package base

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file int.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
open! Import
include Int_intf
include Int0

module T = struct
  type t = int [@@deriving_inline hash, sexp, sexp_grammar]

  let (hash_fold_t : Ppx_hash_lib.Std.Hash.state -> t -> Ppx_hash_lib.Std.Hash.state) =
    hash_fold_int

  and (hash : t -> Ppx_hash_lib.Std.Hash.hash_value) =
    let func = hash_int in
    fun x -> func x
  ;;

  let t_of_sexp = (int_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> t)
  let sexp_of_t = (sexp_of_int : t -> Ppx_sexp_conv_lib.Sexp.t)

  let (t_sexp_grammar : Ppx_sexp_conv_lib.Sexp.Private.Raw_grammar.t) =
    let (_the_generic_group : Ppx_sexp_conv_lib.Sexp.Private.Raw_grammar.generic_group) =
      { implicit_vars = [ "int" ]
      ; ggid = "\146e\023\249\235eE\139c\132W\195\137\129\235\025"
      ; types = [ "t", Implicit_var 0 ]
      }
    in
    let (_the_group : Ppx_sexp_conv_lib.Sexp.Private.Raw_grammar.group) =
      { gid = Ppx_sexp_conv_lib.Lazy_group_id.create ()
      ; apply_implicit = [ int_sexp_grammar ]
      ; generic_group = _the_generic_group
      ; origin = "int.ml.T"
      }
    in
    let (t_sexp_grammar : Ppx_sexp_conv_lib.Sexp.Private.Raw_grammar.t) =
      Ref ("t", _the_group)
    in
    t_sexp_grammar
  ;;

  [@@@end]

  let compare x y = Int_replace_polymorphic_compare.compare x y

  let of_string s =
    try of_string s with
    | _ -> Printf.failwithf "Int.of_string: %S" s ()
  ;;

  let to_string = to_string
end

let num_bits = Int_conversions.num_bits_int
let float_lower_bound = Float0.lower_bound_for_int num_bits
let float_upper_bound = Float0.upper_bound_for_int num_bits
let to_float = Caml.float_of_int
let of_float_unchecked = Caml.int_of_float

let of_float f =
  if Float_replace_polymorphic_compare.( >= ) f float_lower_bound
  && Float_replace_polymorphic_compare.( <= ) f float_upper_bound
  then Caml.int_of_float f
  else
    Printf.invalid_argf
      "Int.of_float: argument (%f) is out of range or NaN"
      (Float0.box f)
      ()
;;

let zero = 0
let one = 1
let minus_one = -1

include T
include Comparator.Make (T)

include Comparable.Validate_with_zero (struct
    include T

    let zero = zero
  end)

module Conv = Int_conversions
include Conv.Make (T)

include Conv.Make_hex (struct
    open Int_replace_polymorphic_compare

    type t = int [@@deriving_inline compare, hash]

    let compare = (compare_int : t -> t -> int)

    let (hash_fold_t : Ppx_hash_lib.Std.Hash.state -> t -> Ppx_hash_lib.Std.Hash.state) =
      hash_fold_int

    and (hash : t -> Ppx_hash_lib.Std.Hash.hash_value) =
      let func = hash_int in
      fun x -> func x
    ;;

    [@@@end]

    let zero = zero
    let neg = ( ~- )
    let ( < ) = ( < )
    let to_string i = Printf.sprintf "%x" i
    let of_string s = Caml.Scanf.sscanf s "%x" Fn.id
    let module_name = "Base.Int.Hex"
  end)

include Pretty_printer.Register (struct
    type nonrec t = t

    let to_string = to_string
    let module_name = "Base.Int"
  end)

(* Open replace_polymorphic_compare after including functor instantiations so
   they do not shadow its definitions. This is here so that efficient versions
   of the comparison functions are available within this module. *)
open! Int_replace_polymorphic_compare

let invariant (_ : t) = ()
let between t ~low ~high = low <= t && t <= high
let clamp_unchecked t ~min ~max = if t < min then min else if t <= max then t else max

let clamp_exn t ~min ~max =
  assert (min <= max);
  clamp_unchecked t ~min ~max
;;

let clamp t ~min ~max =
  if min > max
  then
    Or_error.error_s
      (Sexp.message
         "clamp requires [min <= max]"
         [ "min", T.sexp_of_t min; "max", T.sexp_of_t max ])
  else Ok (clamp_unchecked t ~min ~max)
;;

let pred i = i - 1
let succ i = i + 1
let to_int i = i
let to_int_exn = to_int
let of_int i = i
let of_int_exn = of_int
let max_value = Caml.max_int
let min_value = Caml.min_int
let max_value_30_bits = 0x3FFF_FFFF
let of_int32 = Conv.int32_to_int
let of_int32_exn = Conv.int32_to_int_exn
let of_int32_trunc = Conv.int32_to_int_trunc
let to_int32 = Conv.int_to_int32
let to_int32_exn = Conv.int_to_int32_exn
let to_int32_trunc = Conv.int_to_int32_trunc
let of_int64 = Conv.int64_to_int
let of_int64_exn = Conv.int64_to_int_exn
let of_int64_trunc = Conv.int64_to_int_trunc
let to_int64 = Conv.int_to_int64
let of_nativeint = Conv.nativeint_to_int
let of_nativeint_exn = Conv.nativeint_to_int_exn
let of_nativeint_trunc = Conv.nativeint_to_int_trunc
let to_nativeint = Conv.int_to_nativeint
let to_nativeint_exn = to_nativeint
let abs x = abs x
let ( + ) x y = x + y
let ( - ) x y = x - y
let ( * ) x y = x * y
let ( / ) x y = x / y
let neg x = -x
let ( ~- ) = neg

(* note that rem is not same as % *)
let rem a b = a mod b
let incr = Caml.incr
let decr = Caml.decr
let shift_right a b = a asr b
let shift_right_logical a b = a lsr b
let shift_left a b = a lsl b
let bit_not a = lnot a
let bit_or a b = a lor b
let bit_and a b = a land b
let bit_xor a b = a lxor b
let pow = Int_math.Private.int_pow
let ( ** ) b e = pow b e

module Pow2 = struct
  open! Import
  module Sys = Sys0

  let raise_s = Error.raise_s

  let non_positive_argument () =
    Printf.invalid_argf "argument must be strictly positive" ()
  ;;


  (** "ceiling power of 2" - Least power of 2 greater than or equal to x. *)
  let ceil_pow2 x =
    if x <= 0 then non_positive_argument ();
    let x = x - 1 in
    let x = x lor (x lsr 1) in
    let x = x lor (x lsr 2) in
    let x = x lor (x lsr 4) in
    let x = x lor (x lsr 8) in
    let x = x lor (x lsr 16) in
    (* The next line is superfluous on 32-bit architectures, but it's faster to do it
       anyway than to branch *)
    let x = x lor (x lsr 32) in
    x + 1
  ;;

  (** "floor power of 2" - Largest power of 2 less than or equal to x. *)
  let floor_pow2 x =
    if x <= 0 then non_positive_argument ();
    let x = x lor (x lsr 1) in
    let x = x lor (x lsr 2) in
    let x = x lor (x lsr 4) in
    let x = x lor (x lsr 8) in
    let x = x lor (x lsr 16) in
    (* The next line is superfluous on 32-bit architectures, but it's faster to do it
       anyway than to branch *)
    let x = x lor (x lsr 32) in
    x - (x lsr 1)
  ;;

  let is_pow2 x =
    if x <= 0 then non_positive_argument ();
    x land (x - 1) = 0
  ;;

  (* C stubs for int clz and ctz to use the CLZ/BSR/CTZ/BSF instruction where possible *)
  external clz
    :  (* Note that we pass the tagged int here. See int_math_stubs.c for details on why
          this is correct. *)
    int
    -> (int[@untagged])
    = "Base_int_math_int_clz" "Base_int_math_int_clz_untagged"
  [@@noalloc]

  external ctz
    :  (int[@untagged])
    -> (int[@untagged])
    = "Base_int_math_int_ctz" "Base_int_math_int_ctz_untagged"
  [@@noalloc]

  (** Hacker's Delight Second Edition p106 *)
  let floor_log2 i =
    if i <= 0
    then
      raise_s (Sexp.message "[Int.floor_log2] got invalid input" [ "", sexp_of_int i ]);
    num_bits - 1 - clz i
  ;;

  let ceil_log2 i =
    if i <= 0
    then raise_s (Sexp.message "[Int.ceil_log2] got invalid input" [ "", sexp_of_int i ]);
    if i = 1 then 0 else num_bits - clz (i - 1)
  ;;
end

include Pow2

(* This is already defined by Comparable.Validate_with_zero, but Sign.of_int is
   more direct. *)
let sign = Sign.of_int
let popcount = Popcount.int_popcount

module Pre_O = struct
  let ( + ) = ( + )
  let ( - ) = ( - )
  let ( * ) = ( * )
  let ( / ) = ( / )
  let ( ~- ) = ( ~- )
  let ( ** ) = ( ** )

  include (Int_replace_polymorphic_compare : Comparisons.Infix with type t := t)

  let abs = abs
  let neg = neg
  let zero = zero
  let of_int_exn = of_int_exn
end

module O = struct
  include Pre_O

  module F = Int_math.Make (struct
      type nonrec t = t

      include Pre_O

      let rem = rem
      let to_float = to_float
      let of_float = of_float
      let of_string = T.of_string
      let to_string = T.to_string
    end)

  include F

  external bswap16 : int -> int = "%bswap16"

  (* These inlined versions of (%), (/%), and (//) perform better than their functorized
     counterparts in [F] (see benchmarks below).

     The reason these functions are inlined in [Int] but not in any of the other integer
     modules is that they existed in [Int] and [Int] alone prior to the introduction of
     the [Int_math.Make] functor, and we didn't want to degrade their performance.

     We won't pre-emptively do the same for new functions, unless someone cares, on a case
     by case fashion.  *)

  let ( % ) x y =
    if y <= zero
    then
      Printf.invalid_argf
        "%s %% %s in core_int.ml: modulus should be positive"
        (to_string x)
        (to_string y)
        ();
    let rval = rem x y in
    if rval < zero then rval + y else rval
  ;;

  let ( /% ) x y =
    if y <= zero
    then
      Printf.invalid_argf
        "%s /%% %s in core_int.ml: divisor should be positive"
        (to_string x)
        (to_string y)
        ();
    if x < zero then ((x + one) / y) - one else x / y
  ;;

  let ( // ) x y = to_float x /. to_float y
  let ( land ) = ( land )
  let ( lor ) = ( lor )
  let ( lxor ) = ( lxor )
  let lnot = lnot
  let ( lsl ) = ( lsl )
  let ( asr ) = ( asr )
  let ( lsr ) = ( lsr )
end

include O

(* [Int] and [Int.O] agree value-wise *)

module Private = struct
  module O_F = O.F
end

(* Include type-specific [Replace_polymorphic_compare] at the end, after including functor
   application that could shadow its definitions. This is here so that efficient versions
   of the comparison functions are exported by this module. *)
include Int_replace_polymorphic_compare
OCaml

Innovation. Community. Security.