package batteries

  1. Overview
  2. Docs
A community-maintained standard library extension

Install

Dune Dependency

Authors

Maintainers

Sources

v3.9.0.tar.gz
md5=ea26b5c72e6731e59d856626049cca4d
sha512=55975b62c26f6db77433a3ac31f97af609fc6789bb62ac38b267249c78fd44ff37fe81901f1cf560857b9493a6046dd37b0d1c0234c66bd59e52843aac3ce6cb

doc/src/batteries.unthreaded/batHeap.ml.html

Source file batHeap.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
(*
 * Heap -- binomial heaps
 * Copyright (C) 2011  Batteries Included Development Team
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version,
 * with the special exception on linking described in file LICENSE.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *)

let min x y =
  if x <= y then
    x
  else
    y

(** binomial trees *)
type 'a bt = {
  rank : int ;
  root : 'a ;
  kids : 'a bt list ;
}

type 'a t = {
  size : int ;
  data : 'a bt list ;
  mind : 'a option ; (** cached minimal element *)
}

let empty = { size = 0 ; data = [] ; mind = None }

let size bh = bh.size

let link bt1 bt2 =
  assert (bt1.rank = bt2.rank) ;
  let rank = bt1.rank + 1 in
  let leq = bt1.root <= bt2.root in
  let root = if leq then bt1.root else bt2.root in
  let kids = if leq then bt2 :: bt1.kids else bt1 :: bt2.kids in
  { rank = rank ; root = root ; kids = kids }

let rec add_tree t = function
  | [] -> [t]
  | (ut :: uts) as ts ->
    assert (t.rank <= ut.rank) ;
    if t.rank < ut.rank then t :: ts
    else add_tree (link t ut) uts

let insert bh x =
  let size = bh.size + 1 in
  let data = add_tree { rank = 0 ; root = x ; kids = [] } bh.data in
  let mind = match bh.mind with
    | None -> Some x
    | Some mind -> Some (min x mind)
  in {
    size = size ; data = data ; mind = mind
  }

(*$T size ; empty
  size (insert empty 3) = 1
  size empty = 0
*)

let add x bh = insert bh x

(*$T
  find_min (add 3 (add 2 (add 1 empty))) = 1
*)

let rec merge_data ts1 ts2 = match ts1, ts2 with
  | _, [] -> ts1
  | [], _ -> ts2
  | t1 :: tss1, t2 :: tss2 ->
    if t1.rank < t2.rank then
      t1 :: merge_data tss1 ts2
    else if t1.rank > t2.rank then
      t2 :: merge_data ts1 tss2
    else
      add_tree (link t1 t2) (merge_data tss1 tss2)

let merge bh1 bh2 =
  let size = bh1.size + bh2.size in
  let data = merge_data bh1.data bh2.data in
  let mind = match bh1.mind, bh2.mind with
    | Some m1, Some m2 -> Some (min m1 m2)
    | m, None | None, m -> m
  in
  { size = size ; data = data ; mind = mind }

(*$T
  merge (of_list [3;2]) (of_list [4;1]) |> to_list = [1;2;3;4]
*)

let find_min bh = match bh.mind with
  | None -> invalid_arg "find_min"
  | Some d -> d

(*$T find_min ; insert ; empty
   find_min (insert (insert empty 3) 5) = 3
   find_min (insert (insert empty 5) 3) = 3
*)


let rec find_min_tree ts ~kfail ~ksuccess =
  match ts with
    | [] ->
        kfail ()
    | [t] ->
        ksuccess t
    | t :: ts ->
        find_min_tree ts ~kfail ~ksuccess:(fun u ->
          if t.root <= u.root then
            ksuccess t
          else
            ksuccess u)

let rec del_min_tree bts ~kfail ~ksuccess =
  match bts with
    | [] ->
        kfail ()
    | [t] ->
        ksuccess t []
    | t :: ts ->
        del_min_tree ts ~kfail ~ksuccess:(fun u uts ->
          if t.root <= u.root then
            ksuccess t ts
          else
            ksuccess u (t :: uts))

let del_min bh =
  let kfail () = invalid_arg "del_min" in
  del_min_tree bh.data ~kfail ~ksuccess:(fun bt data ->
    let size = bh.size - 1 in
    let data = merge_data (List.rev bt.kids) data in
    let mind =
      if size = 0 then
        None
      else
        Some (find_min_tree data ~kfail ~ksuccess:(fun t -> t)).root
    in
    { size; data; mind })

let of_list l = List.fold_left insert empty l

let to_list bh =
  let rec aux acc bh =
    if size bh = 0 then acc else
      let m = find_min bh in
      let bh = del_min bh in
      aux (m :: acc) bh
  in
  List.rev (aux [] bh)

(*$T to_list ; empty
   to_list (insert (insert empty 4) 6) = [4; 6]
   to_list (insert (insert empty 6) 4) = [4; 6]
   to_list empty = []
*)

(*$Q to_list ; insert ; empty
   (Q.list Q.int) ~count:10 (fun l -> to_list (List.fold_left insert empty l) = List.sort compare l)
*)

let elems = to_list

let print ?(first="[") ?(last="]") ?(sep="; ") elepr out bh =
  let rec spin bh =
    if size bh = 0 then ()
    else if size bh = 1 then elepr out (find_min bh)
    else begin
      elepr out (find_min bh) ;
      BatInnerIO.nwrite out sep ;
      spin (del_min bh)
    end
  in
  BatInnerIO.nwrite out first ;
  spin bh ;
  BatInnerIO.nwrite out last

let rec enum bh =
  let cur = ref bh in
  let next () =
    let bh = !cur in
    if size bh = 0 then raise BatEnum.No_more_elements ;
    cur := (del_min bh) ; find_min bh
  in
  let count () = size !cur in
  let clone () = enum !cur in
  BatEnum.make ~next ~count ~clone

let of_enum e = BatEnum.fold insert empty e

(*$Q
  (Q.list Q.small_int) (fun l -> \
    of_list l |> enum |> List.of_enum = List.sort Int.compare l)
*)

module type H = sig
  type elem
  type t
  val empty     : t
  val size      : t -> int
  val insert    : t -> elem -> t
  val add       : elem -> t -> t
  val merge     : t -> t -> t
  val find_min  : t -> elem
  val del_min   : t -> t
  val of_list   : elem list -> t
  val to_list   : t -> elem list
  val elems     : t -> elem list
  val of_enum   : elem BatEnum.t -> t
  val enum      : t -> elem BatEnum.t
  val print     :  ?first:string -> ?last:string -> ?sep:string
    -> ('a BatInnerIO.output -> elem -> unit)
    -> 'a BatInnerIO.output -> t -> unit
end

module Make (Ord : BatInterfaces.OrderedType) = struct
  type elem = Ord.t

  let ord_min x y =
    if Ord.compare x y <= 0 then x else y

  type bt = {
    rank : int ;
    root : Ord.t ;
    kids : bt list ;
  }

  type t = {
    size : int ;
    data : bt list ;
    mind : Ord.t option ;
  }

  let empty = { size = 0 ; data = [] ; mind = None }

  let size bh = bh.size

  let link bt1 bt2 =
    assert (bt1.rank = bt2.rank) ;
    let rank = bt1.rank + 1 in
    let leq = Ord.compare bt1.root bt2.root <= 0 in
    let root = if leq then bt1.root else bt2.root in
    let kids = if leq then bt2 :: bt1.kids else bt1 :: bt2.kids in
    { rank = rank ; root = root ; kids = kids }

  let rec add_tree t = function
    | [] -> [t]
    | (ut :: uts) as ts ->
      assert (t.rank <= ut.rank) ;
      if t.rank < ut.rank then t :: ts
      else add_tree (link t ut) uts

  let insert bh x =
    let data = add_tree { rank = 0 ; root = x ; kids = [] } bh.data in
    let mind = match bh.mind with
      | None -> Some x
      | Some mind -> Some (ord_min x mind)
    in {
      size = bh.size + 1 ; data = data ; mind = mind
    }

  let add x bh = insert bh x

  let rec merge_data ts1 ts2 = match ts1, ts2 with
    | _, [] -> ts1
    | [], _ -> ts2
    | t1 :: tss1, t2 :: tss2 ->
      if t1.rank < t2.rank then
        t1 :: merge_data tss1 ts2
      else if t1.rank > t2.rank then
        t2 :: merge_data ts1 tss2
      else
        add_tree (link t1 t2) (merge_data tss1 tss2)

  let merge bh1 bh2 =
    let size = bh1.size + bh2.size in
    let data = merge_data bh1.data bh2.data in
    let mind = match bh1.mind, bh2.mind with
      | Some m1, Some m2 -> Some (ord_min m1 m2)
      | m, None | None, m -> m
    in
    { size = size ; data = data ; mind = mind }

  let find_min bh = match bh.mind with
    | None -> invalid_arg "find_min"
    | Some d -> d

  let rec find_min_tree ts ~kfail ~ksuccess =
    match ts with
      | [] ->
          kfail ()
      | [t] ->
          ksuccess t
      | t :: ts ->
          find_min_tree ts ~kfail ~ksuccess:(fun u ->
            if Ord.compare t.root u.root <= 0 then
              ksuccess t
            else
              ksuccess u)

  let rec del_min_tree bts ~kfail ~ksuccess =
    match bts with
      | [] ->
          kfail ()
      | [t] ->
          ksuccess t []
      | t :: ts ->
          del_min_tree ts ~kfail ~ksuccess:(fun u uts ->
            if Ord.compare t.root u.root <= 0 then
              ksuccess t ts
            else
              ksuccess u (t :: uts))

  let del_min bh =
    let kfail () = invalid_arg "del_min" in
    del_min_tree bh.data ~kfail ~ksuccess:(fun bt data ->
      let size = bh.size - 1 in
      let data = merge_data (List.rev bt.kids) data in
      let mind =
        if size = 0 then
          None
        else
          Some (find_min_tree data ~kfail ~ksuccess:(fun t -> t)).root
      in
      { size; data; mind })

  let to_list bh =
    let rec aux acc bh =
      if size bh = 0 then acc else
        let m = find_min bh in
        let bh = del_min bh in
        aux (m :: acc) bh
    in
    List.rev (aux [] bh)

  let elems = to_list

  let of_list l = List.fold_left insert empty l

  let rec enum bh =
    let cur = ref bh in
    let next () =
      let bh = !cur in
      if size bh = 0 then raise BatEnum.No_more_elements ;
      cur := (del_min bh) ; find_min bh
    in
    let count () = size !cur in
    let clone () = enum !cur in
    BatEnum.make ~next ~count ~clone

  let of_enum e = BatEnum.fold insert empty e

  let print ?(first="[") ?(last="]") ?(sep="; ") elepr out bh =
    let rec spin bh =
      if size bh = 0 then ()
      else if size bh = 1 then elepr out (find_min bh)
      else begin
        elepr out (find_min bh) ;
        BatInnerIO.nwrite out sep ;
        spin (del_min bh)
      end
    in
    BatInnerIO.nwrite out first ;
    spin bh ;
    BatInnerIO.nwrite out last

end
OCaml

Innovation. Community. Security.