package batteries
A community-maintained standard library extension
Install
Dune Dependency
Authors
Maintainers
Sources
v3.9.0.tar.gz
md5=ea26b5c72e6731e59d856626049cca4d
sha512=55975b62c26f6db77433a3ac31f97af609fc6789bb62ac38b267249c78fd44ff37fe81901f1cf560857b9493a6046dd37b0d1c0234c66bd59e52843aac3ce6cb
doc/src/batteries.unthreaded/batStream.ml.html
Source file batStream.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
(* * Stream - streams and stream parsers * Copyright (C) 1997 Daniel de Rauglaudre * 2007 Zheng Li * 2008 David Teller * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version, * with the special exception on linking described in file LICENSE. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA *) include Stream type 'a enumerable = 'a t type 'a mappable = 'a t exception End_of_flow = Failure let ( |> ) x f = f x let ( |- ) f g x = g (f x) let ( // ) f g (x, y) = ((f x), (g y)) let curry f x y = f (x, y) let uncurry f (x, y) = f x y let id x = x let rec of_fun f = Stream.slazy (fun _ -> try let h = f () in Stream.icons h (Stream.slazy (fun _ -> of_fun f)) with | End_of_flow -> Stream.sempty) let to_fun fl () = next fl let to_list fl = let buf = ref [] in iter (fun x -> buf := x :: !buf) fl; List.rev !buf let to_string fl = let buf = Buffer.create 16 in iter (Buffer.add_char buf) fl; Buffer.contents buf let to_string_fmt fmt fl = let buf = Buffer.create 16 in Stream.iter (fun it -> Buffer.add_string buf (Printf.sprintf fmt it)) fl; Buffer.contents buf let to_string_fun fn fl = let buf = Buffer.create 16 in Stream.iter (fun it -> Buffer.add_string buf (fn it)) fl; Buffer.contents buf (*UNUSED let on_channel ch = iter (output_char ch) *) let on_output o = iter (BatIO.write o) let rec of_input i = Stream.slazy (fun _ -> try let h = BatIO.read i in Stream.icons h (Stream.slazy (fun _ -> of_input i)) with | BatIO.No_more_input -> Stream.sempty) let rec cycle times x = match times with | None -> Stream.iapp x (Stream.slazy (fun _ -> cycle None x)) | Some 1 -> x | (* in case of destriction *) Some n when n <= 0 -> Stream.sempty | Some n -> Stream.iapp x (Stream.slazy (fun _ -> cycle (Some (n - 1)) x)) let repeat times x = cycle times (Stream.ising x) let rec seq init step cont = if cont init then Stream.icons init (Stream.slazy (fun _ -> seq (step init) step cont)) else Stream.sempty let range n until = let step x = (x + 1) land max_int in let cont = match until with | None -> (fun _ -> true) | Some x -> ( >= ) x in seq n step cont let ( -- ) p q = range p (Some q) let next (__strm : _ Stream.t) = match Stream.peek __strm with | Some h -> (Stream.junk __strm; h) | _ -> raise End_of_flow let rec foldl f init s = match peek s with | Some h -> (match f init h with | (accu, None) -> (junk s; foldl f accu s) | (accu, Some true) -> (junk s; accu) | (_, Some false) -> init) | None -> init let rec foldr f init s = let (__strm : _ Stream.t) = s in match Stream.peek __strm with | Some h -> (Stream.junk __strm; f h (lazy (foldr f init s))) | _ -> init let fold f s = let (__strm : _ Stream.t) = s in match Stream.peek __strm with | Some h -> (Stream.junk __strm; foldl f h s) | _ -> raise End_of_flow let cons x s = Stream.icons x s let apnd s1 s2 = Stream.iapp s1 s2 let is_empty s = match peek s with | None -> true | _ -> false let rec concat ss = Stream.slazy (fun _ -> let (__strm : _ Stream.t) = ss in match Stream.peek __strm with | Some p -> (Stream.junk __strm; Stream.iapp p (Stream.slazy (fun _ -> concat ss))) | _ -> Stream.sempty) let rec concat_map f l = Stream.slazy (fun () -> match Stream.peek l with | Some p -> let p' = f p in Stream.junk l; Stream.iapp p' (Stream.slazy (fun () -> concat_map f l)) | None -> Stream.sempty) let rec filter f s = Stream.slazy (fun _ -> let (__strm : _ Stream.t) = s in match Stream.peek __strm with | Some h -> (Stream.junk __strm; if f h then Stream.icons h (Stream.slazy (fun _ -> filter f s)) else Stream.slazy (fun _ -> filter f s)) | _ -> Stream.sempty) let take n fl = let i = ref n in of_fun (fun () -> (if !i <= 0 then raise End_of_flow else decr i; next fl)) let drop n fl = let i = ref n in let rec f () = if !i <= 0 then next fl else (ignore (next fl); decr i; f ()) in of_fun f let rec take_while f s = Stream.slazy (fun _ -> match peek s with | Some h -> if f h then (junk s; Stream.icons h (Stream.slazy (fun _ -> take_while f s))) else Stream.sempty | None -> Stream.sempty) let rec drop_while f s = Stream.slazy (fun _ -> let (__strm : _ Stream.t) = s in match Stream.peek __strm with | Some h -> (Stream.junk __strm; if f h then Stream.slazy (fun _ -> drop_while f s) else Stream.icons h s) | _ -> Stream.sempty) let span p s = let q = Queue.create () and sr = ref None in let rec get_head () = Stream.slazy (fun _ -> if not (Queue.is_empty q) then Stream.lcons (fun _ -> Queue.take q) (Stream.slazy get_head) else (let (__strm : _ Stream.t) = s in match Stream.peek __strm with | Some h -> (Stream.junk __strm; if p h then Stream.icons h (Stream.slazy get_head) else (sr := Some h; Stream.sempty)) | _ -> Stream.sempty)) in let rec get_tail () = match !sr with | Some v -> Stream.icons v s | None -> Stream.slazy (fun _ -> let (__strm : _ Stream.t) = s in match Stream.peek __strm with | Some h -> (Stream.junk __strm; if p h then Queue.add h q else sr := Some h; get_tail ()) | _ -> Stream.sempty) in ((get_head ()), (Stream.slazy get_tail)) let break p s = span (p |- not) s let rec group p s = Stream.slazy (fun _ -> match peek s with | None -> Stream.sempty | Some v -> if p v then group_aux p s else group_aux (p |- not) s) and group_aux p s = match peek s with | None -> Stream.sempty | Some _ -> let h = next s in let (s1, s2) = span p s in Stream.lcons (fun _ -> Stream.icons h s1) (Stream.slazy (fun _ -> group_aux (p |- not) s2)) let rec map f s = Stream.slazy (fun _ -> let (__strm : _ Stream.t) = s in match Stream.peek __strm with | Some h -> (Stream.junk __strm; Stream.lcons (fun _ -> f h) (Stream.slazy (fun _ -> map f s))) | _ -> Stream.sempty) let dup (_s: 'a Stream.t) = failwith "Correct implementation needed" (* let rec gen q_in q_out = Printf.printf "0%!"; Stream.slazy (fun () -> Printf.printf "a%!"; if Queue.is_empty q_in then (* take from stream, put onto other queue *) match Stream.peek s with | Some h -> Printf.printf "b%!"; Stream.junk s; Queue.add h q_out; Stream.icons h (Stream.slazy (fun () -> gen q_in q_out)) | _ -> Stream.sempty else ( (* take from queue *) Printf.printf "c%!"; Stream.lcons (fun () -> Queue.take q_in) (Stream.slazy (fun () -> gen q_in q_out)))) in let q1 = Queue.create () in let q2 = Queue.create () in Printf.printf "!!%!"; gen q1 q2, gen q2 q1 *) (* dup let block_stream = let x = ref 10 in BatStream.of_fun (fun pos -> decr x; if !x < 0 then None else Some !x) in let rec show count stream = match BatStream.next block_stream with | Some x -> show (succ count) stream | None -> count in let q1, q2 = BatStream.dup block_stream in Printf.printf "x%!"; assert_equal ~msg:"Second stream from dup length wrong" ~printer:(IO.to_string Int.print) 10 (show 0 q2); Printf.printf "x%!"; assert_equal ~msg:"First stream from dup length wrong" ~printer:(IO.to_string Int.print) 10 (show 0 q1); Printf.printf "x%!"; () **) (*NOT EXPORTED let rec combn sa = Stream.slazy (fun _ -> if Array.fold_left (fun b s -> b || (is_empty s)) false sa then Stream.sempty else Stream.lcons (fun _ -> Array.map next sa) (Stream.slazy (fun _ -> combn sa))) *) let rec comb (s1, s2) = Stream.slazy (fun _ -> match peek s1 with | Some h1 -> (match peek s2 with | Some h2 -> (junk s1; junk s2; Stream.lcons (fun _ -> (h1, h2)) (Stream.slazy (fun _ -> comb (s1, s2)))) | None -> Stream.sempty) | None -> Stream.sempty) (*NOT EXPORTED let dupn n s = let qa = Array.init n (fun _ -> Queue.create ()) in let rec gen i = Stream.slazy (fun _ -> if not (Queue.is_empty qa.(i)) then Stream.lcons (fun _ -> Queue.take qa.(i)) (Stream.slazy (fun _ -> gen i)) else (let (__strm : _ Stream.t) = s in match Stream.peek __strm with | Some h -> (Stream.junk __strm; for i = 0 to n - 1 do Queue.add h qa.(i) done; gen i) | _ -> Stream.sempty)) in Array.init n gen let splitn n s = let qa = Array.init n (fun _ -> Queue.create ()) in let rec gen i = Stream.slazy (fun _ -> if not (Queue.is_empty qa.(i)) then Stream.lcons (fun _ -> Queue.take qa.(i)) (Stream.slazy (fun _ -> gen i)) else (let (__strm : _ Stream.t) = s in match Stream.peek __strm with | Some h -> (Stream.junk __strm; for i = 0 to n - 1 do Queue.add h.(i) qa.(i) done; gen i) | _ -> Stream.sempty)) in Array.init n gen *) let split s = ( |- ) dup ((map fst) // (map snd)) s let mergen f sa = let n = Array.length sa in let pt = Array.init n id in let rec alt x i = (i < n) && (if pt.((x + i) mod n) = pt.(x) then alt x (i + 1) else (for j = 0 to i - 1 do pt.((x + j) mod n) <- pt.((x + i) mod n) done; true)) in let rec aux i = Stream.slazy (fun _ -> let (__strm : _ Stream.t) = sa.(pt.(i)) in match Stream.peek __strm with | Some h -> (Stream.junk __strm; let i' = pt.(i) in Stream.icons h (Stream.slazy (fun _ -> aux pt.((f i' h) mod n)))) | _ -> if alt i 1 then aux i else Stream.sempty) in aux 0 let merge f (s1, s2) = let i2b = function | 0 -> true | 1 -> false | _ -> assert false and b2i = function | true -> 0 | false -> 1 in mergen (fun i x -> b2i (f (i2b i) x)) [| s1; s2 |] let switchn n f s = let qa = Array.init n (fun _ -> Queue.create ()) in let rec gen i = Stream.slazy (fun _ -> if not (Queue.is_empty qa.(i)) then Stream.lcons (fun _ -> Queue.take qa.(i)) (Stream.slazy (fun _ -> gen i)) else (let (__strm : _ Stream.t) = s in match Stream.peek __strm with | Some h -> (Stream.junk __strm; let i' = (f h) mod n in if i' = i then Stream.icons h (Stream.slazy (fun _ -> gen i)) else (Queue.add h qa.(i'); Stream.slazy (fun _ -> gen i))) | _ -> Stream.sempty)) in Array.init n gen let switch f s = let sa = switchn 2 (fun x -> if f x then 0 else 1) s in ((sa.(0)), (sa.(1))) let rec scanl f init s = Stream.slazy (fun _ -> let (__strm : _ Stream.t) = s in match Stream.peek __strm with | Some h -> (Stream.junk __strm; Stream.icons init (Stream.slazy (fun _ -> scanl f (f init h) s))) | _ -> Stream.ising init) let scan f s = Stream.slazy (fun _ -> let (__strm : _ Stream.t) = s in match Stream.peek __strm with | Some h -> (Stream.junk __strm; Stream.slazy (fun _ -> scanl f h s)) | _ -> Stream.sempty) let map2 f = (comb |- (map (uncurry f))) |> curry (*NOT EXPORTED let rec map_fold f s = Stream.slazy (fun _ -> match peek s with | None -> Stream.sempty | Some _ -> Stream.lcons (fun _ -> fold f s) (Stream.slazy (fun _ -> map_fold f s))) *) let feed stf vf delay exp = let s_in' = ref Stream.sempty in let out = exp (Stream.iapp delay (Stream.slazy (fun _ -> !s_in'))) in let s_in = stf out and s_out = vf out in (s_in' := s_in; s_out) let feedl delay exp = feed fst snd delay exp (* NOT EXPORTED let feedr delay exp = feed snd fst delay exp *) (* NOT EXPORTED let circ delay exp = feedl delay (exp |- dup) *) let while_do size test exp = let size = match size with | Some n when n >= 1 -> n | _ -> 1 in let inside = ref 0 in let judge x = if test x then (incr inside; true) else false in let choose b _ = (if not b then decr inside else (); !inside < size) in ((((merge choose) |- (switch judge)) |- (exp // id)) |> curry) |- (feedl Stream.sempty) let do_while size test exp = let size = match size with | Some n when n >= 1 -> n | _ -> 1 in let inside = ref 0 in let judge x = if test x then (incr inside; true) else false in let choose b _ = (if not b then decr inside else (); !inside < size) in ((((merge choose) |- exp) |- (switch judge)) |> curry) |- (feedl Stream.sempty) let farm par size path exp_gen s = let par = match par with | None -> 1 | Some p -> p in let size = match size with | None -> (fun _ -> 1) | Some f -> f in let path = match path with | None -> ignore |- (to_fun (cycle None (0 -- (par - 1)))) | Some f -> f in let par = if par < 1 then 1 else par in let count = Array.make par 0 in let size x = let s = size x in if s < 1 then 1 else s in let path x = let i = path x in (count.(i) <- succ count.(i); i) in let choose = let rec find_next cond last i = if i < par then (let j = (last + i) mod par in if cond j then Some j else find_next cond last (i + 1)) else None in fun last _ -> (count.(last) <- count.(last) - 1; let nth = match find_next (fun i -> count.(i) >= (size i)) last 1 with | Some j -> j | None -> (match find_next (fun i -> count.(i) > 0) last 1 with | Some j -> j | None -> last + (1 mod par)) in nth) in let sa_in = switchn par path s in let sa_out = Array.mapi exp_gen sa_in in mergen choose sa_out (* let ( ||| ) exp1 exp2 = exp1 |- exp2 *) let enum x = BatEnum.from (fun () -> try next x with | End_of_flow -> raise BatEnum.No_more_elements) let rec of_enum e = Stream.slazy (fun _ -> match BatEnum.get e with | Some h -> Stream.icons h (Stream.slazy (fun _ -> of_enum e)) | None -> Stream.sempty) ##V<4.2##let of_bytes = of_string module StreamLabels = struct let iter ~f x = iter f x let switch ~f x = switch f x let to_string_fmt ~fmt = to_string_fmt fmt let to_string_fun ~fn = to_string_fun fn let foldl ~f ~init = foldl f init let foldr ~f ~init = foldr f init let fold ~f ~init = fold f init let filter ~f = filter f let map ~f = map f let map2 ~f = map2 f let scanl ~f = scanl f let scan ~f = scan f let while_do ?size ~f = while_do size f let do_while ?size ~f = do_while size f let range ?until p = range p until let repeat ?times = repeat times let cycle ?times = cycle times let take_while ~f = take_while f let drop_while ~f = drop_while f let span ~f = span f let break ~f = break f let group ~f = group f let merge ~f = merge f let mergen ~f = mergen f let switchn x ~f = switchn x f let farm ?par ?size ?path = farm par size path end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>