package batteries
A community-maintained standard library extension
Install
Dune Dependency
Authors
Maintainers
Sources
v3.9.0.tar.gz
md5=ea26b5c72e6731e59d856626049cca4d
sha512=55975b62c26f6db77433a3ac31f97af609fc6789bb62ac38b267249c78fd44ff37fe81901f1cf560857b9493a6046dd37b0d1c0234c66bd59e52843aac3ce6cb
doc/src/batteries.unthreaded/batText.ml.html
Source file batText.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
(* * BatText - Unicode text library * * Copyright (C) 2012 The Batteries Included Team * Copyright (C) 2007 Mauricio Fernandez <mfp@acm.org> * Copyright (C) 2008 Edgar Friendly <thelema314@gmail.com> * Copyright (C) 2008 David Teller, LIFO, Universite d'Orleans * * Rope: Rope: an implementation of the data structure described in * * Boehm, H., Atkinson, R., and Plass, M. 1995. Ropes: an alternative to * strings. Softw. Pract. Exper. 25, 12 (Dec. 1995), 1315-1330. * * Motivated by Luca de Alfaro's extensible array implementation Vec. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version, * with the special exception on linking described in file LICENSE. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA *) module UTF8 = BatUTF8 module UChar = BatUChar (**Low-level optimization*) let int_max (x:int) (y:int) = if x < y then y else x let int_min (x:int) (y:int) = if x < y then x else y let splice s1 off len s2 = let len1 = String.length s1 and len2 = String.length s2 in let off = if off < 0 then len1 + off - 1 else off in let len = int_min (len1 - off) len in let out_len = len1 - len + len2 in let s = Bytes.create out_len in Bytes.blit_string s1 0 s 0 off; (* s1 before splice point *) Bytes.blit_string s2 0 s off len2; (* s2 at splice point *) Bytes.blit_string (* s1 after off+len *) s1 (off+len) s (off+len2) (len1 - (off+len)); Bytes.unsafe_to_string s type t = Empty (**An empty rope*) | Concat of t * int * t * int * int (**[Concat l ls r rs h] is the concatenation of ropes [l] and [r], where [ls] is the total length of [l], [rs] is the length of [r] and [h] is the height of the node in the tree, used for rebalancing. *) | Leaf of int * UTF8.t (**[Leaf l t] is string [t] with length [l], measured in number of Unicode characters.*) type forest_element = { mutable c : t; mutable len : int } let str_append = (^) let empty_str = "" let string_of_string_list l = String.concat empty_str l (* 48 limits max rope size to 220GB on 64 bit, * ~ 700MB on 32bit (length fields overflow after that) *) let max_height = 48 (* actual size will be that plus 1 word header; * the code assumes it's an even num. * 256 gives up to a 50% overhead in the worst case (all leaf nodes near * half-filled *) let leaf_size = 256 (* utf-8 characters, not bytes *) (* MAIN CODE STARTS HERE *) exception Out_of_bounds let empty = Empty (* by construction, there cannot be Empty or Leaf "" leaves *) let is_empty = function Empty -> true | _ -> false let height = function | Empty | Leaf _ -> 0 | Concat(_,_,_,_,h) -> h let length = function | Empty -> 0 | Leaf (l,_) -> l | Concat(_,cl,_,cr,_) -> cl + cr let make_concat l r = let hl = height l and hr = height r in let cl = length l and cr = length r in Concat(l, cl, r, cr, if hl >= hr then hl + 1 else hr + 1) let min_len = let fib_tbl = Array.make max_height 0 in let rec fib n = match fib_tbl.(n) with | 0 -> let last = fib (n - 1) and prev = fib (n - 2) in let r = last + prev in let r = if r > last then r else last in (* check overflow *) fib_tbl.(n) <- r; r | n -> n in fib_tbl.(0) <- leaf_size + 1; fib_tbl.(1) <- 3 * leaf_size / 2 + 1; Array.init max_height (fun i -> if i = 0 then 1 else fib (i - 1)) let max_length = min_len.(Array.length min_len - 1) let concat_fast l r = match l with | Empty -> r | Leaf _ | Concat(_,_,_,_,_) -> match r with | Empty -> l | Leaf _ | Concat(_,_,_,_,_) -> make_concat l r (* based on Hans-J. Boehm's *) let add_forest forest rope len = let i = ref 0 in let sum = ref empty in while len > min_len.(!i+1) do if forest.(!i).c <> Empty then begin sum := concat_fast forest.(!i).c !sum; forest.(!i).c <- Empty end; incr i done; sum := concat_fast !sum rope; let sum_len = ref (length !sum) in while !sum_len >= min_len.(!i) do if forest.(!i).c <> Empty then begin sum := concat_fast forest.(!i).c !sum; sum_len := !sum_len + forest.(!i).len; forest.(!i).c <- Empty; end; incr i done; decr i; forest.(!i).c <- !sum; forest.(!i).len <- !sum_len let concat_forest forest = Array.fold_left (fun s x -> concat_fast x.c s) Empty forest let rec balance_insert rope len forest = match rope with | Empty -> () | Leaf _ -> add_forest forest rope len | Concat(l,cl,r,cr,h) when h >= max_height || len < min_len.(h) -> balance_insert l cl forest; balance_insert r cr forest | x -> add_forest forest x len (* function or balanced *) let balance r = match r with | Empty | Leaf _ -> r | _ -> let forest = Array.init max_height (fun _ -> {c = Empty; len = 0}) in balance_insert r (length r) forest; concat_forest forest let bal_if_needed l r = let r = make_concat l r in if height r < max_height then r else balance r let concat_str l = function | Empty | Concat(_,_,_,_,_) -> invalid_arg "Text.concat_str" | Leaf (lenr, rs) as r -> match l with | Empty -> r | Leaf (lenl, ls) -> let slen = lenr + lenl in if slen <= leaf_size then Leaf ((lenl+lenr),(str_append ls rs)) else make_concat l r (* height = 1 *) | Concat(ll, cll, Leaf (lenlr ,lrs), clr, h) -> let slen = clr + lenr in if clr + lenr <= leaf_size then Concat(ll, cll, Leaf ((lenlr + lenr),(str_append lrs rs)), slen, h) else bal_if_needed l r | _ -> bal_if_needed l r let append_char c r = concat_str r (Leaf (1, (UTF8.make 1 c))) let append l = function | Empty -> l | Leaf _ as r -> concat_str l r | Concat(Leaf (lenrl,rls),rlc,rr,rc,h) as r -> (match l with Empty -> r | Concat(_,_,_,_,_) -> bal_if_needed l r | Leaf (lenl, ls) -> let slen = rlc + lenl in if slen <= leaf_size then Concat(Leaf((lenrl+lenl),(str_append ls rls)), slen, rr, rc, h) else bal_if_needed l r) | r -> (match l with Empty -> r | _ -> bal_if_needed l r) let ( ^^^ ) = append let prepend_char c r = append (Leaf (1,(UTF8.make 1 c))) r let get r i = let rec aux i = function Empty -> raise Out_of_bounds | Leaf (lens, s) -> if i >= 0 && i < lens then UTF8.get s i else raise Out_of_bounds | Concat (l, cl, r, _cr, _) -> if i < cl then aux i l else aux (i - cl) r in aux i r let copy_set us cpos c = let ipos = UTF8.ByteIndex.of_char_idx us cpos in let jpos = UTF8.ByteIndex.next us ipos in let i = UTF8.ByteIndex.to_int ipos and j = UTF8.ByteIndex.to_int jpos in splice us i (j-i) (UTF8.of_char c) let set r i v = let rec aux i = function Empty -> raise Out_of_bounds | Leaf (lens, s) -> if i >= 0 && i < lens then let s = copy_set s i v in Leaf (lens, s) else raise Out_of_bounds | Concat(l, cl, r, _cr, _) -> if i < cl then append (aux i l) r else append l (aux (i - cl) r) in aux i r module Iter = struct (* Iterators are used for iterating efficiently over multiple ropes at the same time *) type iterator = { (* Current leaf in which the iterator is *) mutable leaf : UTF8.t; (* Current byte position of the iterator *) mutable idx : UTF8.ByteIndex.b_idx; (* Ropes not yet visited *) mutable rest : t list; } let copy i = {i with idx=i.idx; } (* Initial iterator state: *) let make rope = { leaf = UTF8.empty; idx = UTF8.ByteIndex.first; rest = if rope = Empty then [] else [rope] } let rec next_leaf = function | Empty :: l -> next_leaf l | Leaf(_len, str) :: l -> Some(str, l) | Concat(left, _left_len, right, _right_len, _height) :: l -> next_leaf (left :: right :: l) | [] -> None (* Advance the iterator to the next position, and return current character: *) let next iter = if UTF8.ByteIndex.at_end iter.leaf iter.idx then (* We are at the end of the current leaf, find another one: *) match next_leaf iter.rest with | None -> None | Some(leaf, rest) -> iter.leaf <- leaf; iter.idx <- UTF8.ByteIndex.next leaf UTF8.ByteIndex.first; iter.rest <- rest; Some(UTF8.ByteIndex.look leaf UTF8.ByteIndex.first) else begin (* Just advance in the current leaf: *) let ch = UTF8.ByteIndex.look iter.leaf iter.idx in iter.idx <- UTF8.ByteIndex.next iter.leaf iter.idx; Some ch end (* Same thing but map leafs: *) let next_map f iter = if UTF8.ByteIndex.at_end iter.leaf iter.idx then match next_leaf iter.rest with | None -> None | Some(leaf, rest) -> let leaf = f leaf in iter.leaf <- leaf; iter.idx <- UTF8.ByteIndex.next leaf UTF8.ByteIndex.first; iter.rest <- rest; Some(UTF8.ByteIndex.look leaf UTF8.ByteIndex.first) else begin let ch = UTF8.ByteIndex.look iter.leaf iter.idx in iter.idx <- UTF8.ByteIndex.next iter.leaf iter.idx; Some ch end (* Same thing but in reverse order: *) let rec prev_leaf = function | Empty :: l -> prev_leaf l | Leaf(_len, str) :: l -> Some(str, l) | Concat(left, _left_len, right, _right_len, _height) :: l -> prev_leaf (right :: left :: l) | [] -> None let prev iter = if iter.idx = UTF8.ByteIndex.first then match prev_leaf iter.rest with | None -> None | Some(leaf, rest) -> iter.leaf <- leaf; iter.idx <- UTF8.ByteIndex.last leaf; iter.rest <- rest; Some(UTF8.ByteIndex.look leaf iter.idx) else begin iter.idx <- UTF8.ByteIndex.prev iter.leaf iter.idx; Some(UTF8.ByteIndex.look iter.leaf iter.idx) end end (* Can be improved? *) let compare a b = let ia = Iter.make a and ib = Iter.make b in let rec loop _ = match Iter.next ia, Iter.next ib with | None, None -> 0 | None, _ -> -1 | _, None -> 1 | Some ca, Some cb -> match UChar.compare ca cb with | 0 -> loop () | n -> n in loop () let of_ustring ustr = (* We need fast access to raw bytes: *) let bytes = ustr in let byte_length = String.length bytes in (* - [rope] is the accumulator - [start_byte_idx] is the byte position of the current slice - [current_byte_idx] is the current byte position - [slice_size] is the number of unicode characters contained between [start_byte_idx] and [current_byte_idx] *) let rec loop rope start_byte_idx current_byte_idx slice_size = if current_byte_idx = byte_length then begin if slice_size = 0 then rope else add_slice rope start_byte_idx current_byte_idx slice_size end else begin if slice_size = leaf_size then (* We have enough unicode characters for this slice, extract it and add a leaf to the rope: *) loop (add_slice rope start_byte_idx current_byte_idx slice_size) current_byte_idx current_byte_idx 0 else let next_byte_idx = UTF8.next ustr current_byte_idx in loop rope start_byte_idx next_byte_idx (slice_size + 1) end and add_slice rope start_byte_idx end_byte_idx slice_size = append rope (Leaf(slice_size, (* This is correct, we are just extracting a sequence of well-formed UTF-8 encoded unicode characters: *) UTF8.of_string_unsafe (String.sub bytes start_byte_idx (end_byte_idx - start_byte_idx)))) in loop Empty 0 0 0 let of_string s = (* Validate + unsafe to avoid an extra copy (it is OK because of_ustring do not reuse its argument in the resulting rope): *) UTF8.validate s; of_ustring (UTF8.of_string_unsafe s) let append_us r us = append r (of_ustring us) let rec make len c = let rec concatloop len i r = if i <= len then (*TODO: test for sharing among substrings *) concatloop len (i * 2) (append r r) else r in if len = 0 then Empty else if len <= leaf_size then Leaf (len, (UTF8.make len c)) else let rope = concatloop len 2 (of_ustring (UTF8.make 1 c)) in append rope (make (len - length rope) c) let of_uchar c = make 1 c let of_char c = of_uchar (UChar.of_char c) let sub r start len = let rec aux start len = function Empty -> if start <> 0 || len <> 0 then raise Out_of_bounds else Empty | Leaf (lens, s) -> if len < 0 || start < 0 || start + len > lens then raise Out_of_bounds else if len > 0 then (* Leaf "" cannot happen *) (try Leaf (len, (UTF8.sub s start len)) with _ -> raise Out_of_bounds) else Empty | Concat(l,cl,r,cr,_) -> if start < 0 || len < 0 || start + len > cl + cr then raise Out_of_bounds; let left = if start = 0 then if len >= cl then l else aux 0 len l else if start > cl then Empty else if start + len >= cl then aux start (cl - start) l else aux start len l in let right = if start <= cl then let upto = start + len in if upto = cl + cr then r else if upto < cl then Empty else aux 0 (upto - cl) r else aux (start - cl) len r in append left right in aux start len r let insert start rope r = append (append (sub r 0 start) rope) (sub r start (length r - start)) let remove start len r = append (sub r 0 start) (sub r (start + len) (length r - start - len)) let to_ustring r = let rec strings l = function | Empty -> l | Leaf (_,s) -> s :: l | Concat(left,_,right,_,_) -> strings (strings l right) left in string_of_string_list (strings [] r) let rec bulk_iter f = function | Empty -> () | Leaf (_,s) -> f s | Concat(l,_,r,_,_) -> bulk_iter f l; bulk_iter f r let rec bulk_iteri ?(base=0) f = function | Empty -> () | Leaf (_,s) -> f base s | Concat(l,cl,r,_,_) -> bulk_iteri ~base f l; bulk_iteri ~base:(base+cl) f r let rec iter f = function | Empty -> () | Leaf (_,s) -> UTF8.iter f s | Concat(l,_,r,_,_) -> iter f l; iter f r let rec iteri ?(base=0) f = function | Empty -> () | Leaf (_,s) -> UTF8.iteri (fun c j -> f (base + j) c) s | Concat(l,cl,r,_,_) -> iteri ~base f l; iteri ~base:(base + cl) f r let rec bulk_iteri_backwards ~top f = function | Empty -> () | Leaf (_lens,s) -> f top s | Concat(l,_,r,cr,_) -> bulk_iteri_backwards ~top f r; bulk_iteri_backwards ~top:(top-cr) f l let rec range_iter f start len = function | Empty -> if start <> 0 || len <> 0 then raise Out_of_bounds | Leaf (lens, s) -> let n = start + len in if start >= 0 && len >= 0 && n <= lens then for i = start to n - 1 do f (UTF8.look s (UTF8.nth s i)) (*TODO: use enum to iterate efficiently*) done else raise Out_of_bounds | Concat(l,cl,r,cr,_) -> if start < 0 || len < 0 || start + len > cl + cr then raise Out_of_bounds; if start < cl then begin let upto = start + len in if upto <= cl then range_iter f start len l else begin range_iter f start (cl - start) l; range_iter f 0 (upto - cl) r end end else begin range_iter f (start - cl) len r end let rec range_iteri f ?(base = 0) start len = function | Empty -> if start <> 0 || len <> 0 then raise Out_of_bounds | Leaf (lens, s) -> let n = start + len in if start >= 0 && len >= 0 && n <= lens then for i = start to n - 1 do f (base+i) (UTF8.look s (UTF8.nth s i)) (*TODO: use enum to iterate efficiently*) done else raise Out_of_bounds | Concat(l,cl,r,cr,_) -> if start < 0 || len < 0 || start + len > cl + cr then raise Out_of_bounds; if start < cl then begin let upto = start + len in if upto <= cl then range_iteri f ~base start len l else begin range_iteri f ~base start (cl - start) l; range_iteri f ~base:(base + cl - start) 0 (upto - cl) r end end else begin range_iteri f ~base (start - cl) len r end let rec fold f a = function | Empty -> a | Leaf (_,s) -> UTF8.fold (fun a c -> f a c) a s | Concat(l,_,r,_,_) -> fold f (fold f a l) r let rec bulk_fold f a = function | Empty -> a | Leaf (_, s) -> f a s | Concat (l, _, r, _, _) -> bulk_fold f (bulk_fold f a l) r let to_string t = (* We use unsafe version to avoid the copy of the non-reachable temporary string: *) UTF8.to_string_unsafe (to_ustring t) let init len f = Leaf (len, UTF8.init len f) let of_string_unsafe s = of_ustring (UTF8.of_string_unsafe s) let of_int i = of_string_unsafe (string_of_int i) let of_float f = of_string_unsafe (string_of_float f) let to_int r = int_of_string (UTF8.to_string_unsafe (to_ustring r)) let to_float r = float_of_string (UTF8.to_string_unsafe (to_ustring r)) let bulk_map f r = bulk_fold (fun acc s -> append_us acc (f s)) Empty r let map f r = bulk_map (fun s -> UTF8.map f s) r let bulk_filter_map f r = bulk_fold (fun acc s -> match f s with None -> acc | Some r -> append_us acc r) Empty r let filter_map f r = bulk_map (UTF8.filter_map f) r let filter f r = bulk_map (UTF8.filter f) r let left r len = sub r 0 len let right r len = let rlen = length r in sub r (rlen - len) len let head = left let tail r pos = sub r pos (length r - pos) let index r u = let i = Iter.make r in let rec loop n = match Iter.next i with | None -> raise Not_found | Some u' -> if UChar.eq u u' then n else loop (n + 1) in loop 0 let enum r = let next iter () = match Iter.next iter with | None -> raise BatEnum.No_more_elements | Some x -> x and count iter () = let n = ref 0 in let iter' = Iter.copy iter in begin try while true do match Iter.next iter' with None -> raise Exit | Some _ -> incr n done with Exit -> () end; !n in let rec make iter = BatEnum.make ~next:(next iter) ~clone:(clone iter) ~count:(count iter) and clone iter () = make (Iter.copy iter) in make (Iter.make r) let backwards r = let next iter () = match Iter.prev iter with | None -> raise BatEnum.No_more_elements | Some x -> x and count iter () = let n = ref 0 in let iter' = Iter.copy iter in begin try while true do match Iter.prev iter' with None -> raise Exit | Some _ -> incr n done with Exit -> () end; !n in let rec make iter = BatEnum.make ~next:(next iter) ~clone:(clone iter) ~count:(count iter) and clone iter () = make (Iter.copy iter) in make (Iter.make r) let of_enum e = let size = BatEnum.count e in init size (fun _i -> try BatEnum.get_exn e with BatEnum.No_more_elements -> assert false) (*$Q enum; of_enum (Q.array Q.small_int) (fun a -> \ let s = BatUTF8.init (Array.length a) (fun i -> BatUChar.chr (Array.get a i)) in \ s = (of_string s |> enum |> of_enum |> to_string)) *) module Return = BatReturn let index_from r base item = Return.with_label (fun label -> let index_aux i c = if c = item then Return.return label i in range_iteri index_aux base (length r - base) r; raise Not_found) (*$T index_from index_from (of_string "batteries") 0 (BatUChar.of_char 't') = 2 index_from (of_string "batteries") 3 (BatUChar.of_char 't') = 3 Result.(catch (index_from (of_string "batteries") 4) (BatUChar.of_char 't') \ |> is_exn Not_found) Result.(catch (index_from (of_string "batteries") 20) (BatUChar.of_char 't') \ |> is_exn Out_of_bounds) *) let rindex r char = Return.with_label (fun label -> let index_aux i us = try let p = UTF8.rindex us char in Return.return label (p+i) with Not_found -> () in bulk_iteri_backwards ~top:(length r - 1) index_aux r; raise Not_found) (*$T rindex rindex (of_string "batteries") (BatUChar.of_char 't') = 3 rindex (of_string "batt") (BatUChar.of_char 't') = 3 try ignore (rindex (of_string "batteries") (BatUChar.of_char 'y')); false with Not_found -> true *) let rindex_from r start char = let rsub = left r (start + 1) in (rindex rsub char) (*$T rindex_from let s = "batteries" in rindex_from (of_string s) (String.length s - 1) (BatUChar.of_char 't') = 3 let s = "batteries" in rindex_from (of_string s) 2 (BatUChar.of_char 't') = 2 try ignore (rindex_from (of_string "batteries") 4 (BatUChar.of_char 'y')); false with Not_found -> true try ignore (rindex_from (of_string "batteries") 20 (BatUChar.of_char 'y')); false with Out_of_bounds -> true *) let contains r char = Return.with_label (fun label -> let contains_aux us = if UTF8.contains us char then Return.return label true in bulk_iter contains_aux r; false) (*$T contains contains empty (BatUChar.of_char 't') = false contains (of_string "") (BatUChar.of_char 't') = false contains (of_string "batteries") (BatUChar.of_char 't') = true contains (of_string "batteries") (BatUChar.of_char 'y') = false *) let contains_from r start char = Return.with_label (fun label -> let contains_aux c = if c = char then Return.return label true in range_iter contains_aux start (length r - start) r; false) (*$T contains_from try ignore (contains_from empty 4 (BatUChar.of_char 't')); false with Out_of_bounds -> true try ignore (contains_from (of_string "") 4 (BatUChar.of_char 't')); false with Out_of_bounds -> true contains_from (of_string "batteries") 4 (BatUChar.of_char 't') = false contains_from (of_string "batteries") 3 (BatUChar.of_char 't') = true contains_from (of_string "batteries") 2 (BatUChar.of_char 't') = true contains_from (of_string "batteries") 1 (BatUChar.of_char 't') = true contains_from (of_string "batteries") 4 (BatUChar.of_char 'y') = false *) let rcontains_from r stop char = Return.with_label (fun label -> let contains_aux c = if c = char then Return.return label true in range_iter contains_aux 0 (stop + 1) r; false) (*$T rcontains_from try ignore (rcontains_from empty 4 (BatUChar.of_char 't')); false with Out_of_bounds -> true try ignore (rcontains_from (of_string "") 4 (BatUChar.of_char 't')); false with Out_of_bounds -> true rcontains_from (of_string "batteries") 4 (BatUChar.of_char 't') = true rcontains_from (of_string "batteries") 3 (BatUChar.of_char 't') = true rcontains_from (of_string "batteries") 2 (BatUChar.of_char 't') = true rcontains_from (of_string "batteries") 1 (BatUChar.of_char 't') = false rcontains_from (of_string "batteries") 4 (BatUChar.of_char 'y') = false *) let equal r1 r2 = compare r1 r2 = 0 let starts_with r prefix = let ir = Iter.make r and iprefix = Iter.make prefix in let rec loop _ = match Iter.next iprefix with | None -> true | Some ch1 -> match Iter.next ir with | None -> false | Some ch2 -> UChar.compare ch1 ch2 = 0 && loop () in loop () let ends_with r suffix = let ir = Iter.make r and isuffix = Iter.make suffix in let rec loop _ = match Iter.prev isuffix with | None -> true | Some ch1 -> match Iter.prev ir with | None -> false | Some ch2 -> UChar.compare ch1 ch2 = 0 && loop () in loop () (** find [sub] within [rop] or raises Not_found *) let find_from rop ofs sub_rop = let len = length rop in if ofs < 0 || ofs > len then raise Out_of_bounds; let matchlen = length sub_rop in let sub_rop = to_ustring sub_rop in let check_at pos = sub_rop = (to_ustring (sub rop pos matchlen)) in (* TODO: inefficient *) Return.with_label (fun label -> for i = ofs to len - matchlen do if check_at i then Return.return label i done; raise Not_found) (*$T find_from find_from (of_string "foobarbaz") 4 (of_string "ba") = 6 find_from (of_string "foobarbaz") 7 (of_string "") = 7 Result.(catch (find_from (of_string "") 0) (of_string "a") |> is_exn Not_found) let foo = of_string "foo" in Result.(catch (find_from foo 2) foo |> is_exn Not_found) let foo = of_string "foo" in Result.(catch (find_from foo 3) foo |> is_exn Not_found) let foo = of_string "foo" in Result.(catch (find_from foo 4) foo |> is_exn Out_of_bounds) let foo = of_string "foo" in Result.(catch (find_from foo (-1)) foo |> is_exn Out_of_bounds) *) let find rop sub = find_from rop 0 sub let rfind_from rop suf sub_rop = if suf + 1 < 0 || suf + 1 > length rop then raise Out_of_bounds; let matchlen = length sub_rop in let sub_rop = to_ustring sub_rop in let check_at pos = sub_rop = (to_ustring (sub rop pos matchlen)) in (* TODO: inefficient *) Return.with_label (fun label -> for i = suf - matchlen + 1 downto 0 do if check_at i then Return.return label i done; raise Not_found) (*$T rfind_from rfind_from (of_string "foobarbaz") 5 (of_string "ba") = 3 rfind_from (of_string "foobarbaz") 7 (of_string "ba") = 6 rfind_from (of_string "foobarbaz") 6 (of_string "ba") = 3 rfind_from (of_string "foobarbaz") 7 (of_string "") = 8 Result.(catch (rfind_from (of_string "") 3) empty |> is_exn Out_of_bounds) Result.(catch (rfind_from (of_string "") (-1)) (of_string "a") |> is_exn Not_found) Result.(catch (rfind_from (of_string "foobarbaz") 2) (of_string "ba") |> is_exn Not_found) Result.(catch (rfind_from (of_string "foo") 3) (of_string "foo") |> is_exn Out_of_bounds) Result.(catch (rfind_from (of_string "foo") (-2)) (of_string "foo") |> is_exn Out_of_bounds) *) let rfind rop sub = rfind_from rop (length rop - 1) sub let exists r_str r_sub = try ignore(find r_str r_sub); true with Not_found -> false let strip_default_chars = List.map UChar.of_char [' ';'\t';'\r';'\n'] let strip ?(chars=strip_default_chars) rope = let rec strip_left n iter = match Iter.next iter with | None -> Empty | Some ch when List.mem ch chars -> strip_left (n + 1) iter | _ -> sub rope n (strip_right (length rope - n) (Iter.make rope)) and strip_right n iter = match Iter.prev iter with | None -> assert false | Some ch when List.mem ch chars -> strip_right (n - 1) iter | _ -> n in strip_left 0 (Iter.make rope) let lchop = function | Empty -> Empty | str -> sub str 1 (length str - 1) let rchop = function | Empty -> Empty | str -> sub str 0 (length str - 1) let of_list l = let e = ref l in let get_leaf () = Return.label (fun label -> let b = Buffer.create 256 in for _i = 1 to 256 do match !e with [] -> Return.return label (false, UTF8.of_string_unsafe (Buffer.contents b)) | c :: rest -> Buffer.add_string b (UTF8.to_string_unsafe (UTF8.of_char c)); e := rest done; (true, UTF8.of_string_unsafe (Buffer.contents b) )) in let rec loop r = (* concat 256 characters at a time *) match get_leaf () with (true, us) -> loop (append r (of_ustring us)) | (false, us) -> append r (of_ustring us) in loop Empty let splice r start len new_sub = let start = if start >= 0 then start else (length r) + start in append (left r start) (append new_sub (tail r (start+len))) let fill r start len char = splice r start len (make len char) let blit rsrc offsrc rdst offdst len = splice rdst offdst len (sub rsrc offsrc len) let concat sep r_list = match r_list with | [] -> empty | h :: t -> List.fold_left (fun r1 r2 -> append r1 (append sep r2)) h t (**T concat Text.concat (Text.of_string "xyz") [] = Text.empty **) let escaped r = bulk_map UTF8.escaped r let replace_chars f r = fold (fun acc s -> append_us acc (f s)) Empty r let split r sep = let i = find r sep in head r i, tail r (i+length sep) (*$T split split (of_string "OCaml, the coolest FP language.") (of_char ' ') = \ (of_string "OCaml,", of_string "the coolest FP language.") split (of_string "OCaml, the coolest FP language.") (of_char '.') = \ (of_string "OCaml, the coolest FP language", empty) Result.(catch (split (of_string "OCaml, the coolest FP language.")) \ (of_char '!') |> is_exn Not_found) *) let rsplit (r:t) sep = let i = rfind r sep in head r i, tail r (i+length sep) (*$T rsplit rsplit (of_string "OCaml, the coolest FP language.") (of_char ' ') = \ (of_string "OCaml, the coolest FP", of_string "language.") rsplit (of_string "OCaml, the coolest FP language.") (of_char 'O') = \ (empty, of_string "Caml, the coolest FP language.") Result.(catch (rsplit (of_string "OCaml, the coolest FP language.")) \ (of_char '!') |> is_exn Not_found) *) (** An implementation of [nsplit] in one pass. This implementation traverses the string backwards, hence building the list of substrings from the end to the beginning, so as to avoid a call to [List.rev]. *) let nsplit str sep = if is_empty str then [] else if is_empty sep then invalid_arg "Text.nsplit: empty sep not allowed" else (* str is not empty *) let seplen = length sep in let rec aux acc ofs = if ofs >= 0 then ( match try Some (rfind_from str ofs sep) with Not_found -> None with | Some idx -> (* sep found *) let end_of_sep = idx + seplen - 1 in if end_of_sep = ofs (* sep at end of str *) then aux (empty::acc) (idx - 1) else let token = sub str (end_of_sep + 1) (ofs - end_of_sep) in aux (token::acc) (idx - 1) | None -> (* sep NOT found *) (sub str 0 (ofs + 1))::acc ) else (* Negative ofs: the last sep started at the beginning of str *) empty::acc in aux [] (length str - 1 ) (*$T nsplit nsplit (of_string "OCaml, the coolest FP language.") (of_char 'o') \ |> List.map to_string = ["OCaml, the c"; ""; "lest FP language."] nsplit (of_string "OCaml, the coolest FP language.") (of_char '!') \ |> List.map to_string = ["OCaml, the coolest FP language."] nsplit (of_string "1,2,3") (of_string ",") \ |> List.map to_string = ["1"; "2"; "3"] nsplit (of_string "a;b;c") (of_string ";") \ |> List.map to_string = ["a"; "b"; "c"] nsplit (of_string "") (of_string "x") = [] try ignore (nsplit (of_string "abc") (of_string "")); false \ with Invalid_argument _ -> true nsplit (of_string "a/b/c") (of_string "/") |> List.map to_string \ = ["a"; "b"; "c"] nsplit (of_string "/a/b/c//") (of_string "/") |> List.map to_string \ = [""; "a"; "b"; "c"; ""; ""] nsplit (of_string "FOOaFOObFOOcFOOFOO") (of_string "FOO") |> List.map to_string \ = [""; "a"; "b"; "c"; ""; ""] *) let join = concat let slice ?(first=0) ?(last=max_int) s = let clip _min _max x = int_max _min (int_min _max x) in let i = clip 0 (length s) (if (first<0) then (length s) + first else first) and j = clip 0 (length s) (if (last<0) then (length s) + last else last) in if i>=j || i=length s then Empty else sub s i (j-i) let replace ~str ~sub ~by = try let i = find str sub in (true, append (slice ~last:i str) (append by (slice ~first:(i+(length sub)) str))) with Not_found -> (false, str) let explode r = List.rev (fold (fun a u -> u :: a) [] r) (*$T explode explode (of_string "foo") = List.map UChar.of_char ['f'; 'o'; 'o'] explode (of_string "ếẶ") = List.map UChar.chr [0x1ebf; 0x1eb6] explode (of_string "") = [] *) let implode l = of_list l (*$T implode implode (List.map UChar.of_char ['f'; 'o'; 'o']) = of_string "foo" implode (List.map UChar.chr [0x1ebf; 0x1eb6]) = of_string "ếẶ" implode [] = of_string "" *) let of_latin1 s = of_ustring (UTF8.of_latin1 s) let print out t = bulk_iter (BatIO.nwrite out) t open BatIO (** {6 Unicode}*) (** {7 Reading unicode} All these functions assume that the input is UTF-8 encoded. *) (*val read_uchar: input -> UChar.t*) (** read one UChar from a UTF-8 encoded input*) let read_char i = let n0 = read i in let len = UTF8.length0 (Char.code n0) in if len = 1 then UChar.of_char n0 else let s = Bytes.create len in Bytes.set s 0 n0; let n = really_input i s 1 (len - 1) in assert (n = len - 1); let s = Bytes.unsafe_to_string s in UTF8.get s 0 (*val uchars_of : input -> UChar.t BatEnum.t*) (** offer the characters of an UTF-8 encoded input as an enumeration*) let chars_of i = make_enum read_char i (*val read_rope: input -> int -> Rope.t*) (** read up to n uchars from a UTF-8 encoded input*) let read_text i n = let rec loop r j = if j = 0 then r else loop (append_char (read_char i) r) (j-1) (* TODO: make more efficient by appending a string of Rope.leaf_size (256) chars at a time *) in if n <= 0 then empty else loop empty n (** read the whole contents of a UTF-8 encoded input*) let read_all i = of_string (BatIO.read_all i) (* TODO: make efficient - possibly similar to above - buffering leaf_size chars at a time *) (** read a line of UTF-8*) let read_line i = let line = read_line i in UTF8.validate line; of_string line (** offer the lines of a UTF-8 encoded input as an enumeration*) let lines_of i = BatIO.make_enum read_line i (** {7 Writing unicode} All these functions assume that the output is UTF-8 encoded.*) let write_string o c = write_string o c (*val write_uchar: _ output -> UChar.t -> unit*) let write_char o c = write_string o (UTF8.init 1 (fun _ -> c)) (*val write_rope : _ output -> Rope.t -> unit*) let write_text = print (*val write_uline: _ output -> Rope.t -> unit*) let write_line o r = write_text o r; write o '\n' (*val write_ulines : _ output -> Rope.t BatEnum.t -> unit*) let write_lines o re = BatEnum.iter (write_line o) re (*val write_ropes : _ output -> Rope.t BatEnum.t -> unit*) let write_texts o re = BatEnum.iter (write_text o) re (*val write_uchars : _ output -> UChar.t BatEnum.t -> unit*) let write_chars o uce = BatEnum.iter (write_char o) uce let sprintf fmt = BatPrintf.ksprintf of_string fmt let ksprintf k fmt = BatPrintf.ksprintf (fun s -> k (of_string s)) fmt let output_text = print
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>