package base

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file int64.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
open! Import
open! Caml.Int64

module T = struct
  type t = int64 [@@deriving_inline hash, sexp, sexp_grammar]

  let (hash_fold_t : Ppx_hash_lib.Std.Hash.state -> t -> Ppx_hash_lib.Std.Hash.state) =
    hash_fold_int64

  and (hash : t -> Ppx_hash_lib.Std.Hash.hash_value) =
    let func = hash_int64 in
    fun x -> func x
  ;;

  let t_of_sexp = (int64_of_sexp : Sexplib0.Sexp.t -> t)
  let sexp_of_t = (sexp_of_int64 : t -> Sexplib0.Sexp.t)
  let (t_sexp_grammar : t Sexplib0.Sexp_grammar.t) = int64_sexp_grammar

  [@@@end]

  let hashable : t Hashable.t = { hash; compare; sexp_of_t }

  let compare = Int64_replace_polymorphic_compare.compare
  let to_string = to_string
  let of_string = of_string
end

include T
include Comparator.Make (T)

let num_bits = 64
let float_lower_bound = Float0.lower_bound_for_int num_bits
let float_upper_bound = Float0.upper_bound_for_int num_bits
let float_of_bits = float_of_bits
let bits_of_float = bits_of_float
let shift_right_logical = shift_right_logical
let shift_right = shift_right
let shift_left = shift_left
let bit_not = lognot
let bit_xor = logxor
let bit_or = logor
let bit_and = logand
let min_value = min_int
let max_value = max_int
let abs = abs
let pred = pred
let succ = succ
let pow = Int_math.Private.int64_pow
let rem = rem
let neg = neg
let minus_one = minus_one
let one = one
let zero = zero
let to_float = to_float
let of_float_unchecked = Caml.Int64.of_float

let of_float f =
  if Float_replace_polymorphic_compare.( >= ) f float_lower_bound
  && Float_replace_polymorphic_compare.( <= ) f float_upper_bound
  then Caml.Int64.of_float f
  else
    Printf.invalid_argf
      "Int64.of_float: argument (%f) is out of range or NaN"
      (Float0.box f)
      ()
;;

let ( ** ) b e = pow b e

external bswap64 : t -> t = "%bswap_int64"

let[@inline always] bswap16 x = Caml.Int64.shift_right_logical (bswap64 x) 48

let[@inline always] bswap32 x =
  (* This is strictly better than coercing to an int32 to perform byteswap. Coercing
     from an int32 will add unnecessary shift operations to sign extend the number
     appropriately.
  *)
  Caml.Int64.shift_right_logical (bswap64 x) 32
;;

let[@inline always] bswap48 x = Caml.Int64.shift_right_logical (bswap64 x) 16

include Comparable.With_zero (struct
    include T

    let zero = zero
  end)

(* Open replace_polymorphic_compare after including functor instantiations so they do not
   shadow its definitions. This is here so that efficient versions of the comparison
   functions are available within this module. *)
open Int64_replace_polymorphic_compare

let invariant (_ : t) = ()
let between t ~low ~high = low <= t && t <= high
let clamp_unchecked t ~min ~max = if t < min then min else if t <= max then t else max

let clamp_exn t ~min ~max =
  assert (min <= max);
  clamp_unchecked t ~min ~max
;;

let clamp t ~min ~max =
  if min > max
  then
    Or_error.error_s
      (Sexp.message
         "clamp requires [min <= max]"
         [ "min", T.sexp_of_t min; "max", T.sexp_of_t max ])
  else Ok (clamp_unchecked t ~min ~max)
;;

let incr r = r := add !r one
let decr r = r := sub !r one

external of_int64 : t -> t = "%identity"

let of_int64_exn = of_int64
let to_int64 t = t
let popcount = Popcount.int64_popcount

module Conv = Int_conversions

external to_int_trunc : t -> int = "%int64_to_int"
external to_int32_trunc : int64 -> int32 = "%int64_to_int32"
external to_nativeint_trunc : int64 -> nativeint = "%int64_to_nativeint"
external of_int : int -> int64 = "%int64_of_int"
external of_int32 : int32 -> int64 = "%int64_of_int32"

let of_int_exn = of_int
let to_int = Conv.int64_to_int
let to_int_exn = Conv.int64_to_int_exn
let of_int32_exn = of_int32
let to_int32 = Conv.int64_to_int32
let to_int32_exn = Conv.int64_to_int32_exn
let of_nativeint = Conv.nativeint_to_int64
let of_nativeint_exn = of_nativeint
let to_nativeint = Conv.int64_to_nativeint
let to_nativeint_exn = Conv.int64_to_nativeint_exn

module Pow2 = struct
  open! Import
  open Int64_replace_polymorphic_compare

  let raise_s = Error.raise_s

  let non_positive_argument () =
    Printf.invalid_argf "argument must be strictly positive" ()
  ;;

  let ( lor ) = Caml.Int64.logor
  let ( lsr ) = Caml.Int64.shift_right_logical
  let ( land ) = Caml.Int64.logand

  (** "ceiling power of 2" - Least power of 2 greater than or equal to x. *)
  let ceil_pow2 x =
    if x <= Caml.Int64.zero then non_positive_argument ();
    let x = Caml.Int64.pred x in
    let x = x lor (x lsr 1) in
    let x = x lor (x lsr 2) in
    let x = x lor (x lsr 4) in
    let x = x lor (x lsr 8) in
    let x = x lor (x lsr 16) in
    let x = x lor (x lsr 32) in
    Caml.Int64.succ x
  ;;

  (** "floor power of 2" - Largest power of 2 less than or equal to x. *)
  let floor_pow2 x =
    if x <= Caml.Int64.zero then non_positive_argument ();
    let x = x lor (x lsr 1) in
    let x = x lor (x lsr 2) in
    let x = x lor (x lsr 4) in
    let x = x lor (x lsr 8) in
    let x = x lor (x lsr 16) in
    let x = x lor (x lsr 32) in
    Caml.Int64.sub x (x lsr 1)
  ;;

  let is_pow2 x =
    if x <= Caml.Int64.zero then non_positive_argument ();
    x land Caml.Int64.pred x = Caml.Int64.zero
  ;;

  (* C stubs for int clz and ctz to use the CLZ/BSR/CTZ/BSF instruction where possible *)
  external clz
    :  (int64[@unboxed])
    -> (int[@untagged])
    = "Base_int_math_int64_clz" "Base_int_math_int64_clz_unboxed"
  [@@noalloc]

  external ctz
    :  (int64[@unboxed])
    -> (int[@untagged])
    = "Base_int_math_int64_ctz" "Base_int_math_int64_ctz_unboxed"
  [@@noalloc]

  (** Hacker's Delight Second Edition p106 *)
  let floor_log2 i =
    if i <= Caml.Int64.zero
    then
      raise_s
        (Sexp.message "[Int64.floor_log2] got invalid input" [ "", sexp_of_int64 i ]);
    num_bits - 1 - clz i
  ;;

  (** Hacker's Delight Second Edition p106 *)
  let ceil_log2 i =
    if Poly.( <= ) i Caml.Int64.zero
    then
      raise_s (Sexp.message "[Int64.ceil_log2] got invalid input" [ "", sexp_of_int64 i ]);
    if Caml.Int64.equal i Caml.Int64.one then 0 else num_bits - clz (Caml.Int64.pred i)
  ;;
end

include Pow2
include Conv.Make (T)

include Conv.Make_hex (struct
    type t = int64 [@@deriving_inline compare, hash]

    let compare = (compare_int64 : t -> t -> int)

    let (hash_fold_t : Ppx_hash_lib.Std.Hash.state -> t -> Ppx_hash_lib.Std.Hash.state) =
      hash_fold_int64

    and (hash : t -> Ppx_hash_lib.Std.Hash.hash_value) =
      let func = hash_int64 in
      fun x -> func x
    ;;

    [@@@end]

    let zero = zero
    let neg = neg
    let ( < ) = ( < )
    let to_string i = Printf.sprintf "%Lx" i
    let of_string s = Caml.Scanf.sscanf s "%Lx" Fn.id
    let module_name = "Base.Int64.Hex"
  end)

include Pretty_printer.Register (struct
    type nonrec t = t

    let to_string = to_string
    let module_name = "Base.Int64"
  end)

module Pre_O = struct
  external ( + ) : t -> t -> t = "%int64_add"
  external ( - ) : t -> t -> t = "%int64_sub"
  external ( * ) : t -> t -> t = "%int64_mul"
  external ( / ) : t -> t -> t = "%int64_div"
  external ( ~- ) : t -> t = "%int64_neg"

  let ( ** ) = ( ** )

  include Int64_replace_polymorphic_compare

  let abs = abs

  external neg : t -> t = "%int64_neg"

  let zero = zero
  let of_int_exn = of_int_exn
end

module O = struct
  include Pre_O

  include Int_math.Make (struct
      type nonrec t = t

      include Pre_O

      let rem = rem
      let to_float = to_float
      let of_float = of_float
      let of_string = T.of_string
      let to_string = T.to_string
    end)

  external ( land ) : t -> t -> t = "%int64_and"
  external ( lor ) : t -> t -> t = "%int64_or"
  external ( lxor ) : t -> t -> t = "%int64_xor"

  let lnot = bit_not

  external ( lsl ) : t -> int -> t = "%int64_lsl"
  external ( asr ) : t -> int -> t = "%int64_asr"
  external ( lsr ) : t -> int -> t = "%int64_lsr"
end

include O

(* [Int64] and [Int64.O] agree value-wise *)

(* Include type-specific [Replace_polymorphic_compare] at the end, after
   including functor application that could shadow its definitions. This is
   here so that efficient versions of the comparison functions are exported by
   this module. *)
include Int64_replace_polymorphic_compare
OCaml

Innovation. Community. Security.