package OCADml

  1. Overview
  2. Docs

Source file affine3.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
(* Float record implementation (replacing the private float array arrays used
    previously) inspired by dbuenzli's gg library [https://github.com/dbuenzli/gg]. *)

open V

type row = float * float * float * float
type t = Gg.m4

let[@inline] v e00 e01 e02 e03 e10 e11 e12 e13 e20 e21 e22 e23 e30 e31 e32 e33 =
  Gg.M4.v e00 e01 e02 e03 e10 e11 e12 e13 e20 e21 e22 e23 e30 e31 e32 e33

let[@inline] e00 t = Gg.M4.e00 t
let[@inline] e01 t = Gg.M4.e01 t
let[@inline] e02 t = Gg.M4.e02 t
let[@inline] e03 t = Gg.M4.e03 t
let[@inline] e10 t = Gg.M4.e10 t
let[@inline] e11 t = Gg.M4.e11 t
let[@inline] e12 t = Gg.M4.e12 t
let[@inline] e13 t = Gg.M4.e13 t
let[@inline] e20 t = Gg.M4.e20 t
let[@inline] e21 t = Gg.M4.e21 t
let[@inline] e22 t = Gg.M4.e22 t
let[@inline] e23 t = Gg.M4.e23 t
let[@inline] e30 t = Gg.M4.e30 t
let[@inline] e31 t = Gg.M4.e31 t
let[@inline] e32 t = Gg.M4.e32 t
let[@inline] e33 t = Gg.M4.e33 t
let id = Gg.M4.id
let[@inline] trace t = Gg.M4.trace t
let get t r c = Gg.M4.el r c t

let of_row_matrix_exn rm =
  if Array.(length rm = 4 && for_all (fun c -> length c = 4) rm)
  then
    v
      rm.(0).(0)
      rm.(0).(1)
      rm.(0).(2)
      rm.(0).(3)
      rm.(1).(0)
      rm.(1).(1)
      rm.(1).(2)
      rm.(1).(3)
      rm.(2).(0)
      rm.(2).(1)
      rm.(2).(2)
      rm.(2).(3)
      rm.(3).(0)
      rm.(3).(1)
      rm.(3).(2)
      rm.(3).(3)
  else invalid_arg "Input is not square matrix of size 3."

let of_row_matrix rm =
  try Ok (of_row_matrix_exn rm) with
  | Invalid_argument msg -> Error msg

let[@inline] mul a b = Gg.M4.mul a b
let[@inline] add a b = Gg.M4.add a b
let[@inline] sub a b = Gg.M4.sub a b
let[@inline] ediv a b = Gg.M4.ediv a b
let[@inline] emul a b = Gg.M4.emul a b
let[@inline] transpose t = Gg.M4.transpose t
let[@inline] map f t = Gg.M4.map f t
let[@inline] smul t s = map (( *. ) s) t
let[@inline] sdiv t s = map (( *. ) (1. /. s)) t
let[@inline] sadd t s = map (( +. ) s) t
let[@inline] ssub t s = map (( +. ) (-1. *. s)) t
let compose a b = mul b a
let[@inline] ( %> ) a b = compose a b
let[@inline] ( % ) a b = mul a b

let of_rows (sx, xy, xz, tx) (yx, sy, yz, ty) (zx, zy, sz, tz) =
  v sx xy xz tx yx sy yz ty zx zy sz tz 0. 0. 0. 1.

let[@inline] translate p = Gg.M4.move3 p
let[@inline] xtrans x = translate (v3 x 0. 0.)
let[@inline] ytrans y = translate (v3 0. y 0.)
let[@inline] ztrans z = translate (v3 0. 0. z)

let xrot ?about r =
  if not @@ Float.is_finite r
  then invalid_arg "X rotation angle must be finite."
  else (
    let rot =
      let c = Float.cos r
      and s = Float.sin r in
      v 1. 0. 0. 0. 0. c (-.s) 0. 0. s c 0. 0. 0. 0. 1.
    in
    match about with
    | Some p -> translate (V3.neg p) %> rot %> translate p
    | None -> rot )

let yrot ?about r =
  if not @@ Float.is_finite r
  then invalid_arg "Y rotation angle must be finite."
  else (
    let rot =
      let c = Float.cos r
      and s = Float.sin r in
      v c 0. s 0. 0. 1. 0. 0. (-.s) 0. c 0. 0. 0. 0. 1.
    in
    match about with
    | Some p -> translate (V3.neg p) %> rot %> translate p
    | None -> rot )

let zrot ?about r =
  if not @@ Float.is_finite r
  then invalid_arg "Z rotation angle must be finite."
  else (
    let rot =
      let c = Float.cos r
      and s = Float.sin r in
      v c (-.s) 0. 0. s c 0. 0. 0. 0. 1. 0. 0. 0. 0. 1.
    in
    match about with
    | Some p -> translate (V3.neg p) %> rot %> translate p
    | None -> rot )

let rotate ?about r =
  let rx = V3.x r
  and ry = V3.y r
  and rz = V3.z r in
  if not @@ Float.(is_finite rx && is_finite ry && is_finite rz)
  then invalid_arg "Euler rotation angles must be finite."
  else (
    let rot =
      let cx = Float.cos rx
      and cy = Float.cos ry
      and cz = Float.cos rz
      and sx = Float.sin rx
      and sy = Float.sin ry
      and sz = Float.sin rz in
      v
        (cy *. cz)
        ((sx *. sy *. cz) -. (cx *. sz))
        ((cx *. sy *. cz) +. (sx *. sz))
        0.
        (cy *. sz)
        ((sx *. sy *. sz) +. (cx *. cz))
        ((sy *. cx *. sz) -. (sx *. cz))
        0.
        (-.sy)
        (sx *. cy)
        (cx *. cy)
        0.
        0.
        0.
        0.
        1.
    in
    match about with
    | Some p -> translate (V3.neg p) %> rot %> translate p
    | None -> rot )

let axis_rotate ?about ax r =
  if Math.approx r 0.
  then id
  else (
    let rot =
      let ax = V3.normalize ax in
      let x = V3.x ax
      and y = V3.y ax
      and z = V3.z ax
      and c = Float.cos r
      and s = Float.sin r in
      let c2 = 1. -. c in
      let xx = x *. x *. c2
      and xy = x *. y *. c2
      and xz = x *. z *. c2
      and yy = y *. y *. c2
      and yz = y *. z *. c2
      and zz = z *. z *. c2
      and sx = s *. x
      and sy = s *. y
      and sz = s *. z in
      v
        (xx +. c)
        (xy -. sz)
        (xz +. sy)
        0.
        (xy +. sz)
        (yy +. c)
        (yz -. sx)
        0.
        (xz -. sy)
        (yz +. sx)
        (zz +. c)
        0.
        0.
        0.
        0.
        1.
    in
    match about with
    | Some p -> translate (V3.neg p) %> rot %> translate p
    | None -> rot )

let[@inline] scale s = Gg.M4.scale3 s
let[@inline] xscale x = scale (v3 x 1. 1.)
let[@inline] yscale y = scale (v3 1. y 1.)
let[@inline] zscale z = scale (v3 1. 1. z)

let mirror ax =
  let ax = V3.normalize ax in
  let x = V3.x ax
  and y = V3.y ax
  and z = V3.z ax in
  let xx = 1. -. (2. *. x *. x)
  and xy = -2. *. x *. y
  and xz = -2. *. x *. z
  and yy = 1. -. (2. *. y *. y)
  and yz = -2. *. y *. z
  and zz = 1. -. (2. *. z *. z) in
  v xx xy xz 0. xy yy yz 0. xz yz zz 0. 0. 0. 0. 1.

let skew ?(xy = 0.) ?(xz = 0.) ?(yx = 0.) ?(yz = 0.) ?(zx = 0.) ?(zy = 0.) () =
  v 1. xy xz 0. yx 1. yz 0. zx zy 1. 0. 0. 0. 0. 1.

let skew_xy xa ya =
  if not Float.(is_finite xa && is_finite ya)
  then invalid_arg "Skew angles must be finite."
  else v 1. (Float.tan xa) 0. 0. (Float.tan ya) 1. 0. 0. 0. 0. 1. 0. 0. 0. 0. 1.

let skew_xz xa za =
  if not Float.(is_finite xa && is_finite za)
  then invalid_arg "Skew angles must be finite."
  else v 1. 0. (Float.tan xa) 0. 0. 1. 0. 0. (Float.tan za) 0. 1. 0. 0. 0. 0. 1.

let skew_yz ya za =
  if not Float.(is_finite ya && is_finite za)
  then invalid_arg "Skew angles must be finite."
  else v 1. 0. 0. 0. 0. 1. (Float.tan ya) 0. 0. (Float.tan za) 1. 0. 0. 0. 0. 1.

let align a b =
  let a = V3.normalize a
  and b = V3.normalize b in
  if V3.approx a b
  then id
  else if V3.z a = 0. && V3.z b = 0.
  then zrot V2.(ccw_theta (V3.to_v2 b) -. ccw_theta (V3.to_v2 a))
  else (
    let ax = V3.vector_axis a b
    and r = V3.angle a b in
    axis_rotate ax r )

let transform t p =
  let x = V3.x p
  and y = V3.y p
  and z = V3.z p in
  let x = (e00 t *. x) +. (e01 t *. y) +. (e02 t *. z) +. e03 t
  and y = (e10 t *. x) +. (e11 t *. y) +. (e12 t *. z) +. e13 t
  and z = (e20 t *. x) +. (e21 t *. y) +. (e22 t *. z) +. e23 t in
  v3 x y z

let to_string t =
  Printf.sprintf
    "[ [%f, %f, %f, %f], [%f, %f, %f, %f], [%f, %f, %f, %f], [%f, %f, %f, %f] ]"
    (e00 t)
    (e01 t)
    (e02 t)
    (e03 t)
    (e10 t)
    (e11 t)
    (e12 t)
    (e13 t)
    (e20 t)
    (e21 t)
    (e22 t)
    (e23 t)
    (e30 t)
    (e31 t)
    (e32 t)
    (e33 t)
OCaml

Innovation. Community. Security.