package biocaml

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file math.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373


exception ValueError of string

let row m i =
  if i < Array.length m then Array.copy m.(i)
  else failwith (sprintf "invalid row index %d" i)

let column m i =
  if Array.for_all ~f:(fun row -> i < Array.length row) m
  then Array.init (Array.length m) ~f:(fun j -> m.(j).(i))
  else failwith (sprintf "invalid column index %d" i)

let is_rectangular a =
  let dimension = Array.length a in
  Array.for_all a ~f:(fun suba -> Array.length suba = dimension)

let transpose a =
  if not (is_rectangular a) then invalid_arg "Math.transpose: not-rectangular";
  let n_rows = Array.length a in
  if Array.length a = 0 || Array.length a.(0) = 0 then [| |]
  else
    let n_cols = Array.length a.(0) in
    let ans = Array.make_matrix ~dimx:n_cols ~dimy:n_rows a.(0).(0) in
    for i = 0 to n_rows - 1 do
      for j = 0 to Array.length a.(i) - 1 do
        ans.(j).(i) <- a.(i).(j)
      done
    done;
    ans

let log ?base x =
  match base with
    | None -> Stdlib.log x
    | Some b -> (Stdlib.log x) /. (Stdlib.log b)

let log10 = Stdlib.log10
let log2 = log ~base:2.0

let even x = (x mod 2) = 0
let odd x = (x mod 2) <> 0

let min a =
  Option.value_exn ~message:"Math.min: empty" (Array.reduce a ~f:Poly.min)
let max a =
  Option.value_exn ~message:"Math.max: empty" (Array.reduce a ~f:Poly.max)

let prange add step lo hi =
  let rec f acc x =
    if Poly.(x > hi) then
      List.rev acc
    else
      let next = add x step in
      f (x::acc) next
  in
  f [] lo

let range_ints = prange (+)
let range_floats = prange (+.)

let range step first last =
  assert Float.(step > 0.0);
  let n =
    (((last -. first) /. step) |> Float.abs |> Float.round_up |> Int.of_float) + 1 in
  let a = Array.create ~len:n 0.0 in
  let (op,comp) = Float.(if first <= last then ((+.),(<=)) else ((-.),(>=))) in
  Array.iteri ~f:(fun i _ -> a.(i) <- op first (Float.of_int i *. step)) a;
  if comp a.(n-1) last
  then a
  else Array.sub a ~pos:0 ~len:(n-1)

let mean a =
  let n = Array.length a in
  assert (n > 0);
  (Array.fold ~f:(+.) ~init:0. a) /. (Float.of_int n)

let variance a =
  let n = Array.length a in
  assert (n > 1);
  let avrg = mean a in
  let f v = let diff = v -. avrg in diff *. diff in
  let a = Array.map ~f a in
  (Array.fold ~f:(+.) ~init:0. a) /. (Float.of_int (n - 1))

let rms a =
  Array.map ~f:(fun x -> x *. x) a |> mean |> sqrt

let stdv x = variance x |> sqrt

let median a =
  let n = Array.length a in
  assert (n > 0);
  let a = Array.copy a in
  Array.sort ~compare:Stdlib.compare a;
  if odd n
  then a.((n+1)/2 - 1)
  else let m = (n+1)/2 in (a.(m-1) +. a.(m)) /. 2.0

let pseudomedian a =
  let n = Array.length a in
  assert (n > 0);
  if n = 1 then
    a.(0)
  else
    let nn = n*(n-1)/2 in
    let averages = Array.create ~len:nn 0.0 in
    let idx = ref 0 in
    for i = 0 to n-2 do
      for j = i+1 to n-1 do
        averages.(!idx) <- (a.(i) +. a.(j)) /. 2.0;
        incr idx
      done
    done;
    median averages

let mad a =
  assert (Array.length a > 0);
  let med = median a in
  let a = Array.map ~f:(fun v -> Float.abs (v -. med)) a in
  median a

let quantile_normalization aa =
  assert (is_rectangular aa);
  if Array.length aa = 0 || Array.length aa.(0) = 0
     || Array.length aa.(0) = 1 then
    Array.copy aa
  else
    let num_expts = Float.of_int (Array.length aa.(0)) in
    let num_pts = Array.length aa in

    let comp1 (a,_) (b,_) = Stdlib.compare a b in
    let comp2 (_,a) (_,b) = Stdlib.compare a b in

    let aa = transpose aa in
    let aa = Array.map ~f:(Array.mapi ~f:(fun a b -> (a, b))) aa in
    (Array.iter ~f:(Array.sort ~compare:comp2)) aa;
    let avg i =
      (Array.fold ~f:(fun sum expt -> snd expt.(i) +. sum) ~init:0.0 aa)
      /. num_expts in
    let norms = Array.init num_pts ~f:avg in
    let aa = Array.map ~f:(Array.mapi ~f:(fun i (idx,_) -> idx, norms.(i))) aa in
    Array.iter ~f:(Array.sort ~compare:comp1) aa;
    transpose (Array.map ~f:(Array.map ~f:snd) aa)

let histogram (type t) ?(cmp=Stdlib.compare) arr =
  let module M = struct
    include Map.Make(struct
      type t_ = t (* required only because OCaml doesn't have type non-rec definitions *)
      type t = t_
      let compare = cmp
      let sexp_of_t _ = assert false
      let t_of_sexp _ = assert false
    end)
  end
  in
  let f (mp : int M.t) (a:t) =
    match M.find mp a with
    | Some e -> M.set mp ~key:a ~data:(e + 1)
    | None -> M.set mp ~key:a ~data:1
  in
  let mp = Array.fold ~f ~init:M.empty arr in
  let ans = M.fold ~f:(fun ~key ~data ans -> (key,data)::ans) mp ~init:[] in
  Array.of_list (List.rev ans)

let prediction_values tp tn fp fn =
  let tp = Float.of_int tp in
  let tn = Float.of_int tn in
  let fp = Float.of_int fp in
  let fn = Float.of_int fn in
  let sensitivity = tp /. (tp +. fn) in
  let specificity = tn /. (fp +. tn) in
  let pos_prediction_accuracy = tp /. (tp +. fp) in
  let neg_prediction_accuracy = tn /. (tn +. fn) in
  sensitivity, specificity, pos_prediction_accuracy, neg_prediction_accuracy

let pearson (a1:float array) (a2:float array) =
  let a1avg,a2avg = (mean a1),(mean a2) in
  let a1sd,a2sd = (stdv a1),(stdv a2) in
  let a1,a2 = (Array.to_list a1), (Array.to_list a2) in
  let f acc e1 e2 =
    (((e1 -. a1avg) /. a1sd) *. ((e2 -. a2avg) /. a2sd)) +. acc
  in
  (List.fold2_exn ~f ~init:0. a1 a2) /. (Float.of_int ((List.length a1) - 1))

let rank arr =
  let arr = Array.copy arr in
  let arr = Array.mapi ~f:(fun i a -> a,i) arr in
  Array.sort ~compare:(fun (a,_) (b,_) -> Stdlib.compare a b) arr;
  let g _ il ans =
    let count = List.length il in
    let n = count + (List.length ans) in
    let hi = Float.of_int n in
    let lo = Float.of_int (n - count + 1) in
    let rank = (hi +. lo) /. 2. in
    (List.map ~f:(fun i -> rank,i) il) @ ans
  in
  let f (prev, il, ans) (x,i) =   (* prev is the value that was equal *)
    let count = List.length il in (* il is list of original indices in
                                     reverse for items that were equal *)
    if count = 0 then (* ans is list of ranks and original index pairs
                         in reverse *)
      x, [i], ans
    else if Poly.(x = prev) then
      x, i::il, ans
    else
      x, [i], g prev il ans
  in
  let prev,il,ans = Array.fold ~f ~init:(0.,[],[]) arr in
  let ans = g prev il ans in
  let ans = List.sort ~compare:(fun (_,a) (_,b) -> Stdlib.compare a b) ans in
  Array.of_list (List.map ~f:fst ans)

let spearman (arr1:float array) (arr2: float array) =
  let arr1,arr2 = rank arr1, rank arr2 in
  pearson arr1 arr2

let cnd x =
(* Modified from C++ code by David Koppstein. Found from
   www.sitmo.com/doc/Calculating_the_Cumulative_Normal_Distribution *)
  let b1,b2,b3,b4,b5,p,c =
    0.319381530, -0.356563782, 1.781477937, -1.821255978,
    1.330274429, 0.2316419, 0.39894228 in
  if Float.(x >= 0.) then
    let t = 1. /. (1. +. (p *. x)) in
    (1. -. (c *. (exp (-.x *. x /. 2.)) *. t *.
      (t *. (t *. (t *. ((t *. b5) +. b4) +. b3) +. b2) +. b1 )))
    else
      let t = 1. /. (1. -. p *. x) in
      c *. (exp (-.x *. x /. 2.)) *. t *.
        (t *. (t *. (t *. ((t *. b5) +. b4) +. b3) +. b2) +. b1 )

let ltqnorm p =
(*
   Modified from python code by David Koppstein. Original comments follow below.
   First version was written in perl, by Peter J. Acklam, 2000-07-19.
   Second version was ported to python, by Dan Field, 2004-05-03.
*)
    if Float.(p <= 0. || p >= 1.) then
      raise (ValueError ("Argument to ltqnorm " ^ (Float.to_string p) ^
        " must be in open interval (0,1)"))
    else
      (* Coefficients in rational approximations. *)
      let a =
        [|-3.969683028665376e+01; 2.209460984245205e+02;
        -2.759285104469687e+02; 1.383577518672690e+02;
        -3.066479806614716e+01; 2.506628277459239e+00|] in
      let b =
        [|-5.447609879822406e+01; 1.615858368580409e+02;
        -1.556989798598866e+02; 6.680131188771972e+01;
        -1.328068155288572e+01|] in
      let c =
        [|-7.784894002430293e-03; -3.223964580411365e-01;
        -2.400758277161838e+00; -2.549732539343734e+00;
        4.374664141464968e+00; 2.938163982698783e+00|] in
      let d =
        [|7.784695709041462e-03; 3.224671290700398e-01;
        2.445134137142996e+00; 3.754408661907416e+00|] in

      (* Define break-points. *)
      let plow  = 0.02425 in
      let phigh = 1. -. plow in
      let f q =
        (((((c.(0)*.q+.c.(1))*.q+.c.(2))*.q+.c.(3))*.q+.c.(4))*.q+.c.(5)) /.
          ((((d.(0)*.q+.d.(1))*.q+.d.(2))*.q+.d.(3))*.q+.1.)
      in

    (* Rational approximation for lower region: *)
    if Float.(p < plow) then
      let q  = sqrt ((-2.) *. (log p)) in
      f q

    (* Rational approximation for upper region: *)
    else if Float.(phigh < p) then
      let q = sqrt ((-2.) *. (log (1. -. p))) in
      f q

    (* Rational approximation for central region: *)
    else
      let q = p -. 0.5 in
      let r = q *. q in
    (((((a.(0)*.r+.a.(1))*.r+.a.(2))*.r+.a.(3))*.r+.a.(4))*.r+.a.(5))*.q /.
      (((((b.(0)*.r+.b.(1))*.r+.b.(2))*.r+.b.(3))*.r+.b.(4))*.r+.1.)

let wilcoxon_rank_sum_to_z arr1 arr2 =
  let l1,l2 = (Array.length arr1),(Array.length arr2) in
  let ranked = rank (Array.append arr1 arr2) in
  let arr1 = Array.sub ranked ~pos:0 ~len:l1 in
  let l1,l2 = (Float.of_int l1), (Float.of_int l2) in
  let sum1 =
    let f acc elem = elem +. acc in
    Array.fold ~f ~init:0. arr1
  in
  let expectation = (l1 *. (l1 +. l2 +. 1.)) /. 2. in
  let var = (l1 *. l2 *. ((l1 +. l2 +. 1.) /. 12.)) in
  (sum1 -. expectation) /. (sqrt var)

let wilcoxon_rank_sum_to_p arr1 arr2 =
  (* assumes a two-tailed distribution *)
  let z = wilcoxon_rank_sum_to_z arr1 arr2 in
  2. *. (1. -. (cnd (Float.abs z)))

let wilcoxon_rank_sum ?(alpha=0.05) arr1 arr2 =
  Float.(wilcoxon_rank_sum_to_p arr1 arr2 < alpha)

let idxsort (cmp : 'a -> 'a -> int) (a : 'a array) : int array =
  let a = Array.mapi a ~f:(fun i b -> (i, b)) in
  Array.sort ~compare:(fun a b -> cmp (snd a) (snd b)) a;
  Array.map ~f:fst a

let find_regions ?(max_gap=0) pred a =
  if max_gap < 0 then failwith ("max gap must be non-negative but is " ^ (string_of_int max_gap));
  let size = Array.length a in
  let ans = ref [] in

  (* Add region built up thus far, if any, to ans.
   * curr_index is one beyond what will be considered for inclusion in region *)
  let add_region curr_index start_index currGap =
    if start_index >= 0 then
      let finish_index = curr_index - currGap - 1 in
      ans := (start_index,finish_index)::!ans
  in

  (* i is current array index.
   * start_index is index of a region that has started to be built, -1
     if none started yet.
   * currGap is number of previous contiguous items failing pred *)
  let rec loop i start_index currGap =
    if i = size
    then add_region i start_index currGap
    else
      (
        if pred a.(i) then
          if start_index >= 0
          then loop (i+1) start_index 0
          else loop (i+1) i 0
        else
          (
            if currGap >= max_gap
            then (add_region i start_index currGap; loop (i+1) (-1) (currGap+1))
            else loop (i+1) start_index (currGap+1)
          )
      )
  in
  loop 0 (-1) 0;
  Array.of_list (List.rev !ans)

let find_min_window ?(init_direction="fwd") a pred i =
  let size = Array.length a in
  if size < 1 then
    [||]
  else
    let v = Range.make_unsafe 0 (size - 1) in
    let pred v = pred v.Range.lo v.Range.hi in
    let ans = Range.find_min_range ~init_direction v pred i in
    match ans with
      | None -> [||]
      | Some ans -> Array.sub a ~pos:ans.Range.lo ~len:(ans.Range.hi - ans.Range.lo + 1)

let factorial n =
  if n < 2 then 1 else
    let rec aux acc n = if n < 2 then acc else aux (n * acc) (n - 1) in
    aux 1 n

let epsilon f init fin =
  let rec aux acc n = if n = fin then acc else aux (acc +. (f n fin)) (n + 1) in
  aux 0. init

let shuffle result =
  let result = Array.copy result in
  for i = Array.length result - 1 downto 0 do
    let other = Random.int (i + 1) and tmp = result.(i) in
    result.(i) <- result.(other); result.(other) <- tmp
  done; result
OCaml

Innovation. Community. Security.