      then [increase_min_allowed_key] does nothing.  Otherwise, if
      [increase_min_allowed_key] returns successfully, [min_allowed_key t = key].

      [increase_min_allowed_key] takes time proportional to [key - min_allowed_key t],
      although possibly less time.

      Behavior is unspecified if [handle_removed] accesses [t] in any way other than
      [Elt] functions. *)
  val increase_min_allowed_key
    :  'a t
    -> key:Key.t
    -> handle_removed:('a Elt.t -> unit)
    -> Increase_min_allowed_key_result.t

  val iter : 'a t -> f:('a Elt.t -> unit) -> unit

  val fire_past_alarms
    :  'a t
    -> handle_fired:('a Elt.t -> unit)
    -> key:Key.t
    -> now:Time_ns.t
    -> unit
end = struct
  (** Each slot in a level is a (possibly null) pointer to a circular doubly-linked list
      of elements.  We pool the elements so that we can reuse them after they are removed
      from the timing wheel (either via [remove] or [increase_min_allowed_key]).  In
      addition to storing the [key], [at], and [value] in the element, we store the
      [level_index] so that we can quickly get to the level holding an element when we
      [remove] it.

      We distinguish between [External_elt] and [Internal_elt], which are the same
      underneath.  We maintain the invariant that an [Internal_elt] is either [null] or a
      valid pointer.  On the other hand, [External_elt]s are returned to user code, so
      there is no guarantee of validity -- we always validate an [External_elt] before
      doing anything with it.

      It is therefore OK to use [Pool.Unsafe], because we will never attempt to access a
      slot of an invalid pointer. *)
  module Pool = Pool.Unsafe

  module Pointer = Pool.Pointer

  module Key : sig
    (** [Interval_num] is the public API.  Everything following in the signature is
        for internal use. *)
    include Timing_wheel_intf.Interval_num

    (** [add_clamp_to_max] doesn't work at all with negative spans *)
    val add_clamp_to_max : t -> Span.t -> t

    val succ_clamp_to_max : t -> t

    (** [Slots_mask] is used to quickly determine a key's slot in a given level. *)
    module Slots_mask : sig
      type t = private Int63.t [@@deriving compare, sexp_of]

      val create : level_bits:Num_key_bits.t -> t
      val next_slot : t -> int -> int
    end

    (** [Min_key_in_same_slot_mask] is used to quickly determine the minimum key in the
        same slot as a given key. *)
    module Min_key_in_same_slot_mask : sig
      type t = private Int63.t [@@deriving compare, sexp_of]

      include Equal.S with type t := t

      val create : bits_per_slot:Num_key_bits.t -> t
    end

    val num_keys : Num_key_bits.t -> Span.t
    val min_key_in_same_slot : t -> Min_key_in_same_slot_mask.t -> t
    val slot : t -> bits_per_slot:Num_key_bits.t -> slots_mask:Slots_mask.t -> int
  end = struct
    module Slots_mask = struct
      type t = Int63.t [@@deriving compare, sexp_of]

      let create ~level_bits = Int63.( - ) (Num_key_bits.pow2 level_bits) Int63.one
      let next_slot t slot = (slot + 1) land Int63.to_int_exn t
    end

    let num_keys num_bits = Num_key_bits.pow2 num_bits

    module Min_key_in_same_slot_mask = struct
      include Int63

      let create ~bits_per_slot = bit_not (Num_key_bits.pow2 bits_per_slot - one)
    end

    module Span = struct
      include Int63

      let to_int63 t = t
      let of_int63 i = i
      let scale_int t i = t * of_int i
    end

    include Int63

    let of_int63 i = i
    let to_int63 t = t
    let add t i = t + i
    let add_clamp_to_max t i = if t > max_value - i then max_value else t + i
    let succ_clamp_to_max t = if t = max_value then max_value else succ t
    let sub t i = t - i
    let diff t1 t2 = t1 - t2

    let slot t ~(bits_per_slot : Num_key_bits.t) ~slots_mask =
      to_int_exn (bit_and (shift_right t (bits_per_slot :> int)) slots_mask)
    ;;

    let min_key_in_same_slot t min_key_in_same_slot_mask =
      bit_and t min_key_in_same_slot_mask
    ;;
  end

  module Min_key_in_same_slot_mask = Key.Min_key_in_same_slot_mask
  module Slots_mask = Key.Slots_mask

  module External_elt = struct

    (** The [pool_slots] here has nothing to do with the slots in a level array.  This is
        for the slots in the pool tuple representing a level element. *)
    type 'a pool_slots =
      ( Key.t
      , Time_ns.t
      , 'a
      , int
      , 'a pool_slots Pointer.t
      , 'a pool_slots Pointer.t )
        Pool.Slots.t6
    [@@deriving sexp_of]

    type 'a t = 'a pool_slots Pointer.t [@@deriving sexp_of]

    let null = Pointer.null
  end

  module Internal_elt : sig
    module Pool : sig
      type 'a t [@@deriving sexp_of]

      include Invariant.S1 with type 'a t := 'a t

      val create : ?capacity:int -> unit -> _ t
      val is_full : _ t -> bool
      val grow : ?capacity:int -> 'a t -> 'a t
    end

    type 'a t = private 'a External_elt.t [@@deriving sexp_of]

    val null : unit -> _ t
    val is_null : _ t -> bool
    val is_valid : 'a Pool.t -> 'a t -> bool

    (** Dealing with [External_elt]s. *)

    val external_is_valid : 'a Pool.t -> 'a External_elt.t -> bool
    val to_external : 'a t -> 'a External_elt.t
    val of_external_exn : 'a Pool.t -> 'a External_elt.t -> 'a t
    val equal : 'a t -> 'a t -> bool
    val invariant : 'a Pool.t -> ('a -> unit) -> 'a t -> unit

    (** [create] returns an element whose [next] and [prev] are [null]. *)
    val create
      :  'a Pool.t
      -> key:Key.t
      (** [at] is used when the priority queue is used to implement a timing wheel.  If
          unused, it will be [Time_ns.epoch]. *)
      -> at:Time_ns.t
      -> value:'a
      -> level_index:int
      -> 'a t

    val free : 'a Pool.t -> 'a t -> unit

    (** accessors *)

    val key : 'a Pool.t -> 'a t -> Key.t
    val at : 'a Pool.t -> 'a t -> Time_ns.t
    val level_index : 'a Pool.t -> 'a t -> int
    val next : 'a Pool.t -> 'a t -> 'a t
    val value : 'a Pool.t -> 'a t -> 'a

    (** mutators *)

    val set_key : 'a Pool.t -> 'a t -> Key.t -> unit
    val set_at : 'a Pool.t -> 'a t -> Time_ns.t -> unit
    val set_level_index : 'a Pool.t -> 'a t -> int -> unit

    (** [insert_at_end pool t ~to_add] treats [t] as the head of the list and adds [to_add]
        to the end of it. *)
    val insert_at_end : 'a Pool.t -> 'a t -> to_add:'a t -> unit

    (** [link_to_self pool t] makes [t] be a singleton circular doubly-linked list. *)
    val link_to_self : 'a Pool.t -> 'a t -> unit

    (** [unlink p t] unlinks [t] from the circularly doubly-linked list that it is in.  It
        changes the pointers of [t]'s [prev] and [next] elts, but not [t]'s [prev] and
        [next] pointers.  [unlink] is meaningless if [t] is a singleton. *)
    val unlink : 'a Pool.t -> 'a t -> unit

    (** Iterators.  [iter p t ~init ~f] visits each element in the doubly-linked list
        containing [t], starting at [t], and following [next] pointers.  [length] counts
        by visiting each element in the list. *)
    val iter : 'a Pool.t -> 'a t -> f:('a t -> unit) -> unit

    val length : 'a Pool.t -> 'a t -> int

    (** [max_alarm_time t elt ~with_key] finds the max [at] in [elt]'s list among the elts
        whose key is [with_key], returning [Time_ns.epoch] if the list is empty. *)
    val max_alarm_time : 'a Pool.t -> 'a t -> with_key:Key.t -> Time_ns.t

    val min_alarm_time : 'a Pool.t -> 'a t -> with_key:Key.t -> Time_ns.t
  end = struct
    type 'a pool_slots = 'a External_elt.pool_slots [@@deriving sexp_of]
    type 'a t = 'a External_elt.t [@@deriving sexp_of]

    let null = Pointer.null
    let is_null = Pointer.is_null
    let equal t1 t2 = Pointer.phys_equal t1 t2

    let create pool ~key ~at ~value ~level_index =
      Pool.new6 pool key at value level_index (null ()) (null ())
    ;;

    let free = Pool.free
    let key p t = Pool.get p t Pool.Slot.t0
    let set_key p t k = Pool.set p t Pool.Slot.t0 k
    let at p t = Pool.get p t Pool.Slot.t1
    let set_at p t x = Pool.set p t Pool.Slot.t1 x
    let value p t = Pool.get p t Pool.Slot.t2
    let level_index p t = Pool.get p t Pool.Slot.t3
    let set_level_index p t i = Pool.set p t Pool.Slot.t3 i
    let prev p t = Pool.get p t Pool.Slot.t4
    let set_prev p t x = Pool.set p t Pool.Slot.t4 x
    let next p t = Pool.get p t Pool.Slot.t5
    let set_next p t x = Pool.set p t Pool.Slot.t5 x
    let is_valid p t = Pool.pointer_is_valid p t
    let external_is_valid = is_valid

    let invariant pool invariant_a t =
      Invariant.invariant [%here] t [%sexp_of: _ t] (fun () ->
        assert (is_valid pool t);
        invariant_a (value pool t);
        let n = next pool t in
        assert (is_null n || Pointer.phys_equal t (prev pool n));
        let p = prev pool t in
        assert (is_null p || Pointer.phys_equal t (next pool p)))
    ;;

    module Pool = struct
      type 'a t = 'a pool_slots Pool.t [@@deriving sexp_of]

      let invariant _invariant_a t = Pool.invariant ignore t
      let create ?(capacity = 1) () = Pool.create Pool.Slots.t6 ~capacity
      let grow = Pool.grow
      let is_full = Pool.is_full
    end

    let to_external t = t

    let of_external_exn pool t =
      if is_valid pool t then t else raise_s [%message "Timing_wheel got invalid alarm"]
    ;;

    let unlink pool t =
      set_next pool (prev pool t) (next pool t);
      set_prev pool (next pool t) (prev pool t)
    ;;

    let link pool prev next =
      set_next pool prev next;
      set_prev pool next prev
    ;;

    let link_to_self pool t = link pool t t

    let insert_at_end pool t ~to_add =
      let prev = prev pool t in
      link pool prev to_add;
      link pool to_add t
    ;;

    let iter pool first ~f =
      let current = ref first in
      let continue = ref true in
      while !continue do
        (* We get [next] before calling [f] so that [f] can modify or [free] [!current]. *)
        let next = next pool !current in
        f !current;
        if phys_equal next first then continue := false else current := next
      done
    ;;

    let length pool first =
      let r = ref 0 in
      let current = ref first in
      let continue = ref true in
      while !continue do
        incr r;
        let next = next pool !current in
        if phys_equal next first then continue := false else current := next
      done;
      !r
    ;;

    let max_alarm_time pool first ~with_key =
      let max_alarm_time = ref Time_ns.epoch in
      let current = ref first in
      let continue = ref true in
      while !continue do
        let next = next pool !current in
        if Key.equal (key pool !current) with_key
        then max_alarm_time := Time_ns.max (at pool !current) !max_alarm_time;
        if phys_equal next first then continue := false else current := next
      done;
      !max_alarm_time
    ;;

    let min_alarm_time pool first ~with_key =
      let min_alarm_time = ref Time_ns.max_value_representable in
      let current = ref first in
      let continue = ref true in
      while !continue do
        let next = next pool !current in
        (* The [key] comparison is necessary for [max_alarm_time_in_min_interval] because
           max time per interval is not the same as max time globally.

           This is not so for [min_alarm_time_in_min_interval], so this can potentially
           be simplified.

           Probably a better change would be to simply transfer the events to the
           "fired" collection (and rename it to "about to fire"), which is sorted by time,
           so getting the first element from that collection is efficient.
        *)
        if Key.equal (key pool !current) with_key
        then min_alarm_time := Time_ns.min (at pool !current) !min_alarm_time;
        if phys_equal next first then continue := false else current := next
      done;
      !min_alarm_time
    ;;
  end

  module Level = struct
    (** For given level, one can break the bits into a key into three regions:

        {v
         | higher levels | this level | lower levels |
        v}

        "Lower levels" is [bits_per_slot] bits wide.  "This level" is [bits] wide. *)
    type 'a t =
      { (* The [index] in the timing wheel's array of levels where this level is. *)
        index : int
      ; (* How many [bits] this level is responsible for. *)
        bits : Num_key_bits.t
      ; (* [slots_mask = Slots_mask.create ~level_bits:t.bits]. *)
        slots_mask : Slots_mask.t
      ; (* [bits_per_slot] is how many bits each slot distinguishes, and is the sum of of
           the [bits] of all the lower levels. *)
        bits_per_slot : Num_key_bits.t
      ; keys_per_slot : Key.Span.t
      ; min_key_in_same_slot_mask : Min_key_in_same_slot_mask.t
      ; (* [diff_max_min_allowed_key = keys_per_slot * Array.length slots - 1] *)
        diff_max_min_allowed_key : Key.Span.t
      ; (* [length] is the number of elts currently in this level. *)
        mutable length : int
      ; (* All elements at this level have their [key] satisfy [min_allowed_key <= key <=
           max_allowed_key].  Also, [min_allowed_key] is a multiple of [keys_per_slot]. *)
        mutable min_allowed_key : Key.t
      ; mutable max_allowed_key : Key.t
      ; (* [slots] holds the (possibly null) pointers to the circular doubly-linked lists
           of elts.  [Array.length slots = 1 lsl bits]. *)
        slots : ('a Internal_elt.t array[@sexp.opaque])
      }
    [@@deriving fields, sexp_of]

    let slot t ~key = Key.slot key ~bits_per_slot:t.bits_per_slot ~slots_mask:t.slots_mask
    let next_slot t slot = Slots_mask.next_slot t.slots_mask slot

    let min_key_in_same_slot t ~key =
      Key.min_key_in_same_slot key t.min_key_in_same_slot_mask
    ;;

    let compute_min_allowed_key t ~prev_level_max_allowed_key =
      (* This computation ensures that [t]'s [min_allowed_key] is as large as possible
         subject to the constraint that there is no inter-level gap. *)
      if Key.equal prev_level_max_allowed_key Key.max_value
      then Key.max_value
      else min_key_in_same_slot t ~key:(Key.succ prev_level_max_allowed_key)
    ;;
  end

  type 'a t =
    { mutable length : int
    ; mutable pool : 'a Internal_elt.Pool.t
    ; (* [min_elt] is either null or an element whose key is [elt_key_lower_bound]. *)
      mutable min_elt : 'a Internal_elt.t
    ; (* All elements in the priority queue have their key [>= elt_key_lower_bound]. *)
      mutable elt_key_lower_bound : Key.t
    ; levels : 'a Level.t array
    }
  [@@deriving fields, sexp_of]

  type 'a priority_queue = 'a t

  module Elt = struct
    type 'a t = 'a External_elt.t [@@deriving sexp_of]

    let null = External_elt.null
    let at p t = Internal_elt.at p.pool (Internal_elt.of_external_exn p.pool t)
    let key p t = Internal_elt.key p.pool (Internal_elt.of_external_exn p.pool t)
    let value p t = Internal_elt.value p.pool (Internal_elt.of_external_exn p.pool t)
  end

  let sexp_of_t_internal = sexp_of_t
  let is_empty t = length t = 0
  let num_levels t = Array.length t.levels
  let min_allowed_key t = Level.min_allowed_key t.levels.(0)
  let max_allowed_key t = Level.max_allowed_key t.levels.(num_levels t - 1)

  let internal_iter t ~f =
    if t.length > 0
    then (
      let pool = t.pool in
      let levels = t.levels in
      for level_index = 0 to Array.length levels - 1 do
        let level = levels.(level_index) in
        if level.length > 0
        then (
          let slots = level.slots in
          for slot_index = 0 to Array.length slots - 1 do
            let elt = slots.(slot_index) in
            if not (Internal_elt.is_null elt) then Internal_elt.iter pool elt ~f
          done)
      done)
  ;;

  let iter t ~f = internal_iter t ~f:(f : _ Elt.t -> unit :> _ Internal_elt.t -> unit)

  module Pretty = struct
    module Elt = struct
      type 'a t =
        { key : Key.t
        ; value : 'a
        }
      [@@deriving sexp_of]
    end

    type 'a t =
      { min_allowed_key : Key.t
      ; max_allowed_key : Key.t
      ; elts : 'a Elt.t list
      }
    [@@deriving sexp_of]
  end

  let pretty t =
    let pool = t.pool in
    { Pretty.min_allowed_key = min_allowed_key t
    ; max_allowed_key = max_allowed_key t
    ; elts =
        (let r = ref [] in
         internal_iter t ~f:(fun elt ->
           r
           := { Pretty.Elt.key = Internal_elt.key pool elt
              ; value = Internal_elt.value pool elt
              }
              :: !r);
         List.rev !r)
    }
  ;;

  let sexp_of_t sexp_of_a t =
    match !sexp_of_t_style with
    | `Internal -> [%sexp (t : a t_internal)]
    | `Pretty -> [%sexp (pretty t : a Pretty.t)]
  ;;

  let compute_diff_max_min_allowed_key ~level_bits ~bits_per_slot =
    let bits = Num_key_bits.( + ) level_bits bits_per_slot in
    if Num_key_bits.equal bits Num_key_bits.max_value
    then Key.Span.max_value
    else Key.Span.pred (Key.num_keys bits)
  ;;

  let invariant invariant_a t : unit =
    let pool = t.pool in
    let level_invariant level =
      Invariant.invariant [%here] level [%sexp_of: _ Level.t] (fun () ->
        let check f = Invariant.check_field level f in
        Level.Fields.iter
          ~index:(check (fun index -> assert (index >= 0)))
          ~bits:(check (fun bits -> assert (Num_key_bits.( > ) bits Num_key_bits.zero)))
          ~slots_mask:
            (check
               ([%test_result: Slots_mask.t]
                  ~expect:(Slots_mask.create ~level_bits:level.bits)))
          ~bits_per_slot:
            (check (fun bits_per_slot ->
               assert (Num_key_bits.( >= ) bits_per_slot Num_key_bits.zero)))
          ~keys_per_slot:
            (check (fun keys_per_slot ->
               [%test_result: Key.Span.t]
                 keys_per_slot
                 ~expect:(Key.num_keys level.bits_per_slot)))
          ~min_key_in_same_slot_mask:
            (check (fun min_key_in_same_slot_mask ->
               assert (
                 Min_key_in_same_slot_mask.equal
                   min_key_in_same_slot_mask
                   (Min_key_in_same_slot_mask.create
                      ~bits_per_slot:level.bits_per_slot))))
          ~diff_max_min_allowed_key:
            (check
               ([%test_result: Key.Span.t]
                  ~expect:
                    (compute_diff_max_min_allowed_key
                       ~level_bits:level.bits
                       ~bits_per_slot:level.bits_per_slot)))
          ~length:
            (check (fun length ->
               assert (
                 length
                 = Array.fold level.slots ~init:0 ~f:(fun n elt ->
                   if Internal_elt.is_null elt
                   then n
                   else n + Internal_elt.length pool elt))))
          ~min_allowed_key:
            (check (fun min_allowed_key ->
               assert (Key.( >= ) min_allowed_key Key.zero);
               if Key.( < ) min_allowed_key Key.max_value
               then
                 [%test_result: Key.Span.t]
                   (Key.rem min_allowed_key level.keys_per_slot)
                   ~expect:Key.Span.zero))
          ~max_allowed_key:
            (check (fun max_allowed_key ->
               [%test_result: Key.t]
                 max_allowed_key
                 ~expect:
                   (Key.add_clamp_to_max
                      level.min_allowed_key
                      level.diff_max_min_allowed_key)))
          ~slots:
            (check (fun slots ->
               Array.iter slots ~f:(fun elt ->
                 if not (Internal_elt.is_null elt)
                 then (
                   Internal_elt.invariant pool invariant_a elt;
                   Internal_elt.iter pool elt ~f:(fun elt ->
                     assert (
                       Key.( >= )
                         (Internal_elt.key pool elt)
                         level.min_allowed_key);
                     assert (
                       Key.( <= )
                         (Internal_elt.key pool elt)
                         level.max_allowed_key);
                     assert (
                       Key.( >= )
                         (Internal_elt.key pool elt)
                         t.elt_key_lower_bound);
                     assert (Internal_elt.level_index pool elt = level.index);
                     invariant_a (Internal_elt.value pool elt)))))))
    in
    Invariant.invariant [%here] t [%sexp_of: _ t_internal] (fun () ->
      let check f = Invariant.check_field t f in
      assert (Key.( >= ) (min_allowed_key t) Key.zero);
      assert (Key.( >= ) (max_allowed_key t) (min_allowed_key t));
      Fields.iter
        ~length:(check (fun length -> assert (length >= 0)))
        ~pool:(check (Internal_elt.Pool.invariant ignore))
        ~min_elt:
          (check (fun elt_ ->
             if not (Internal_elt.is_null elt_)
             then (
               assert (Internal_elt.is_valid t.pool elt_);
               assert (Key.equal t.elt_key_lower_bound (Internal_elt.key t.pool elt_)))))
        ~elt_key_lower_bound:
          (check (fun elt_key_lower_bound ->
             assert (Key.( >= ) elt_key_lower_bound (min_allowed_key t));
             assert (Key.( <= ) elt_key_lower_bound (max_allowed_key t));
             if not (Internal_elt.is_null t.min_elt)
             then
               assert (
                 Key.equal elt_key_lower_bound (Internal_elt.key t.pool t.min_elt))))
        ~levels:
          (check (fun levels ->
             assert (num_levels t > 0);
             Array.iteri levels ~f:(fun level_index level ->
               assert (level_index = Level.index level);
               level_invariant level;
               if level_index > 0
               then (
                 let prev_level = levels.(level_index - 1) in
                 let module L = Level in
                 [%test_result: Key.Span.t]
                   (L.keys_per_slot level)
                   ~expect:(Key.Span.succ prev_level.diff_max_min_allowed_key);
                 [%test_result: Key.t]
                   level.min_allowed_key
                   ~expect:
                     (Level.compute_min_allowed_key
                        level
                        ~prev_level_max_allowed_key:prev_level.max_allowed_key))))))
  ;;

  (** [min_elt_] returns [null] if it can't find the desired element.  We wrap it up
      afterwards to return an [option]. *)
  let min_elt_ t =
    if is_empty t
    then Internal_elt.null ()
    else if not (Internal_elt.is_null t.min_elt)
    then t.min_elt
    else (
      let pool = t.pool in
      let min_elt_already_found = ref (Internal_elt.null ()) in
      let min_key_already_found = ref Key.max_value in
      let level_index = ref 0 in
      let num_levels = num_levels t in
      while !level_index < num_levels do
        let level = t.levels.(!level_index) in
        if Key.( > ) (Level.min_allowed_key level) !min_key_already_found
        then
          (* We don't need to consider any more levels.  Quit the loop. *)
          level_index := num_levels
        else if level.length = 0
        then incr level_index
        else (
          (* Look in [level]. *)
          let slots = level.slots in
          let slot_min_key =
            ref
              (Level.min_key_in_same_slot
                 level
                 ~key:(Key.max level.min_allowed_key t.elt_key_lower_bound))
          in
          let slot = ref (Level.slot level ~key:!slot_min_key) in
          (* Find the first nonempty slot with a small enough [slot_min_key]. *)
          while
            Internal_elt.is_null slots.(!slot)
            && Key.( < ) !slot_min_key !min_key_already_found
          do
            slot := Level.next_slot level !slot;
            slot_min_key := Key.add !slot_min_key level.keys_per_slot
          done;
          let first = slots.(!slot) in
          if not (Internal_elt.is_null first)
          then (
            (* Visit all of the elts in this slot and find one with minimum key. *)
            let continue = ref true in
            let current = ref first in
            while !continue do
              let current_key = Internal_elt.key pool !current in
              if Key.( <= ) current_key !min_key_already_found
              then (
                min_elt_already_found := !current;
                min_key_already_found := current_key);
              let next = Internal_elt.next pool !current in
              (* If [!level_index = 0] then all elts in this slot have the same [key],
                 i.e. [!slot_min_key].  So, we don't have to check any elements after
                 [first].  This is a useful short cut in the common case that there are
                 multiple elements in the same min slot in level 0. *)
              if phys_equal next first || !level_index = 0
              then continue := false
              else current := next
            done);
          (* Finished looking in [level].  Move up to the next level. *)
          incr level_index)
      done;
      t.min_elt <- !min_elt_already_found;
      t.elt_key_lower_bound <- !min_key_already_found;
      t.min_elt)
  ;;

  let[@cold] raise_add_elt_key_out_of_bounds t key =
    raise_s
      [%message
        "Priority_queue.add_elt key out of bounds"
          (key : Key.t)
          (min_allowed_key t : Key.t)
          (max_allowed_key t : Key.t)
          ~priority_queue:(t : _ t)]
  ;;

  let[@cold] raise_add_elt_key_out_of_level_bounds key level =
    raise_s
      [%message
        "Priority_queue.add_elt key out of level bounds" (key : Key.t) (level : _ Level.t)]
  ;;

  let add_elt t elt =
    let pool = t.pool in
    let key = Internal_elt.key pool elt in
    if not (Key.( >= ) key (min_allowed_key t) && Key.( <= ) key (max_allowed_key t))
    then raise_add_elt_key_out_of_bounds t key;
    (* Find the lowest level that will hold [elt]. *)
    let level_index =
      let level_index = ref 0 in
      while Key.( > ) key (Level.max_allowed_key t.levels.(!level_index)) do
        incr level_index
      done;
      !level_index
    in
    let level = t.levels.(level_index) in
    if not (Key.( >= ) key level.min_allowed_key && Key.( <= ) key level.max_allowed_key)
    then raise_add_elt_key_out_of_level_bounds key level;
    level.length <- level.length + 1;
    Internal_elt.set_level_index pool elt level_index;
    let slot = Level.slot level ~key in
    let slots = level.slots in
    let first = slots.(slot) in
    if not (Internal_elt.is_null first)
    then Internal_elt.insert_at_end pool first ~to_add:elt
    else (
      slots.(slot) <- elt;
      Internal_elt.link_to_self pool elt)
  ;;

  let internal_add_elt t elt =
    let key = Internal_elt.key t.pool elt in
    if Key.( < ) key t.elt_key_lower_bound
    then (
      t.min_elt <- elt;
      t.elt_key_lower_bound <- key);
    add_elt t elt;
    t.length <- t.length + 1
  ;;

  let[@cold] raise_got_invalid_key t key =
    raise_s
      [%message
        "Timing_wheel.add_at_interval_num got invalid interval num"
          ~interval_num:(key : Key.t)
          ~min_allowed_alarm_interval_num:(min_allowed_key t : Key.t)
          ~max_allowed_alarm_interval_num:(max_allowed_key t : Key.t)]
  ;;

  let ensure_valid_key t ~key =
    if Key.( < ) key (min_allowed_key t) || Key.( > ) key (max_allowed_key t)
    then raise_got_invalid_key t key
  ;;

  let internal_add t ~key ~at value =
    ensure_valid_key t ~key;
    if Internal_elt.Pool.is_full t.pool then t.pool <- Internal_elt.Pool.grow t.pool;
    let elt = Internal_elt.create t.pool ~key ~at ~value ~level_index:(-1) in
    internal_add_elt t elt;
    elt
  ;;

  (** [remove_or_re_add_elts] visits each element in the circular doubly-linked list
      [first].  If the element's key is [>= t_min_allowed_key], then it adds the element
      back at a lower level.  If not, then it calls [handle_removed] and [free]s the
      element. *)
  let remove_or_re_add_elts t (level : _ Level.t) first ~t_min_allowed_key ~handle_removed
    =
    let pool = t.pool in
    let current = ref first in
    let continue = ref true in
    while !continue do
      (* We extract [next] from [current] first, because we will modify or [free]
         [current] before continuing the loop. *)
      let next = Internal_elt.next pool !current in
      level.length <- level.length - 1;
      if Key.( >= ) (Internal_elt.key pool !current) t_min_allowed_key
      then add_elt t !current
      else (
        t.length <- t.length - 1;
        handle_removed (Internal_elt.to_external !current);
        Internal_elt.free pool !current);
      if phys_equal next first then continue := false else current := next
    done
  ;;

  (** [increase_level_min_allowed_key] increases the [min_allowed_key] of [level] to as
      large a value as possible, but no more than [max_level_min_allowed_key].
      [t_min_allowed_key] is the minimum allowed key for the entire timing wheel.  As
      elements are encountered, they are removed from the timing wheel if their key is
      smaller than [t_min_allowed_key], or added at a lower level if not. *)
  let increase_level_min_allowed_key
        t
        (level : _ Level.t)
        ~prev_level_max_allowed_key
        ~t_min_allowed_key
        ~handle_removed
    =
    let desired_min_allowed_key =
      Level.compute_min_allowed_key level ~prev_level_max_allowed_key
    in
    (* We require that [mod level.min_allowed_key level.keys_per_slot = 0].  So,
       we start [level_min_allowed_key] where that is true, and then increase it by
       [keys_per_slot] each iteration of the loop. *)
    let level_min_allowed_key =
      Level.min_key_in_same_slot
        level
        ~key:
          (Key.min
             desired_min_allowed_key
             (Key.max level.min_allowed_key t.elt_key_lower_bound))
    in
    let level_min_allowed_key = ref level_min_allowed_key in
    let slot = ref (Level.slot level ~key:!level_min_allowed_key) in
    let keys_per_slot = level.keys_per_slot in
    let slots = level.slots in
    while Key.( < ) !level_min_allowed_key desired_min_allowed_key do
      if level.length = 0
      then
        (* If no elements remain at this level, we can just set [min_allowed_key] to the
           desired value. *)
        level_min_allowed_key := desired_min_allowed_key
      else (
        let first = slots.(!slot) in
        if not (Internal_elt.is_null first)
        then (
          slots.(!slot) <- Internal_elt.null ();
          remove_or_re_add_elts t level first ~t_min_allowed_key ~handle_removed);
        slot := Level.next_slot level !slot;
        level_min_allowed_key := Key.add_clamp_to_max !level_min_allowed_key keys_per_slot)
    done;
    level.min_allowed_key <- desired_min_allowed_key;
    level.max_allowed_key
    <- Key.add_clamp_to_max desired_min_allowed_key level.diff_max_min_allowed_key
  ;;

  module Increase_min_allowed_key_result = struct
    type t =
      | Max_allowed_key_did_not_change
      | Max_allowed_key_maybe_changed
  end

  let increase_min_allowed_key t ~key ~handle_removed : Increase_min_allowed_key_result.t =
    if Key.( <= ) key (min_allowed_key t)
    then Max_allowed_key_did_not_change
    else (
      (* We increase the [min_allowed_key] of levels in order to restore the invariant
         that they have as large as possible a [min_allowed_key], while leaving no gaps
         in keys. *)
      let level_index = ref 0 in
      let result = ref Increase_min_allowed_key_result.Max_allowed_key_maybe_changed in
      let prev_level_max_allowed_key = ref (Key.pred key) in
      let levels = t.levels in
      let num_levels = num_levels t in
      while !level_index < num_levels do
        let level = levels.(!level_index) in
        let min_allowed_key_before = level.min_allowed_key in
        increase_level_min_allowed_key
          t
          level
          ~prev_level_max_allowed_key:!prev_level_max_allowed_key
          ~t_min_allowed_key:key
          ~handle_removed;
        if Key.equal (Level.min_allowed_key level) min_allowed_key_before
        then (
          (* This level did not shift.  Don't shift any higher levels. *)
          level_index := num_levels;
          result := Max_allowed_key_did_not_change)
        else (
          (* Level [level_index] shifted.  Consider shifting higher levels. *)
          level_index := !level_index + 1;
          prev_level_max_allowed_key := Level.max_allowed_key level)
      done;
      if Key.( > ) key t.elt_key_lower_bound
      then (
        (* We have removed [t.min_elt] or it was already null, so just set it to
           null. *)
        t.min_elt <- Internal_elt.null ();
        t.elt_key_lower_bound <- min_allowed_key t);
      !result)
  ;;

  let create ?capacity ?level_bits () =
    let level_bits =
      match level_bits with
      | Some l -> l
      | None -> Level_bits.default
    in
    let _, _, levels =
      List.foldi
        level_bits
        ~init:(Num_key_bits.zero, Key.zero, [])
        ~f:(fun
             index
             (bits_per_slot, max_level_min_allowed_key, levels)
             (level_bits : Num_key_bits.t)
             ->
               let keys_per_slot = Key.num_keys bits_per_slot in
               let diff_max_min_allowed_key =
                 compute_diff_max_min_allowed_key ~level_bits ~bits_per_slot
               in
               let min_key_in_same_slot_mask =
                 Min_key_in_same_slot_mask.create ~bits_per_slot
               in
               let min_allowed_key =
                 Key.min_key_in_same_slot max_level_min_allowed_key min_key_in_same_slot_mask
               in
               let max_allowed_key =
                 Key.add_clamp_to_max min_allowed_key diff_max_min_allowed_key
               in
               let level =
                 { Level.index
                 ; bits = level_bits
                 ; slots_mask = Slots_mask.create ~level_bits
                 ; bits_per_slot
                 ; keys_per_slot
                 ; min_key_in_same_slot_mask
                 ; diff_max_min_allowed_key
                 ; length = 0
                 ; min_allowed_key
                 ; max_allowed_key
                 ; slots =
                     Array.create
                       ~len:(Int63.to_int_exn (Num_key_bits.pow2 level_bits))
                       (Internal_elt.null ())
                 }
               in
               ( Num_key_bits.( + ) level_bits bits_per_slot
               , Key.succ_clamp_to_max max_allowed_key
               , level :: levels ))
    in
    { length = 0
    ; pool = Internal_elt.Pool.create ?capacity ()
    ; min_elt = Internal_elt.null ()
    ; elt_key_lower_bound = Key.zero
    ; levels = Array.of_list_rev levels
    }
  ;;

  let mem t elt = Internal_elt.external_is_valid t.pool elt

  let internal_remove t elt =
    let pool = t.pool in
    if Internal_elt.equal elt t.min_elt
    then
      t.min_elt <- Internal_elt.null ()
    (* We keep [t.elt_lower_bound] since it is valid even though [t.min_elt] is being
       removed. *);
    t.length <- t.length - 1;
    let level = t.levels.(Internal_elt.level_index pool elt) in
    level.length <- level.length - 1;
    let slots = level.slots in
    let slot = Level.slot level ~key:(Internal_elt.key pool elt) in
    let first = slots.(slot) in
    if phys_equal elt (Internal_elt.next pool elt)
    then (* [elt] is the only element in the slot *)
      slots.(slot) <- Internal_elt.null ()
    else (
      if phys_equal elt first then slots.(slot) <- Internal_elt.next pool elt;
      Internal_elt.unlink pool elt)
  ;;

  let remove t elt =
    let pool = t.pool in
    let elt = Internal_elt.of_external_exn pool elt in
    internal_remove t elt;
    Internal_elt.free pool elt
  ;;

  let fire_past_alarms t ~handle_fired ~key ~now =
    let level = t.levels.(0) in
    if level.length > 0
    then (
      let slot = Level.slot level ~key in
      let slots = level.slots in
      let pool = t.pool in
      let first = ref slots.(slot) in
      if not (Internal_elt.is_null !first)
      then (
        let current = ref !first in
        let continue = ref true in
        while !continue do
          let elt = !current in
          let next = Internal_elt.next pool elt in
          if phys_equal next !first then continue := false else current := next;
          if Time_ns.( <= ) (Internal_elt.at pool elt) now
          then (
            handle_fired (Internal_elt.to_external elt);
            internal_remove t elt;
            Internal_elt.free pool elt;
            (* We recompute [first] because [internal_remove] may have changed it. *)
            first := slots.(slot))
        done))
  ;;

  let change t elt ~key ~at =
    ensure_valid_key t ~key;
    let pool = t.pool in
    let elt = Internal_elt.of_external_exn pool elt in
    internal_remove t elt;
    Internal_elt.set_key pool elt key;
    Internal_elt.set_at pool elt at;
    internal_add_elt t elt
  ;;

  let clear t =
    if not (is_empty t)
    then (
      t.length <- 0;
      let pool = t.pool in
      let free_elt elt = Internal_elt.free pool elt in
      let levels = t.levels in
      for level_index = 0 to Array.length levels - 1 do
        let level = levels.(level_index) in
        if level.length > 0
        then (
          level.length <- 0;
          let slots = level.slots in
          for slot_index = 0 to Array.length slots - 1 do
            let elt = slots.(slot_index) in
            if not (Internal_elt.is_null elt)
            then (
              Internal_elt.iter pool elt ~f:free_elt;
              slots.(slot_index) <- Internal_elt.null ())
          done)
      done)
  ;;
end

module Internal_elt = Priority_queue.Internal_elt
module Key = Priority_queue.Key
module Interval_num = Key

let min_interval_num = Interval_num.zero

(* All time from the epoch onwards is broken into half-open intervals of size
   [Config.alarm_precision config].  The intervals are numbered starting at zero, and a
   time's interval number serves as its key in [priority_queue]. *)
type 'a t =
  { config : Config.t
  ; start : Time_ns.t
  ; (* [max_interval_num] is the interval number of [max_time]. *)
    max_interval_num : Interval_num.t
  ; mutable now : Time_ns.t
  ; mutable now_interval_num_start : Time_ns.t
  ; mutable max_allowed_alarm_time : Time_ns.t
  ; priority_queue : 'a Priority_queue.t
  }
[@@deriving fields, sexp_of]

type 'a timing_wheel = 'a t
type 'a t_now = 'a t

let sexp_of_t_now _ t = [%sexp (t.now : Time_ns.t)]
let alarm_precision t = Config.alarm_precision t.config

module Alarm = struct
  type 'a t = 'a Priority_queue.Elt.t [@@deriving sexp_of]

  let null = Priority_queue.Elt.null
  let at tw t = Priority_queue.Elt.at tw.priority_queue t
  let value tw t = Priority_queue.Elt.value tw.priority_queue t
  let interval_num tw t = Priority_queue.Elt.key tw.priority_queue t
end

let sexp_of_t_internal = sexp_of_t
let iter t ~f = Priority_queue.iter t.priority_queue ~f

module Pretty = struct
  module Alarm = struct
    type 'a t =
      { at : Time_ns.t
      ; value : 'a
      }
    [@@deriving fields, sexp_of]

    let create t alarm = { at = Alarm.at t alarm; value = Alarm.value t alarm }
    let compare t1 t2 = Time_ns.compare (at t1) (at t2)
  end

  type 'a t =
    { config : Config.t
    ; start : Time_ns.t
    ; max_interval_num : Interval_num.t
    ; now : Time_ns.t
    ; alarms : 'a Alarm.t list
    }
  [@@deriving sexp_of]
end

let pretty
      ({ config
       ; start
       ; max_interval_num
       ; now
       ; now_interval_num_start = _
       ; max_allowed_alarm_time = _
       ; priority_queue = _
       } as t)
  =
  let r = ref [] in
  iter t ~f:(fun a -> r := Pretty.Alarm.create t a :: !r);
  let alarms = List.sort !r ~compare:Pretty.Alarm.compare in
  { Pretty.config; start; max_interval_num; now; alarms }
;;

let sexp_of_t sexp_of_a t =
  match !sexp_of_t_style with
  | `Internal -> sexp_of_t_internal sexp_of_a t
  | `Pretty -> [%sexp (pretty t : a Pretty.t)]
;;

let length t = Priority_queue.length t.priority_queue
let is_empty t = length t = 0

let[@cold] raise_next_alarm_fires_at_exn_of_empty_timing_wheel t =
  raise_s
    [%message
      "Timing_wheel.next_alarm_fires_at_exn of empty timing wheel" ~timing_wheel:(t : _ t)]
;;

let[@cold] raise_next_alarm_fires_at_with_all_alarms_in_max_interval t =
  raise_s
    [%message
      "Timing_wheel.next_alarm_fires_at_exn with all alarms in max interval"
        ~timing_wheel:(t : _ t)]
;;

let pool t = Priority_queue.pool t.priority_queue

let interval_num_internal ~time ~alarm_precision =
  Interval_num.of_int63 (Alarm_precision.interval_num alarm_precision time)
;;

let interval_num_unchecked t time =
  interval_num_internal ~time ~alarm_precision:t.config.alarm_precision
;;

let interval_num t time =
  if Time_ns.( < ) time min_time
  then
    raise_s
      [%message
        "Timing_wheel.interval_num got time too far in the past" (time : Time_ns.t)];
  interval_num_unchecked t time
;;

let interval_num_start_unchecked t interval_num =
  Alarm_precision.interval_num_start
    t.config.alarm_precision
    (interval_num |> Interval_num.to_int63)
;;

let[@cold] raise_interval_num_start_got_too_small interval_num =
  raise_s
    [%message
      "Timing_wheel.interval_num_start got too small interval_num"
        (interval_num : Interval_num.t)
        (min_interval_num : Interval_num.t)]
;;

let[@cold] raise_interval_num_start_got_too_large t interval_num =
  raise_s
    [%message
      "Timing_wheel.interval_num_start got too large interval_num"
        (interval_num : Interval_num.t)
        (t.max_interval_num : Interval_num.t)]
;;

let interval_num_start t interval_num =
  if Interval_num.( < ) interval_num min_interval_num
  then raise_interval_num_start_got_too_small interval_num;
  if Interval_num.( > ) interval_num t.max_interval_num
  then raise_interval_num_start_got_too_large t interval_num;
  interval_num_start_unchecked t interval_num
;;

let next_alarm_fires_at_internal t key =
  (* [interval_num_start t key] is the key corresponding to the start of the time interval
     holding the first alarm in [t].  Advancing to that would not be enough, since the
     alarms in that interval don't fire until the clock is advanced to the start of the
     next interval.  So, we use [succ key] to advance to the start of the next
     interval. *)
  interval_num_start t (Key.succ key)
;;

let next_alarm_fires_at t =
  let elt = Priority_queue.min_elt_ t.priority_queue in
  if Internal_elt.is_null elt
  then None
  else (
    let key = Internal_elt.key (pool t) elt in
    if Interval_num.equal key t.max_interval_num
    then None
    else Some (next_alarm_fires_at_internal t key))
;;

let next_alarm_fires_at_exn t =
  let elt = Priority_queue.min_elt_ t.priority_queue in
  if Internal_elt.is_null elt then raise_next_alarm_fires_at_exn_of_empty_timing_wheel t;
  let key = Internal_elt.key (pool t) elt in
  if Interval_num.equal key t.max_interval_num
  then raise_next_alarm_fires_at_with_all_alarms_in_max_interval t;
  next_alarm_fires_at_internal t key
;;

let compute_max_allowed_alarm_time t =
  let max_allowed_key = Priority_queue.max_allowed_key t.priority_queue in
  if Interval_num.( >= ) max_allowed_key t.max_interval_num
  then max_time
  else
    Time_ns.add
      (interval_num_start_unchecked t max_allowed_key)
      (Time_ns.Span.( - ) (alarm_precision t) Time_ns.Span.nanosecond)
;;

let now_interval_num t = Priority_queue.min_allowed_key t.priority_queue
let min_allowed_alarm_interval_num = now_interval_num
let max_allowed_alarm_interval_num t = interval_num t (max_allowed_alarm_time t)
let interval_start t time = interval_num_start_unchecked t (interval_num t time)

let invariant invariant_a t =
  Invariant.invariant [%here] t [%sexp_of: _ t] (fun () ->
    let check f = Invariant.check_field t f in
    Fields.iter
      ~config:(check Config.invariant)
      ~start:
        (check (fun start ->
           assert (Time_ns.( >= ) start min_time);
           assert (Time_ns.( <= ) start max_time)))
      ~max_interval_num:
        (check (fun max_interval_num ->
           [%test_result: Interval_num.t]
             ~expect:max_interval_num
             (interval_num t max_time);
           [%test_result: Interval_num.t]
             ~expect:max_interval_num
             (interval_num t (interval_num_start t max_interval_num))))
      ~now:
        (check (fun now ->
           assert (Time_ns.( >= ) now t.start);
           assert (Time_ns.( <= ) now max_time);
           assert (
             Interval_num.equal
               (interval_num t t.now)
               (Priority_queue.min_allowed_key t.priority_queue))))
      ~now_interval_num_start:
        (check (fun now_interval_num_start ->
           [%test_result: Time_ns.t]
             now_interval_num_start
             ~expect:(interval_num_start t (now_interval_num t))))
      ~max_allowed_alarm_time:
        (check (fun max_allowed_alarm_time ->
           [%test_result: Time_ns.t]
             max_allowed_alarm_time
             ~expect:(compute_max_allowed_alarm_time t)))
      ~priority_queue:(check (Priority_queue.invariant invariant_a));
    iter t ~f:(fun alarm ->
      assert (
        Interval_num.equal
          (Alarm.interval_num t alarm)
          (interval_num t (Alarm.at t alarm)));
      assert (
        Time_ns.( >= )
          (interval_start t (Alarm.at t alarm))
          (interval_start t (now t)));
      assert (
        Time_ns.( > ) (Alarm.at t alarm) (Time_ns.sub (now t) (alarm_precision t)))))
;;

let debug = false

let advance_clock t ~to_ ~handle_fired =
  if Time_ns.( > ) to_ (now t)
  then (
    t.now <- to_;
    let key = interval_num_unchecked t to_ in
    t.now_interval_num_start <- interval_num_start_unchecked t key;
    match
      Priority_queue.increase_min_allowed_key
        t.priority_queue
        ~key
        ~handle_removed:handle_fired
    with
    | Max_allowed_key_did_not_change ->
      if debug
      then
        assert (Time_ns.( = ) t.max_allowed_alarm_time (compute_max_allowed_alarm_time t))
    | Max_allowed_key_maybe_changed ->
      t.max_allowed_alarm_time <- compute_max_allowed_alarm_time t)
;;

let create ~config ~start =
  if Time_ns.( < ) start Time_ns.epoch
  then
    raise_s
      [%message "Timing_wheel.create got start before the epoch" (start : Time_ns.t)];
  let t =
    { config
    ; start
    ; max_interval_num =
        interval_num_internal ~time:max_time ~alarm_precision:config.alarm_precision
    ; now = Time_ns.min_value_for_1us_rounding (* set by [advance_clock] below *)
    ; now_interval_num_start =
        Time_ns.min_value_for_1us_rounding (* set by [advance_clock] below *)
    ; max_allowed_alarm_time = max_time (* set by [advance_clock] below *)
    ; priority_queue =
        Priority_queue.create ?capacity:config.capacity ~level_bits:config.level_bits ()
    }
  in
  t.max_allowed_alarm_time <- compute_max_allowed_alarm_time t;
  advance_clock t ~to_:start ~handle_fired:(fun _ -> assert false);
  t
;;

let add_at_interval_num t ~at value =
  Internal_elt.to_external
    (Priority_queue.internal_add
       t.priority_queue
       ~key:at
       ~at:(interval_num_start t at)
       value)
;;

let[@cold] raise_that_far_in_the_future t at =
  raise_s
    [%message
      "Timing_wheel cannot schedule alarm that far in the future"
        (at : Time_ns.t)
        ~max_allowed_alarm_time:(t.max_allowed_alarm_time : Time_ns.t)]
;;

let[@cold] raise_before_start_of_current_interval t at =
  raise_s
    [%message
      "Timing_wheel cannot schedule alarm before start of current interval"
        (at : Time_ns.t)
        ~now_interval_num_start:(t.now_interval_num_start : Time_ns.t)]
;;

let ensure_can_schedule_alarm t ~at =
  if Time_ns.( > ) at t.max_allowed_alarm_time then raise_that_far_in_the_future t at;
  if Time_ns.( < ) at t.now_interval_num_start
  then raise_before_start_of_current_interval t at
;;

let add t ~at value =
  ensure_can_schedule_alarm t ~at;
  Internal_elt.to_external
    (Priority_queue.internal_add
       t.priority_queue
       ~key:(interval_num_unchecked t at)
       ~at
       value)
;;

let remove t alarm = Priority_queue.remove t.priority_queue alarm
let clear t = Priority_queue.clear t.priority_queue
let mem t alarm = Priority_queue.mem t.priority_queue alarm

let reschedule_gen t alarm ~key ~at =
  if not (mem t alarm)
  then failwith "Timing_wheel cannot reschedule alarm not in timing wheel";
  ensure_can_schedule_alarm t ~at;
  Priority_queue.change t.priority_queue alarm ~key ~at
;;

let reschedule t alarm ~at = reschedule_gen t alarm ~key:(interval_num_unchecked t at) ~at

let reschedule_at_interval_num t alarm ~at =
  reschedule_gen t alarm ~key:at ~at:(interval_num_start t at)
;;

let min_alarm_interval_num t =
  let elt = Priority_queue.min_elt_ t.priority_queue in
  if Internal_elt.is_null elt then None else Some (Internal_elt.key (pool t) elt)
;;

let min_alarm_interval_num_exn t =
  let elt = Priority_queue.min_elt_ t.priority_queue in
  if Internal_elt.is_null elt
  then
    raise_s
      [%message
        "Timing_wheel.min_alarm_interval_num_exn of empty timing_wheel"
          ~timing_wheel:(t : _ t)]
  else Internal_elt.key (pool t) elt
;;

let max_alarm_time_in_list t elt =
  let pool = pool t in
  Internal_elt.max_alarm_time pool elt ~with_key:(Internal_elt.key pool elt)
;;

let min_alarm_time_in_list t elt =
  let pool = pool t in
  Internal_elt.min_alarm_time pool elt ~with_key:(Internal_elt.key pool elt)
;;

let max_alarm_time_in_min_interval t =
  let elt = Priority_queue.min_elt_ t.priority_queue in
  if Internal_elt.is_null elt then None else Some (max_alarm_time_in_list t elt)
;;

let min_alarm_time_in_min_interval t =
  let elt = Priority_queue.min_elt_ t.priority_queue in
  if Internal_elt.is_null elt then None else Some (min_alarm_time_in_list t elt)
;;

let max_alarm_time_in_min_interval_exn t =
  let elt = Priority_queue.min_elt_ t.priority_queue in
  if Internal_elt.is_null elt
  then
    raise_s
      [%message
        "Timing_wheel.max_alarm_time_in_min_interval_exn of empty timing wheel"
          ~timing_wheel:(t : _ t)];
  max_alarm_time_in_list t elt
;;

let min_alarm_time_in_min_interval_exn t =
  let elt = Priority_queue.min_elt_ t.priority_queue in
  if Internal_elt.is_null elt
  then
    raise_s
      [%message
        "Timing_wheel.max_alarm_time_in_min_interval_exn of empty timing wheel"
          ~timing_wheel:(t : _ t)];
  min_alarm_time_in_list t elt
;;

let fire_past_alarms t ~handle_fired =
  Priority_queue.fire_past_alarms
    t.priority_queue
    ~handle_fired
    ~key:(now_interval_num t)
    ~now:t.now
;;

module Private = struct
  module Num_key_bits = Num_key_bits

  let interval_num_internal = interval_num_internal
  let max_time = max_time
end
OCaml

Innovation. Community. Security.