package core_kernel

  1. Overview
  2. Docs
Industrial strength alternative to OCaml's standard library

Install

Dune Dependency

Authors

Maintainers

Sources

core_kernel-v0.15.0.tar.gz
sha256=34a0288f16027c6b90e4ad16cb5cc677d7063d310faf918748ce70f1745116c0

doc/src/core_kernel.tuple_pool/tuple_pool.ml.html

Source file tuple_pool.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
open! Core
open! Import
open Tuple_pool_intf
module Tuple_type = Tuple_type

let failwiths = Error.failwiths
let phys_equal = Caml.( == )
let arch_sixtyfour = Sys.word_size_in_bits = 64

module Int = struct
  let num_bits = Int.num_bits
  let max_value = Caml.max_int
  let to_string = string_of_int
end

let sprintf = Printf.sprintf
let concat l = Base.String.concat ~sep:"" l

module type S = S

module Pool = struct
  let grow_capacity ~capacity ~old_capacity =
    match capacity with
    | None -> if old_capacity = 0 then 1 else old_capacity * 2
    | Some capacity ->
      if capacity <= old_capacity
      then
        failwiths
          ~here:[%here]
          "Pool.grow got too small capacity"
          (`capacity capacity, `old_capacity old_capacity)
          [%sexp_of: [ `capacity of int ] * [ `old_capacity of int ]];
      capacity
  ;;

  module Slots = Tuple_type.Slots

  let max_slot = 14

  (* The pool is represented as a single [Uniform_array.t], where index zero has the
     metadata about the pool and the remaining indices are the tuples layed out one after
     the other.  Each tuple takes [1 + slots_per_tuple] indices in the pool, where the
     first index holds a header and the remaining indices hold the tuple's slots:

     {v
     | header | s0 | s1 | ... | s<N-1> |
     v}

     A [Pointer.t] to a tuple contains the integer index where its header is, as well as
     (a mask of) the tuple's unique id.

     The free tuples are singly linked via the headers.

     When a tuple is in use, its header is marked to indicate so, and also to include the
     tuple's unique id.  This allows us to check in constant time whether a pointer is
     valid, by comparing the id in the pointer with the id in the header.

     When a tuple is not in use, its header is part of the free list, and its tuple slots
     have dummy values of the appropriate types, from the [dummy] tuple supplied to
     [create].  We must have dummy values of the correct type to prevent a segfault in
     code that (mistakenly) uses a pointer to a free tuple.

     For [Pool.Unsafe], a slot in a free object is guaranteed to be an int; it must not be
     pointer to prevent a space leak.  However, the int in the slot may not represent a
     valid value of the type.
  *)

  module Slot = struct
    type ('slots, 'a) t = int [@@deriving sexp_of]

    let equal (t1 : (_, _) t) t2 = t1 = t2
    let t0 = 1
    let t1 = 2
    let t2 = 3
    let t3 = 4
    let t4 = 5
    let t5 = 6
    let t6 = 7
    let t7 = 8
    let t8 = 9
    let t9 = 10
    let t10 = 11
    let t11 = 12
    let t12 = 13
    let t13 = 14

    let%test _ = t13 = max_slot
  end

  (* We only have [Int.num_bits] bits available for pool pointers.  The bits of a pool
     pointer encode two things:

     - the tuple's array index in the pool
     - the tuple's identifier (not necessarily unique)

     We choose [array_index_num_bits] as large as needed for the maximum pool capacity
     that we want to support, and use the remaining [masked_tuple_id_num_bits] bits for
     the identifier.  64-bit and 32-bit architectures typically have very different
     address-space sizes, so we choose [array_index_num_bits] differently. *)

  let array_index_num_bits =
    if arch_sixtyfour
    then (
      assert (Int.num_bits = 63);
      30)
    else (
      assert (Int.num_bits = 31 || Int.num_bits = 32);
      22)
  ;;

  let masked_tuple_id_num_bits = Int.num_bits - array_index_num_bits

  let%test _ = array_index_num_bits > 0
  let%test _ = masked_tuple_id_num_bits > 0
  let%test _ = array_index_num_bits + masked_tuple_id_num_bits <= Int.num_bits

  let max_array_length = 1 lsl array_index_num_bits

  module Tuple_id : sig
    type t = private int [@@deriving sexp_of]

    include Invariant.S with type t := t

    val to_string : t -> string
    val equal : t -> t -> bool
    val init : t
    val next : t -> t
    val of_int : int -> t
    val to_int : t -> int
    val examples : t list
  end = struct
    type t = int [@@deriving sexp_of]

    (* We guarantee that tuple ids are nonnegative so that they can be encoded in
       headers. *)
    let invariant t = assert (t >= 0)
    let to_string = Int.to_string
    let equal (t1 : t) t2 = t1 = t2
    let init = 0
    let next t = if arch_sixtyfour then t + 1 else if t = Int.max_value then 0 else t + 1
    let to_int t = t

    let of_int i =
      if i < 0
      then failwiths ~here:[%here] "Tuple_id.of_int got negative int" i [%sexp_of: int];
      i
    ;;

    let examples = [ 0; 1; 0x1FFF_FFFF; Int.max_value ]
  end

  let tuple_id_mask = (1 lsl masked_tuple_id_num_bits) - 1

  module Pointer : sig
    (* [Pointer.t] is an encoding as an [int] of the following sum type:

       {[
         | Null
         | Normal of { header_index : int; masked_tuple_id : int }
       ]}

       The encoding is chosen to optimize the most common operation, namely tuple-slot
       access, the [slot_index] function.  The encoding is designed so that [slot_index]
       produces a negative number for [Null], which will cause the subsequent array bounds
       check to fail. *)

    type 'slots t = private int [@@deriving sexp_of, typerep]

    include Invariant.S1 with type 'a t := 'a t

    val phys_compare : 'a t -> 'a t -> int
    val phys_equal : 'a t -> 'a t -> bool

    (* The null pointer.  [null] is a function due to issues with the value restriction. *)

    val null : unit -> _ t
    val is_null : _ t -> bool

    (* Normal pointers. *)

    val create : header_index:int -> Tuple_id.t -> _ t
    val header_index : _ t -> int
    val masked_tuple_id : _ t -> int
    val slot_index : _ t -> (_, _) Slot.t -> int
    val first_slot_index : _ t -> int

    module Id : sig
      type t [@@deriving bin_io, sexp]

      val to_int63 : t -> Int63.t
      val of_int63 : Int63.t -> t
    end

    val to_id : _ t -> Id.t
    val of_id_exn : Id.t -> _ t
  end = struct
    (* A pointer is either [null] or the (positive) index in the pool of the next-free
       field preceeding the tuple's slots. *)
    type 'slots t = int [@@deriving typerep]

    let sexp_of_t _ t = Sexp.Atom (sprintf "<Pool.Pointer.t: 0x%08x>" t)
    let phys_equal (t1 : _ t) t2 = phys_equal t1 t2
    let phys_compare = compare
    let null () = -max_slot - 1
    let is_null t = phys_equal t (null ())

    (* [null] must be such that [null + slot] is an invalid array index for all slots.
       Otherwise get/set on the null pointer may lead to a segfault. *)
    let%test _ = null () + max_slot < 0

    let create ~header_index (tuple_id : Tuple_id.t) =
      header_index
      lor ((Tuple_id.to_int tuple_id land tuple_id_mask) lsl array_index_num_bits)
    ;;

    let header_index_mask = (1 lsl array_index_num_bits) - 1
    let masked_tuple_id t = t lsr array_index_num_bits
    let header_index t = t land header_index_mask
    let invariant _ t = if not (is_null t) then assert (header_index t > 0)

    let%test_unit _ = invariant ignore (null ())

    let%test_unit _ =
      List.iter Tuple_id.examples ~f:(fun tuple_id ->
        invariant ignore (create ~header_index:1 tuple_id))
    ;;

    let slot_index t slot = header_index t + slot
    let first_slot_index t = slot_index t Slot.t0

    module Id = struct
      include Int63

      let to_int63 t = t
      let of_int63 i = i
    end

    let to_id t = Id.of_int t

    let of_id_exn id =
      try
        let t = Id.to_int_exn id in
        if is_null t
        then t
        else (
          let should_equal =
            create ~header_index:(header_index t) (Tuple_id.of_int (masked_tuple_id t))
          in
          if phys_equal t should_equal
          then t
          else failwiths ~here:[%here] "should equal" should_equal [%sexp_of: _ t])
      with
      | exn ->
        failwiths
          ~here:[%here]
          "Pointer.of_id_exn got strange id"
          (id, exn)
          [%sexp_of: Id.t * exn]
    ;;
  end

  module Header : sig
    (* A [Header.t] is an encoding as an [int] of the following type:

       {[
         | Null
         | Free of { next_free_header_index : int }
         | Used of { tuple_id : int }
       ]}

       If a tuple is free, its header is set to either [Null] or [Free] with
       [next_free_header_index] indicating the header of the next tuple on the free list.
       If a tuple is in use, it header is set to [Used]. *)

    type t = private int [@@deriving sexp_of]

    val null : t
    val is_null : t -> bool
    val free : next_free_header_index:int -> t
    val is_free : t -> bool
    val next_free_header_index : t -> int

    (* only valid if [is_free t] *)

    val used : Tuple_id.t -> t
    val is_used : t -> bool
    val tuple_id : t -> Tuple_id.t

    (* only valid if [is_used t] *)
  end = struct
    type t = int

    let null = 0
    let is_null t = t = 0

    (* We know that header indices are [> 0], because index [0] holds the metadata. *)
    let free ~next_free_header_index = next_free_header_index
    let is_free t = t > 0
    let next_free_header_index t = t
    let used (tuple_id : Tuple_id.t) = -1 - (tuple_id :> int)
    let is_used t = t < 0
    let tuple_id t = Tuple_id.of_int (-(t + 1))

    let%test_unit _ =
      List.iter Tuple_id.examples ~f:(fun id ->
        let t = used id in
        assert (is_used t);
        assert (Tuple_id.equal (tuple_id t) id))
    ;;

    let sexp_of_t t =
      if is_null t
      then Sexp.Atom "null"
      else if is_free t
      then Sexp.(List [ Atom "Free"; Atom (Int.to_string (next_free_header_index t)) ])
      else Sexp.(List [ Atom "Used"; Atom (Tuple_id.to_string (tuple_id t)) ])
    ;;
  end

  let metadata_index = 0
  let start_of_tuples_index = 1

  let max_capacity ~slots_per_tuple =
    (max_array_length - start_of_tuples_index) / (1 + slots_per_tuple)
  ;;

  let%test_unit _ =
    for slots_per_tuple = 1 to max_slot do
      assert (
        start_of_tuples_index + ((1 + slots_per_tuple) * max_capacity ~slots_per_tuple)
        <= max_array_length)
    done
  ;;

  module Metadata = struct
    type 'slots t =
      { (* [slots_per_tuple] is number of slots in a tuple as seen by the user; i.e. not
           counting the next-free pointer. *)
        slots_per_tuple : int
      ; capacity : int
      ; mutable length : int
      ; mutable next_id : Tuple_id.t
      ; mutable first_free : Header.t
      (* [dummy] is [None] in an unsafe pool.  In a safe pool, [dummy] is [Some a], with
         [Uniform_array.length a = slots_per_tuple].  [dummy] is actually a tuple value
         with the correct type (corresponding to ['slots]), but we make the type of
         [dummy] be [Obj.t Uniform_array.t] because we can't write that type here.  Also,
         the purpose of [dummy] is to initialize a pool element, making [dummy] an [Obj.t
         Uniform_array.t] lets us initialize a pool element using [Uniform_array.blit]
         from [dummy] to the pool, which is an [Obj.t Uniform_array.t]. *)
      ; dummy : (Obj.t Uniform_array.t[@sexp.opaque]) option
      }
    [@@deriving fields, sexp_of]

    let array_indices_per_tuple t = 1 + t.slots_per_tuple
    let array_length t = start_of_tuples_index + (t.capacity * array_indices_per_tuple t)

    let header_index_to_tuple_num t ~header_index =
      (header_index - start_of_tuples_index) / array_indices_per_tuple t
    ;;

    let tuple_num_to_header_index t tuple_num =
      start_of_tuples_index + (tuple_num * array_indices_per_tuple t)
    ;;

    let tuple_num_to_first_slot_index t tuple_num =
      tuple_num_to_header_index t tuple_num + 1
    ;;

    let is_full t = t.length = t.capacity
  end

  open Metadata

  (* We use type [Obj.t] because the array holds a mix of integers as well as OCaml values
     of arbitrary type. *)
  type 'slots t = Obj.t Uniform_array.t

  let metadata (type slots) (t : slots t) =
    Uniform_array.unsafe_get t metadata_index |> (Obj.obj : _ -> slots Metadata.t)
  ;;

  let length t = (metadata t).length
  let sexp_of_t sexp_of_ty t = Metadata.sexp_of_t sexp_of_ty (metadata t)

  (* Because [unsafe_header] and [unsafe_set_header] do not do a bounds check, one must be
     sure that one has a valid [header_index] before calling them. *)
  let unsafe_header t ~header_index =
    Uniform_array.unsafe_get t header_index |> (Obj.obj : _ -> Header.t)
  ;;

  let unsafe_set_header t ~header_index (header : Header.t) =
    Uniform_array.unsafe_set_int_assuming_currently_int t header_index (header :> int)
  ;;

  let header_index_is_in_bounds t ~header_index =
    header_index >= start_of_tuples_index && header_index < Uniform_array.length t
  ;;

  let unsafe_pointer_is_live t pointer =
    let header_index = Pointer.header_index pointer in
    let header = unsafe_header t ~header_index in
    Header.is_used header
    && Tuple_id.to_int (Header.tuple_id header) land tuple_id_mask
       = Pointer.masked_tuple_id pointer
  ;;

  let pointer_is_valid t pointer =
    header_index_is_in_bounds t ~header_index:(Pointer.header_index pointer)
    (* At this point, we know the pointer isn't [null] and is in bounds, so we know it is
       the index of a header, since we maintain the invariant that all pointers other than
       [null] are. *)
    && unsafe_pointer_is_live t pointer
  ;;

  let id_of_pointer _t pointer = Pointer.to_id pointer

  let is_valid_header_index t ~header_index =
    let metadata = metadata t in
    header_index_is_in_bounds t ~header_index
    && 0
       = (header_index - start_of_tuples_index)
         mod Metadata.array_indices_per_tuple metadata
  ;;

  let pointer_of_id_exn t id =
    try
      let pointer = Pointer.of_id_exn id in
      if not (Pointer.is_null pointer)
      then (
        let header_index = Pointer.header_index pointer in
        if not (is_valid_header_index t ~header_index)
        then failwiths ~here:[%here] "invalid header index" header_index [%sexp_of: int];
        if not (unsafe_pointer_is_live t pointer) then failwith "pointer not live");
      pointer
    with
    | exn ->
      failwiths
        ~here:[%here]
        "Pool.pointer_of_id_exn got invalid id"
        (id, t, exn)
        [%sexp_of: Pointer.Id.t * _ t * exn]
  ;;

  let invariant _invariant_a t : unit =
    try
      let metadata = metadata t in
      let check f field = f (Field.get field metadata) in
      Metadata.Fields.iter
        ~slots_per_tuple:(check (fun slots_per_tuple -> assert (slots_per_tuple > 0)))
        ~capacity:
          (check (fun capacity ->
             assert (capacity >= 0);
             assert (Uniform_array.length t = Metadata.array_length metadata)))
        ~length:
          (check (fun length ->
             assert (length >= 0);
             assert (length <= metadata.capacity)))
        ~next_id:(check Tuple_id.invariant)
        ~first_free:
          (check (fun first_free ->
             let free = Array.create ~len:metadata.capacity false in
             let r = ref first_free in
             while not (Header.is_null !r) do
               let header = !r in
               assert (Header.is_free header);
               let header_index = Header.next_free_header_index header in
               assert (is_valid_header_index t ~header_index);
               let tuple_num = header_index_to_tuple_num metadata ~header_index in
               if free.(tuple_num)
               then
                 failwiths ~here:[%here] "cycle in free list" tuple_num [%sexp_of: int];
               free.(tuple_num) <- true;
               r := unsafe_header t ~header_index
             done))
        ~dummy:
          (check (function
             | Some dummy ->
               assert (Uniform_array.length dummy = metadata.slots_per_tuple)
             | None ->
               for tuple_num = 0 to metadata.capacity - 1 do
                 let header_index = tuple_num_to_header_index metadata tuple_num in
                 let header = unsafe_header t ~header_index in
                 if Header.is_free header
                 then (
                   let first_slot = tuple_num_to_first_slot_index metadata tuple_num in
                   for slot = 0 to metadata.slots_per_tuple - 1 do
                     assert (Obj.is_int (Uniform_array.get t (first_slot + slot)))
                   done)
               done))
    with
    | exn ->
      failwiths ~here:[%here] "Pool.invariant failed" (exn, t) [%sexp_of: exn * _ t]
  ;;

  let capacity t = (metadata t).capacity
  let is_full t = Metadata.is_full (metadata t)

  let unsafe_add_to_free_list t metadata ~header_index =
    unsafe_set_header t ~header_index metadata.first_free;
    metadata.first_free <- Header.free ~next_free_header_index:header_index
  ;;

  let set_metadata (type slots) (t : slots t) metadata =
    Uniform_array.set t metadata_index (Obj.repr (metadata : slots Metadata.t))
  ;;

  let create_array (type slots) (metadata : slots Metadata.t) : slots t =
    let t = Uniform_array.create_obj_array ~len:(Metadata.array_length metadata) in
    set_metadata t metadata;
    t
  ;;

  (* Initialize tuples numbered from [lo] (inclusive) up to [hi] (exclusive).  For each
     tuple, this puts dummy values in the tuple's slots and adds the tuple to the free
     list. *)
  let unsafe_init_range t metadata ~lo ~hi =
    (match metadata.dummy with
     | None -> ()
     | Some dummy ->
       for tuple_num = lo to hi - 1 do
         Uniform_array.blit
           ~src:dummy
           ~src_pos:0
           ~dst:t
           ~dst_pos:(tuple_num_to_first_slot_index metadata tuple_num)
           ~len:metadata.slots_per_tuple
       done);
    for tuple_num = hi - 1 downto lo do
      unsafe_add_to_free_list
        t
        metadata
        ~header_index:(tuple_num_to_header_index metadata tuple_num)
    done
  ;;

  let create_with_dummy slots ~capacity ~dummy =
    if capacity < 0
    then
      failwiths ~here:[%here] "Pool.create got invalid capacity" capacity [%sexp_of: int];
    let slots_per_tuple = Slots.slots_per_tuple slots in
    let max_capacity = max_capacity ~slots_per_tuple in
    if capacity > max_capacity
    then
      failwiths
        ~here:[%here]
        "Pool.create got too large capacity"
        (capacity, `max max_capacity)
        [%sexp_of: int * [ `max of int ]];
    let metadata =
      { Metadata.slots_per_tuple
      ; capacity
      ; length = 0
      ; next_id = Tuple_id.init
      ; first_free = Header.null
      ; dummy
      }
    in
    let t = create_array metadata in
    unsafe_init_range t metadata ~lo:0 ~hi:capacity;
    t
  ;;

  let create (type tuple) (slots : (tuple, _) Slots.t) ~capacity ~dummy =
    let dummy =
      if Slots.slots_per_tuple slots = 1
      then Uniform_array.singleton (Obj.repr (dummy : tuple))
      else (Obj.magic (dummy : tuple) : Obj.t Uniform_array.t)
    in
    create_with_dummy slots ~capacity ~dummy:(Some dummy)
  ;;

  (* Purge a pool and make it unusable. *)
  let destroy t =
    let metadata = metadata t in
    (* We clear out all the pool's entries, which causes all pointers to be invalid.  This
       also prevents the destroyed pool from unnecessarily keeping heap blocks alive.
       This is similar to [free]ing all the entries with the difference that we make the
       free list empty as well. *)
    (match metadata.dummy with
     | None ->
       for i = start_of_tuples_index to Uniform_array.length t - 1 do
         Uniform_array.unsafe_set t i (Obj.repr 0)
       done
     | Some dummy ->
       for tuple_num = 0 to metadata.capacity - 1 do
         let header_index = tuple_num_to_header_index metadata tuple_num in
         unsafe_set_header t ~header_index Header.null;
         Uniform_array.blit
           ~src:dummy
           ~src_pos:0
           ~dst:t
           ~dst_pos:(header_index + 1)
           ~len:metadata.slots_per_tuple
       done);
    let metadata =
      { Metadata.slots_per_tuple = metadata.slots_per_tuple
      ; capacity = 0
      ; length = 0
      ; next_id = metadata.next_id
      ; first_free = Header.null
      ; dummy = metadata.dummy
      }
    in
    set_metadata t metadata
  ;;

  let[@cold] grow ?capacity t =
    let { Metadata.slots_per_tuple
        ; capacity = old_capacity
        ; length
        ; next_id
        ; first_free = _
        ; dummy
        }
      =
      metadata t
    in
    let capacity =
      min (max_capacity ~slots_per_tuple) (grow_capacity ~capacity ~old_capacity)
    in
    if capacity = old_capacity
    then
      failwiths
        ~here:[%here]
        "Pool.grow cannot grow pool; capacity already at maximum"
        capacity
        [%sexp_of: int];
    let metadata =
      { Metadata.slots_per_tuple
      ; capacity
      ; length
      ; next_id
      ; first_free = Header.null
      ; dummy
      }
    in
    let t' = create_array metadata in
    Uniform_array.blit
      ~src:t
      ~src_pos:start_of_tuples_index
      ~dst:t'
      ~dst_pos:start_of_tuples_index
      ~len:(old_capacity * Metadata.array_indices_per_tuple metadata);
    destroy t;
    unsafe_init_range t' metadata ~lo:old_capacity ~hi:capacity;
    for tuple_num = old_capacity - 1 downto 0 do
      let header_index = tuple_num_to_header_index metadata tuple_num in
      let header = unsafe_header t' ~header_index in
      if not (Header.is_used header)
      then unsafe_add_to_free_list t' metadata ~header_index
    done;
    t'
  ;;

  let[@cold] raise_malloc_full t =
    failwiths ~here:[%here] "Pool.malloc of full pool" t [%sexp_of: _ t]
  ;;

  let malloc (type slots) (t : slots t) : slots Pointer.t =
    let metadata = metadata t in
    let first_free = metadata.first_free in
    if Header.is_null first_free then raise_malloc_full t;
    let header_index = Header.next_free_header_index first_free in
    metadata.first_free <- unsafe_header t ~header_index;
    metadata.length <- metadata.length + 1;
    let tuple_id = metadata.next_id in
    unsafe_set_header t ~header_index (Header.used tuple_id);
    metadata.next_id <- Tuple_id.next tuple_id;
    Pointer.create ~header_index tuple_id
  ;;

  let unsafe_free (type slots) (t : slots t) (pointer : slots Pointer.t) =
    let metadata = metadata t in
    metadata.length <- metadata.length - 1;
    unsafe_add_to_free_list t metadata ~header_index:(Pointer.header_index pointer);
    match metadata.dummy with
    | None ->
      let pos = Pointer.first_slot_index pointer in
      for i = 0 to metadata.slots_per_tuple - 1 do
        Uniform_array.unsafe_clear_if_pointer t (pos + i)
      done
    | Some dummy ->
      Uniform_array.unsafe_blit
        ~src:dummy
        ~src_pos:0
        ~len:metadata.slots_per_tuple
        ~dst:t
        ~dst_pos:(Pointer.first_slot_index pointer)
  ;;

  let free (type slots) (t : slots t) (pointer : slots Pointer.t) =
    (* Check [pointer_is_valid] to:
       - avoid freeing a null pointer
       - avoid freeing a free pointer (this would lead to a pool inconsistency)
       - be able to use unsafe functions after. *)
    if not (pointer_is_valid t pointer)
    then
      failwiths
        ~here:[%here]
        "Pool.free of invalid pointer"
        (pointer, t)
        [%sexp_of: _ Pointer.t * _ t];
    unsafe_free t pointer
  ;;

  let new1 t a0 =
    let pointer = malloc t in
    let offset = Pointer.header_index pointer in
    Uniform_array.unsafe_set t (offset + 1) (Obj.repr a0);
    pointer
  ;;

  let new2 t a0 a1 =
    let pointer = malloc t in
    let offset = Pointer.header_index pointer in
    Uniform_array.unsafe_set t (offset + 1) (Obj.repr a0);
    Uniform_array.unsafe_set t (offset + 2) (Obj.repr a1);
    pointer
  ;;

  let new3 t a0 a1 a2 =
    let pointer = malloc t in
    let offset = Pointer.header_index pointer in
    Uniform_array.unsafe_set t (offset + 1) (Obj.repr a0);
    Uniform_array.unsafe_set t (offset + 2) (Obj.repr a1);
    Uniform_array.unsafe_set t (offset + 3) (Obj.repr a2);
    pointer
  ;;

  let new4 t a0 a1 a2 a3 =
    let pointer = malloc t in
    let offset = Pointer.header_index pointer in
    Uniform_array.unsafe_set t (offset + 1) (Obj.repr a0);
    Uniform_array.unsafe_set t (offset + 2) (Obj.repr a1);
    Uniform_array.unsafe_set t (offset + 3) (Obj.repr a2);
    Uniform_array.unsafe_set t (offset + 4) (Obj.repr a3);
    pointer
  ;;

  let new5 t a0 a1 a2 a3 a4 =
    let pointer = malloc t in
    let offset = Pointer.header_index pointer in
    Uniform_array.unsafe_set t (offset + 1) (Obj.repr a0);
    Uniform_array.unsafe_set t (offset + 2) (Obj.repr a1);
    Uniform_array.unsafe_set t (offset + 3) (Obj.repr a2);
    Uniform_array.unsafe_set t (offset + 4) (Obj.repr a3);
    Uniform_array.unsafe_set t (offset + 5) (Obj.repr a4);
    pointer
  ;;

  let new6 t a0 a1 a2 a3 a4 a5 =
    let pointer = malloc t in
    let offset = Pointer.header_index pointer in
    Uniform_array.unsafe_set t (offset + 1) (Obj.repr a0);
    Uniform_array.unsafe_set t (offset + 2) (Obj.repr a1);
    Uniform_array.unsafe_set t (offset + 3) (Obj.repr a2);
    Uniform_array.unsafe_set t (offset + 4) (Obj.repr a3);
    Uniform_array.unsafe_set t (offset + 5) (Obj.repr a4);
    Uniform_array.unsafe_set t (offset + 6) (Obj.repr a5);
    pointer
  ;;

  let new7 t a0 a1 a2 a3 a4 a5 a6 =
    let pointer = malloc t in
    let offset = Pointer.header_index pointer in
    Uniform_array.unsafe_set t (offset + 1) (Obj.repr a0);
    Uniform_array.unsafe_set t (offset + 2) (Obj.repr a1);
    Uniform_array.unsafe_set t (offset + 3) (Obj.repr a2);
    Uniform_array.unsafe_set t (offset + 4) (Obj.repr a3);
    Uniform_array.unsafe_set t (offset + 5) (Obj.repr a4);
    Uniform_array.unsafe_set t (offset + 6) (Obj.repr a5);
    Uniform_array.unsafe_set t (offset + 7) (Obj.repr a6);
    pointer
  ;;

  let new8 t a0 a1 a2 a3 a4 a5 a6 a7 =
    let pointer = malloc t in
    let offset = Pointer.header_index pointer in
    Uniform_array.unsafe_set t (offset + 1) (Obj.repr a0);
    Uniform_array.unsafe_set t (offset + 2) (Obj.repr a1);
    Uniform_array.unsafe_set t (offset + 3) (Obj.repr a2);
    Uniform_array.unsafe_set t (offset + 4) (Obj.repr a3);
    Uniform_array.unsafe_set t (offset + 5) (Obj.repr a4);
    Uniform_array.unsafe_set t (offset + 6) (Obj.repr a5);
    Uniform_array.unsafe_set t (offset + 7) (Obj.repr a6);
    Uniform_array.unsafe_set t (offset + 8) (Obj.repr a7);
    pointer
  ;;

  let new9 t a0 a1 a2 a3 a4 a5 a6 a7 a8 =
    let pointer = malloc t in
    let offset = Pointer.header_index pointer in
    Uniform_array.unsafe_set t (offset + 1) (Obj.repr a0);
    Uniform_array.unsafe_set t (offset + 2) (Obj.repr a1);
    Uniform_array.unsafe_set t (offset + 3) (Obj.repr a2);
    Uniform_array.unsafe_set t (offset + 4) (Obj.repr a3);
    Uniform_array.unsafe_set t (offset + 5) (Obj.repr a4);
    Uniform_array.unsafe_set t (offset + 6) (Obj.repr a5);
    Uniform_array.unsafe_set t (offset + 7) (Obj.repr a6);
    Uniform_array.unsafe_set t (offset + 8) (Obj.repr a7);
    Uniform_array.unsafe_set t (offset + 9) (Obj.repr a8);
    pointer
  ;;

  let new10 t a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 =
    let pointer = malloc t in
    let offset = Pointer.header_index pointer in
    Uniform_array.unsafe_set t (offset + 1) (Obj.repr a0);
    Uniform_array.unsafe_set t (offset + 2) (Obj.repr a1);
    Uniform_array.unsafe_set t (offset + 3) (Obj.repr a2);
    Uniform_array.unsafe_set t (offset + 4) (Obj.repr a3);
    Uniform_array.unsafe_set t (offset + 5) (Obj.repr a4);
    Uniform_array.unsafe_set t (offset + 6) (Obj.repr a5);
    Uniform_array.unsafe_set t (offset + 7) (Obj.repr a6);
    Uniform_array.unsafe_set t (offset + 8) (Obj.repr a7);
    Uniform_array.unsafe_set t (offset + 9) (Obj.repr a8);
    Uniform_array.unsafe_set t (offset + 10) (Obj.repr a9);
    pointer
  ;;

  let new11 t a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 =
    let pointer = malloc t in
    let offset = Pointer.header_index pointer in
    Uniform_array.unsafe_set t (offset + 1) (Obj.repr a0);
    Uniform_array.unsafe_set t (offset + 2) (Obj.repr a1);
    Uniform_array.unsafe_set t (offset + 3) (Obj.repr a2);
    Uniform_array.unsafe_set t (offset + 4) (Obj.repr a3);
    Uniform_array.unsafe_set t (offset + 5) (Obj.repr a4);
    Uniform_array.unsafe_set t (offset + 6) (Obj.repr a5);
    Uniform_array.unsafe_set t (offset + 7) (Obj.repr a6);
    Uniform_array.unsafe_set t (offset + 8) (Obj.repr a7);
    Uniform_array.unsafe_set t (offset + 9) (Obj.repr a8);
    Uniform_array.unsafe_set t (offset + 10) (Obj.repr a9);
    Uniform_array.unsafe_set t (offset + 11) (Obj.repr a10);
    pointer
  ;;

  let new12 t a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 =
    let pointer = malloc t in
    let offset = Pointer.header_index pointer in
    Uniform_array.unsafe_set t (offset + 1) (Obj.repr a0);
    Uniform_array.unsafe_set t (offset + 2) (Obj.repr a1);
    Uniform_array.unsafe_set t (offset + 3) (Obj.repr a2);
    Uniform_array.unsafe_set t (offset + 4) (Obj.repr a3);
    Uniform_array.unsafe_set t (offset + 5) (Obj.repr a4);
    Uniform_array.unsafe_set t (offset + 6) (Obj.repr a5);
    Uniform_array.unsafe_set t (offset + 7) (Obj.repr a6);
    Uniform_array.unsafe_set t (offset + 8) (Obj.repr a7);
    Uniform_array.unsafe_set t (offset + 9) (Obj.repr a8);
    Uniform_array.unsafe_set t (offset + 10) (Obj.repr a9);
    Uniform_array.unsafe_set t (offset + 11) (Obj.repr a10);
    Uniform_array.unsafe_set t (offset + 12) (Obj.repr a11);
    pointer
  ;;

  let new13 t a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 =
    let pointer = malloc t in
    let offset = Pointer.header_index pointer in
    Uniform_array.unsafe_set t (offset + 1) (Obj.repr a0);
    Uniform_array.unsafe_set t (offset + 2) (Obj.repr a1);
    Uniform_array.unsafe_set t (offset + 3) (Obj.repr a2);
    Uniform_array.unsafe_set t (offset + 4) (Obj.repr a3);
    Uniform_array.unsafe_set t (offset + 5) (Obj.repr a4);
    Uniform_array.unsafe_set t (offset + 6) (Obj.repr a5);
    Uniform_array.unsafe_set t (offset + 7) (Obj.repr a6);
    Uniform_array.unsafe_set t (offset + 8) (Obj.repr a7);
    Uniform_array.unsafe_set t (offset + 9) (Obj.repr a8);
    Uniform_array.unsafe_set t (offset + 10) (Obj.repr a9);
    Uniform_array.unsafe_set t (offset + 11) (Obj.repr a10);
    Uniform_array.unsafe_set t (offset + 12) (Obj.repr a11);
    Uniform_array.unsafe_set t (offset + 13) (Obj.repr a12);
    pointer
  ;;

  let new14 t a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 =
    let pointer = malloc t in
    let offset = Pointer.header_index pointer in
    Uniform_array.unsafe_set t (offset + 1) (Obj.repr a0);
    Uniform_array.unsafe_set t (offset + 2) (Obj.repr a1);
    Uniform_array.unsafe_set t (offset + 3) (Obj.repr a2);
    Uniform_array.unsafe_set t (offset + 4) (Obj.repr a3);
    Uniform_array.unsafe_set t (offset + 5) (Obj.repr a4);
    Uniform_array.unsafe_set t (offset + 6) (Obj.repr a5);
    Uniform_array.unsafe_set t (offset + 7) (Obj.repr a6);
    Uniform_array.unsafe_set t (offset + 8) (Obj.repr a7);
    Uniform_array.unsafe_set t (offset + 9) (Obj.repr a8);
    Uniform_array.unsafe_set t (offset + 10) (Obj.repr a9);
    Uniform_array.unsafe_set t (offset + 11) (Obj.repr a10);
    Uniform_array.unsafe_set t (offset + 12) (Obj.repr a11);
    Uniform_array.unsafe_set t (offset + 13) (Obj.repr a12);
    Uniform_array.unsafe_set t (offset + 14) (Obj.repr a13);
    pointer
  ;;

  let get t p slot = Obj.obj (Uniform_array.get t (Pointer.slot_index p slot))

  let unsafe_get t p slot =
    Obj.obj (Uniform_array.unsafe_get t (Pointer.slot_index p slot))
  ;;

  let set t p slot x = Uniform_array.set t (Pointer.slot_index p slot) (Obj.repr x)

  let unsafe_set t p slot x =
    Uniform_array.unsafe_set t (Pointer.slot_index p slot) (Obj.repr x)
  ;;

  let get_tuple (type tuple) (t : (tuple, _) Slots.t t) pointer =
    let metadata = metadata t in
    let len = metadata.slots_per_tuple in
    if len = 1
    then get t pointer Slot.t0
    else
      (Obj.magic
         (Uniform_array.sub t ~pos:(Pointer.first_slot_index pointer) ~len
          : Obj.t Uniform_array.t)
       : tuple)
  ;;
end

include Pool

module Unsafe = struct
  include Pool

  let create slots ~capacity = create_with_dummy slots ~capacity ~dummy:None
end

module Debug (Pool : S) = struct
  open Pool

  let check_invariant = ref true
  let show_messages = ref true

  let debug name ts arg sexp_of_arg sexp_of_result f =
    let prefix = "Pool." in
    if !check_invariant then List.iter ts ~f:(invariant ignore);
    if !show_messages then Debug.eprints (concat [ prefix; name ]) arg sexp_of_arg;
    let result_or_exn = Result.try_with f in
    if !show_messages
    then
      Debug.eprints
        (concat [ prefix; name; " result" ])
        result_or_exn
        [%sexp_of: (result, exn) Result.t];
    Result.ok_exn result_or_exn
  ;;

  module Slots = Slots
  module Slot = Slot

  module Pointer = struct
    open Pointer

    type nonrec 'slots t = 'slots t [@@deriving sexp_of, typerep]

    let phys_compare t1 t2 =
      debug
        "Pointer.phys_compare"
        []
        (t1, t2)
        [%sexp_of: _ t * _ t]
        [%sexp_of: int]
        (fun () -> phys_compare t1 t2)
    ;;

    let phys_equal t1 t2 =
      debug
        "Pointer.phys_equal"
        []
        (t1, t2)
        [%sexp_of: _ t * _ t]
        [%sexp_of: bool]
        (fun () -> phys_equal t1 t2)
    ;;

    let is_null t =
      debug "Pointer.is_null" [] t [%sexp_of: _ t] [%sexp_of: bool] (fun () -> is_null t)
    ;;

    let null = null

    module Id = struct
      open Id

      type nonrec t = t [@@deriving bin_io, sexp]

      let of_int63 i =
        debug "Pointer.Id.of_int63" [] i [%sexp_of: Int63.t] [%sexp_of: t] (fun () ->
          of_int63 i)
      ;;

      let to_int63 t =
        debug "Pointer.Id.to_int63" [] t [%sexp_of: t] [%sexp_of: Int63.t] (fun () ->
          to_int63 t)
      ;;
    end
  end

  type nonrec 'slots t = 'slots t [@@deriving sexp_of]

  let invariant = invariant
  let length = length

  let id_of_pointer t pointer =
    debug
      "id_of_pointer"
      [ t ]
      pointer
      [%sexp_of: _ Pointer.t]
      [%sexp_of: Pointer.Id.t]
      (fun () -> id_of_pointer t pointer)
  ;;

  let pointer_of_id_exn t id =
    debug
      "pointer_of_id_exn"
      [ t ]
      id
      [%sexp_of: Pointer.Id.t]
      [%sexp_of: _ Pointer.t]
      (fun () -> pointer_of_id_exn t id)
  ;;

  let pointer_is_valid t pointer =
    debug
      "pointer_is_valid"
      [ t ]
      pointer
      [%sexp_of: _ Pointer.t]
      [%sexp_of: bool]
      (fun () -> pointer_is_valid t pointer)
  ;;

  let create slots ~capacity ~dummy =
    debug "create" [] capacity [%sexp_of: int] [%sexp_of: _ t] (fun () ->
      create slots ~capacity ~dummy)
  ;;

  let max_capacity ~slots_per_tuple =
    debug "max_capacity" [] slots_per_tuple [%sexp_of: int] [%sexp_of: int] (fun () ->
      max_capacity ~slots_per_tuple)
  ;;

  let capacity t =
    debug "capacity" [ t ] t [%sexp_of: _ t] [%sexp_of: int] (fun () -> capacity t)
  ;;

  let grow ?capacity t =
    debug
      "grow"
      [ t ]
      (`capacity capacity)
      [%sexp_of: [ `capacity of int option ]]
      [%sexp_of: _ t]
      (fun () -> grow ?capacity t)
  ;;

  let is_full t =
    debug "is_full" [ t ] t [%sexp_of: _ t] [%sexp_of: bool] (fun () -> is_full t)
  ;;

  let unsafe_free t p =
    debug "unsafe_free" [ t ] p [%sexp_of: _ Pointer.t] [%sexp_of: unit] (fun () ->
      unsafe_free t p)
  ;;

  let free t p =
    debug "free" [ t ] p [%sexp_of: _ Pointer.t] [%sexp_of: unit] (fun () -> free t p)
  ;;

  let debug_new t f = debug "new" [ t ] () [%sexp_of: unit] [%sexp_of: _ Pointer.t] f
  let new1 t a0 = debug_new t (fun () -> new1 t a0)
  let new2 t a0 a1 = debug_new t (fun () -> new2 t a0 a1)
  let new3 t a0 a1 a2 = debug_new t (fun () -> new3 t a0 a1 a2)
  let new4 t a0 a1 a2 a3 = debug_new t (fun () -> new4 t a0 a1 a2 a3)
  let new5 t a0 a1 a2 a3 a4 = debug_new t (fun () -> new5 t a0 a1 a2 a3 a4)
  let new6 t a0 a1 a2 a3 a4 a5 = debug_new t (fun () -> new6 t a0 a1 a2 a3 a4 a5)
  let new7 t a0 a1 a2 a3 a4 a5 a6 = debug_new t (fun () -> new7 t a0 a1 a2 a3 a4 a5 a6)

  let new8 t a0 a1 a2 a3 a4 a5 a6 a7 =
    debug_new t (fun () -> new8 t a0 a1 a2 a3 a4 a5 a6 a7)
  ;;

  let new9 t a0 a1 a2 a3 a4 a5 a6 a7 a8 =
    debug_new t (fun () -> new9 t a0 a1 a2 a3 a4 a5 a6 a7 a8)
  ;;

  let new10 t a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 =
    debug_new t (fun () -> new10 t a0 a1 a2 a3 a4 a5 a6 a7 a8 a9)
  ;;

  let new11 t a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 =
    debug_new t (fun () -> new11 t a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10)
  ;;

  let new12 t a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 =
    debug_new t (fun () -> new12 t a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11)
  ;;

  let new13 t a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 =
    debug_new t (fun () -> new13 t a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12)
  ;;

  let new14 t a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 =
    debug_new t (fun () -> new14 t a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13)
  ;;

  let get_tuple t pointer =
    debug "get_tuple" [ t ] pointer [%sexp_of: _ Pointer.t] [%sexp_of: _] (fun () ->
      get_tuple t pointer)
  ;;

  let debug_get name f t pointer =
    debug name [ t ] pointer [%sexp_of: _ Pointer.t] [%sexp_of: _] (fun () -> f t pointer)
  ;;

  let get t pointer slot = debug_get "get" get t pointer slot
  let unsafe_get t pointer slot = debug_get "unsafe_get" unsafe_get t pointer slot

  let debug_set name f t pointer slot a =
    debug name [ t ] pointer [%sexp_of: _ Pointer.t] [%sexp_of: unit] (fun () ->
      f t pointer slot a)
  ;;

  let set t pointer slot a = debug_set "set" set t pointer slot a
  let unsafe_set t pointer slot a = debug_set "unsafe_set" unsafe_set t pointer slot a
end

module Error_check (Pool : S) = struct
  open Pool
  module Slots = Slots
  module Slot = Slot

  module Pointer = struct
    type 'slots t =
      { mutable is_valid : bool
      ; pointer : 'slots Pointer.t
      }
    [@@deriving sexp_of, typerep]

    let create pointer = { is_valid = true; pointer }
    let null () = { is_valid = false; pointer = Pointer.null () }
    let phys_compare t1 t2 = Pointer.phys_compare t1.pointer t2.pointer
    let phys_equal t1 t2 = Pointer.phys_equal t1.pointer t2.pointer
    let is_null t = Pointer.is_null t.pointer

    let follow t =
      if not t.is_valid
      then failwiths ~here:[%here] "attempt to use invalid pointer" t [%sexp_of: _ t];
      t.pointer
    ;;

    let invalidate t = t.is_valid <- false

    module Id = Pointer.Id
  end

  type 'slots t = 'slots Pool.t [@@deriving sexp_of]

  let invariant = invariant
  let length = length

  let pointer_is_valid t { Pointer.is_valid; pointer } =
    is_valid && pointer_is_valid t pointer
  ;;

  (* We don't do [Pointer.follow pointer], because that would disallow [id_of_pointer t
     (Pointer.null ())]. *)
  let id_of_pointer t pointer = id_of_pointer t pointer.Pointer.pointer

  let pointer_of_id_exn t id =
    let pointer = pointer_of_id_exn t id in
    let is_valid = Pool.pointer_is_valid t pointer in
    { Pointer.is_valid; pointer }
  ;;

  let create = create
  let capacity = capacity
  let max_capacity = max_capacity
  let grow = grow
  let is_full = is_full
  let get_tuple t p = get_tuple t (Pointer.follow p)
  let get t p = get t (Pointer.follow p)
  let unsafe_get t p = unsafe_get t (Pointer.follow p)
  let set t p slot v = set t (Pointer.follow p) slot v
  let unsafe_set t p slot v = unsafe_set t (Pointer.follow p) slot v

  let unsafe_free t p =
    unsafe_free t (Pointer.follow p);
    Pointer.invalidate p
  ;;

  let free t p =
    free t (Pointer.follow p);
    Pointer.invalidate p
  ;;

  let new1 t a0 = Pointer.create (Pool.new1 t a0)
  let new2 t a0 a1 = Pointer.create (Pool.new2 t a0 a1)
  let new3 t a0 a1 a2 = Pointer.create (Pool.new3 t a0 a1 a2)
  let new4 t a0 a1 a2 a3 = Pointer.create (Pool.new4 t a0 a1 a2 a3)
  let new5 t a0 a1 a2 a3 a4 = Pointer.create (Pool.new5 t a0 a1 a2 a3 a4)
  let new6 t a0 a1 a2 a3 a4 a5 = Pointer.create (Pool.new6 t a0 a1 a2 a3 a4 a5)
  let new7 t a0 a1 a2 a3 a4 a5 a6 = Pointer.create (Pool.new7 t a0 a1 a2 a3 a4 a5 a6)

  let new8 t a0 a1 a2 a3 a4 a5 a6 a7 =
    Pointer.create (Pool.new8 t a0 a1 a2 a3 a4 a5 a6 a7)
  ;;

  let new9 t a0 a1 a2 a3 a4 a5 a6 a7 a8 =
    Pointer.create (Pool.new9 t a0 a1 a2 a3 a4 a5 a6 a7 a8)
  ;;

  let new10 t a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 =
    Pointer.create (Pool.new10 t a0 a1 a2 a3 a4 a5 a6 a7 a8 a9)
  ;;

  let new11 t a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 =
    Pointer.create (Pool.new11 t a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10)
  ;;

  let new12 t a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 =
    Pointer.create (Pool.new12 t a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11)
  ;;

  let new13 t a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 =
    Pointer.create (Pool.new13 t a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12)
  ;;

  let new14 t a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 =
    Pointer.create (Pool.new14 t a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13)
  ;;
end
OCaml

Innovation. Community. Security.