package tezos-protocol-alpha
Tezos/Protocol: economic-protocol definition
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-17.3.tar.gz
sha256=7062cd57addd452852598a2214ade393130efa087b99068d53713bdf912b3680
sha512=08e4091144a03ce3c107fb91a66501bd8b65ca3278917c455a2eaac6df3e108ade63f6ab8340a4bb152d60f404326e464d0ec95d26cafe8e82f870465d24a5fc
doc/src/tezos-protocol-alpha.raw/michelson_v1_gas.ml.html
Source file michelson_v1_gas.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
(*****************************************************************************) (* *) (* Open Source License *) (* Copyright (c) 2018 Dynamic Ledger Solutions, Inc. <contact@tezos.com> *) (* Copyright (c) 2019-2022 Nomadic Labs <contact@nomadic-labs.com> *) (* Copyright (c) 2020 Metastate AG <hello@metastate.dev> *) (* Copyright (c) 2022 DaiLambda, Inc. <contact@dailambda,jp> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) open Alpha_context open Gas module S = Saturation_repr module Size = Gas_input_size module Cost_of = struct let z_bytes (z : Z.t) = let bits = Z.numbits z in (7 + bits) / 8 let int_size_in_bytes (z : 'a Script_int.num) = z_bytes (Script_int.to_zint z) let manager_operation_int = 100 let manager_operation = step_cost @@ S.safe_int manager_operation_int module Interpreter = struct open Michelson_v1_gas_costs let drop = atomic_step_cost cost_N_IDrop let dup = atomic_step_cost cost_N_IDup let swap = atomic_step_cost cost_N_ISwap let cons_some = atomic_step_cost cost_N_ICons_some let cons_none = atomic_step_cost cost_N_ICons_none let if_none = atomic_step_cost cost_N_IIf_none let opt_map = atomic_step_cost cost_N_IOpt_map let cons_pair = atomic_step_cost cost_N_ICons_pair let unpair = atomic_step_cost cost_N_IUnpair let car = atomic_step_cost cost_N_ICar let cdr = atomic_step_cost cost_N_ICdr let cons_left = atomic_step_cost cost_N_ILeft let cons_right = atomic_step_cost cost_N_IRight let if_left = atomic_step_cost cost_N_IIf_left let cons_list = atomic_step_cost cost_N_ICons_list let nil = atomic_step_cost cost_N_INil let if_cons = atomic_step_cost cost_N_IIf_cons let list_map : 'a Script_list.t -> Gas.cost = fun _ -> atomic_step_cost cost_N_IList_map let list_size = atomic_step_cost cost_N_IList_size let list_iter : 'a Script_list.t -> Gas.cost = fun _ -> atomic_step_cost cost_N_IList_iter let empty_set = atomic_step_cost cost_N_IEmpty_set let set_iter (type a) (set : a Script_typed_ir.set) = let (module Box) = Script_set.get set in atomic_step_cost (cost_N_ISet_iter Box.size) let set_size = atomic_step_cost cost_N_ISet_size let empty_map = atomic_step_cost cost_N_IEmpty_map let map_map (type k v) (map : (k, v) Script_typed_ir.map) = let (module Box) = Script_map.get_module map in atomic_step_cost (cost_N_IMap_map Box.size) let map_iter (type k v) (map : (k, v) Script_typed_ir.map) = let (module Box) = Script_map.get_module map in atomic_step_cost (cost_N_IMap_iter Box.size) let map_size = atomic_step_cost cost_N_IMap_size let big_map_elt_size = Script_expr_hash.size let big_map_mem ({size; _} : _ Script_typed_ir.big_map_overlay) = atomic_step_cost (cost_N_IMap_mem big_map_elt_size size) let big_map_get ({size; _} : _ Script_typed_ir.big_map_overlay) = atomic_step_cost (cost_N_IMap_get big_map_elt_size size) let big_map_update ({size; _} : _ Script_typed_ir.big_map_overlay) = atomic_step_cost (cost_N_IMap_update big_map_elt_size size) let big_map_get_and_update ({size; _} : _ Script_typed_ir.big_map_overlay) = atomic_step_cost (cost_N_IMap_get_and_update big_map_elt_size size) let add_seconds_timestamp : 'a Script_int.num -> Script_timestamp.t -> Gas.cost = fun seconds timestamp -> let seconds_bytes = int_size_in_bytes seconds in let timestamp_bytes = z_bytes (Script_timestamp.to_zint timestamp) in atomic_step_cost (cost_N_IAdd_seconds_to_timestamp seconds_bytes timestamp_bytes) let add_timestamp_seconds : Script_timestamp.t -> 'a Script_int.num -> Gas.cost = fun timestamp seconds -> let seconds_bytes = int_size_in_bytes seconds in let timestamp_bytes = z_bytes (Script_timestamp.to_zint timestamp) in atomic_step_cost (cost_N_IAdd_timestamp_to_seconds timestamp_bytes seconds_bytes) let sub_timestamp_seconds : Script_timestamp.t -> 'a Script_int.num -> Gas.cost = fun timestamp seconds -> let seconds_bytes = int_size_in_bytes seconds in let timestamp_bytes = z_bytes (Script_timestamp.to_zint timestamp) in atomic_step_cost (cost_N_ISub_timestamp_seconds timestamp_bytes seconds_bytes) let diff_timestamps t1 t2 = let t1_bytes = z_bytes (Script_timestamp.to_zint t1) in let t2_bytes = z_bytes (Script_timestamp.to_zint t2) in atomic_step_cost (cost_N_IDiff_timestamps t1_bytes t2_bytes) let concat_string_pair s1 s2 = atomic_step_cost (cost_N_IConcat_string_pair (Script_string.length s1) (Script_string.length s2)) let slice_string s = atomic_step_cost (cost_N_ISlice_string (Script_string.length s)) let string_size = atomic_step_cost cost_N_IString_size let concat_bytes_pair b1 b2 = atomic_step_cost (cost_N_IConcat_bytes_pair (Bytes.length b1) (Bytes.length b2)) let slice_bytes b = atomic_step_cost (cost_N_ISlice_bytes (Bytes.length b)) let bytes_size = atomic_step_cost cost_N_IBytes_size let lsl_bytes input nbits = match Script_int.to_int nbits with | None -> Saturation_repr.saturated | Some nbits -> atomic_step_cost (cost_N_ILsl_bytes (Bytes.length input) nbits) let lsr_bytes input nbits = let input_nbytes = Bytes.length input in let nbits = Option.value (Script_int.to_int nbits) ~default:(input_nbytes * 8) in atomic_step_cost (cost_N_ILsr_bytes input_nbytes nbits) let or_bytes b1 b2 = atomic_step_cost (cost_N_IOr_bytes (Bytes.length b1) (Bytes.length b2)) let and_bytes b1 b2 = atomic_step_cost (cost_N_IAnd_bytes (Bytes.length b1) (Bytes.length b2)) let xor_bytes b1 b2 = atomic_step_cost (cost_N_IXor_bytes (Bytes.length b1) (Bytes.length b2)) let not_bytes b = atomic_step_cost (cost_N_INot_bytes (Bytes.length b)) let bytes_nat n = atomic_step_cost (cost_N_IBytes_nat (int_size_in_bytes n)) let nat_bytes b = atomic_step_cost (cost_N_INat_bytes (Bytes.length b)) let bytes_int n = atomic_step_cost (cost_N_IBytes_int (int_size_in_bytes n)) let int_bytes b = atomic_step_cost (cost_N_IInt_bytes (Bytes.length b)) let add_tez = atomic_step_cost cost_N_IAdd_tez let sub_tez = atomic_step_cost cost_N_ISub_tez let sub_tez_legacy = atomic_step_cost cost_N_ISub_tez_legacy let mul_teznat = atomic_step_cost cost_N_IMul_teznat let mul_nattez = atomic_step_cost cost_N_IMul_nattez let bool_or = atomic_step_cost cost_N_IOr let bool_and = atomic_step_cost cost_N_IAnd let bool_xor = atomic_step_cost cost_N_IXor let bool_not = atomic_step_cost cost_N_INot let is_nat = atomic_step_cost cost_N_IIs_nat let abs_int i = atomic_step_cost (cost_N_IAbs_int (int_size_in_bytes i)) let int_nat = atomic_step_cost cost_N_IInt_nat let neg i = atomic_step_cost (cost_N_INeg (int_size_in_bytes i)) let add_int i1 i2 = atomic_step_cost (cost_N_IAdd_int (int_size_in_bytes i1) (int_size_in_bytes i2)) let add_nat i1 i2 = atomic_step_cost (cost_N_IAdd_nat (int_size_in_bytes i1) (int_size_in_bytes i2)) let sub_int i1 i2 = atomic_step_cost (cost_N_ISub_int (int_size_in_bytes i1) (int_size_in_bytes i2)) let mul_int i1 i2 = atomic_step_cost (cost_N_IMul_int (int_size_in_bytes i1) (int_size_in_bytes i2)) let mul_nat i1 i2 = atomic_step_cost (cost_N_IMul_nat (int_size_in_bytes i1) (int_size_in_bytes i2)) let ediv_teznat _tez _n = atomic_step_cost cost_N_IEdiv_teznat let ediv_tez = atomic_step_cost cost_N_IEdiv_tez let ediv_int i1 i2 = atomic_step_cost (cost_N_IEdiv_int (int_size_in_bytes i1) (int_size_in_bytes i2)) let ediv_nat i1 i2 = atomic_step_cost (cost_N_IEdiv_nat (int_size_in_bytes i1) (int_size_in_bytes i2)) let eq = atomic_step_cost cost_N_IEq let lsl_nat shifted = atomic_step_cost (cost_N_ILsl_nat (int_size_in_bytes shifted)) let lsr_nat shifted = atomic_step_cost (cost_N_ILsr_nat (int_size_in_bytes shifted)) let or_nat n1 n2 = atomic_step_cost (cost_N_IOr_nat (int_size_in_bytes n1) (int_size_in_bytes n2)) let and_nat n1 n2 = atomic_step_cost (cost_N_IAnd_nat (int_size_in_bytes n1) (int_size_in_bytes n2)) let and_int_nat n1 n2 = atomic_step_cost (cost_N_IAnd_int_nat (int_size_in_bytes n1) (int_size_in_bytes n2)) let xor_nat n1 n2 = atomic_step_cost (cost_N_IXor_nat (int_size_in_bytes n1) (int_size_in_bytes n2)) let not_int i = atomic_step_cost (cost_N_INot_int (int_size_in_bytes i)) let if_ = atomic_step_cost cost_N_IIf let loop = atomic_step_cost cost_N_ILoop let loop_left = atomic_step_cost cost_N_ILoop_left let dip = atomic_step_cost cost_N_IDip let view = atomic_step_cost cost_N_IView type algo = Ed25519 | Secp256k1 | P256 | Bls let algo_of_public_key (pkey : Signature.public_key) = match pkey with | Ed25519 _ -> Ed25519 | Secp256k1 _ -> Secp256k1 | P256 _ -> P256 | Bls _ -> Bls let algo_of_public_key_hash (pkh : Signature.public_key_hash) = match pkh with | Ed25519 _ -> Ed25519 | Secp256k1 _ -> Secp256k1 | P256 _ -> P256 | Bls _ -> Bls let check_signature_on_algo algo length = match algo with | Ed25519 -> cost_N_ICheck_signature_ed25519 length | Secp256k1 -> cost_N_ICheck_signature_secp256k1 length | P256 -> cost_N_ICheck_signature_p256 length | Bls -> cost_N_ICheck_signature_bls length let check_signature pkey b = check_signature_on_algo (algo_of_public_key pkey) (Bytes.length b) let blake2b b = atomic_step_cost (cost_N_IBlake2b (Bytes.length b)) let sha256 b = atomic_step_cost (cost_N_ISha256 (Bytes.length b)) let sha512 b = atomic_step_cost (cost_N_ISha512 (Bytes.length b)) let dign n = atomic_step_cost (cost_N_IDig n) let dugn n = atomic_step_cost (cost_N_IDug n) let dipn n = atomic_step_cost (cost_N_IDipN n) let dropn n = atomic_step_cost (cost_N_IDropN n) let voting_power = atomic_step_cost cost_N_IVoting_power let total_voting_power = atomic_step_cost cost_N_ITotal_voting_power let keccak b = atomic_step_cost (cost_N_IKeccak (Bytes.length b)) let sha3 b = atomic_step_cost (cost_N_ISha3 (Bytes.length b)) let add_bls12_381_g1 = atomic_step_cost cost_N_IAdd_bls12_381_g1 let add_bls12_381_g2 = atomic_step_cost cost_N_IAdd_bls12_381_g2 let add_bls12_381_fr = atomic_step_cost cost_N_IAdd_bls12_381_fr let mul_bls12_381_g1 = atomic_step_cost cost_N_IMul_bls12_381_g1 let mul_bls12_381_g2 = atomic_step_cost cost_N_IMul_bls12_381_g2 let mul_bls12_381_fr = atomic_step_cost cost_N_IMul_bls12_381_fr let mul_bls12_381_fr_z z = atomic_step_cost (cost_N_IMul_bls12_381_fr_z (int_size_in_bytes z)) let mul_bls12_381_z_fr z = atomic_step_cost (cost_N_IMul_bls12_381_z_fr (int_size_in_bytes z)) let int_bls12_381_fr = atomic_step_cost cost_N_IInt_bls12_381_z_fr let neg_bls12_381_g1 = atomic_step_cost cost_N_INeg_bls12_381_g1 let neg_bls12_381_g2 = atomic_step_cost cost_N_INeg_bls12_381_g2 let neg_bls12_381_fr = atomic_step_cost cost_N_INeg_bls12_381_fr let neq = atomic_step_cost cost_N_INeq let pairing_check_bls12_381 (l : 'a Script_list.t) = atomic_step_cost (cost_N_IPairing_check_bls12_381 l.length) let comb n = atomic_step_cost (cost_N_IComb n) let uncomb n = atomic_step_cost (cost_N_IUncomb n) let comb_get n = atomic_step_cost (cost_N_IComb_get n) let comb_set n = atomic_step_cost (cost_N_IComb_set n) let dupn n = atomic_step_cost (cost_N_IDupN n) let sapling_verify_update ~inputs ~outputs ~bound_data = atomic_step_cost (cost_N_ISapling_verify_update inputs outputs bound_data) let sapling_verify_update_deprecated ~inputs ~outputs = atomic_step_cost (cost_N_ISapling_verify_update inputs outputs 0) let sapling_empty_state = atomic_step_cost cost_N_ISapling_empty_state let halt = atomic_step_cost cost_N_IHalt let push = atomic_step_cost cost_N_IPush let unit = atomic_step_cost cost_N_IUnit let empty_big_map = atomic_step_cost cost_N_IEmpty_big_map let lt = atomic_step_cost cost_N_ILt let le = atomic_step_cost cost_N_ILe let gt = atomic_step_cost cost_N_IGt let ge = atomic_step_cost cost_N_IGe let exec = atomic_step_cost cost_N_IExec let apply ~(rec_flag : bool) = atomic_step_cost (cost_N_IApply rec_flag) let lambda = atomic_step_cost cost_N_ILambda let address = atomic_step_cost cost_N_IAddress let contract = atomic_step_cost cost_N_IContract let transfer_tokens = atomic_step_cost cost_N_ITransfer_tokens let implicit_account = atomic_step_cost cost_N_IImplicit_account let create_contract = atomic_step_cost cost_N_ICreate_contract let set_delegate = atomic_step_cost cost_N_ISet_delegate let level = atomic_step_cost cost_N_ILevel let now = atomic_step_cost cost_N_INow let min_block_time = atomic_step_cost cost_N_IMin_block_time let source = atomic_step_cost cost_N_ISource let sender = atomic_step_cost cost_N_ISender let self = atomic_step_cost cost_N_ISelf let self_address = atomic_step_cost cost_N_ISelf_address let amount = atomic_step_cost cost_N_IAmount let balance = atomic_step_cost cost_N_IBalance let chain_id = atomic_step_cost cost_N_IChainId let ticket = atomic_step_cost cost_N_ITicket let read_ticket = atomic_step_cost cost_N_IRead_ticket let hash_key _ = atomic_step_cost cost_N_IHash_key let split_ticket amount_a amount_b = atomic_step_cost (cost_N_ISplit_ticket (int_size_in_bytes amount_a) (int_size_in_bytes amount_b)) let open_chest ~chest ~time = let plaintext = Script_typed_ir.Script_timelock.get_plaintext_size chest in let log_time = Z.log2 Z.(add one time) in atomic_step_cost (cost_N_IOpen_chest log_time plaintext) (* --------------------------------------------------------------------- *) (* Semi-hand-crafted models *) let compare_unit = atomic_step_cost (S.safe_int 10) let compare_pair_tag = atomic_step_cost (S.safe_int 10) let compare_or_tag = atomic_step_cost (S.safe_int 10) let compare_option_tag = atomic_step_cost (S.safe_int 10) let compare_bool = atomic_step_cost (cost_N_ICompare 1 1) let compare_signature = atomic_step_cost (S.safe_int 92) let compare_string s1 s2 = atomic_step_cost (cost_N_ICompare (Script_string.length s1) (Script_string.length s2)) let compare_bytes b1 b2 = atomic_step_cost (cost_N_ICompare (Bytes.length b1) (Bytes.length b2)) let compare_mutez = atomic_step_cost (cost_N_ICompare 8 8) let compare_int i1 i2 = atomic_step_cost (cost_N_ICompare (int_size_in_bytes i1) (int_size_in_bytes i2)) let compare_nat n1 n2 = atomic_step_cost (cost_N_ICompare (int_size_in_bytes n1) (int_size_in_bytes n2)) let compare_key_hash = let sz = Signature.Public_key_hash.size in atomic_step_cost (cost_N_ICompare sz sz) let compare_key = atomic_step_cost (S.safe_int 92) let compare_timestamp t1 t2 = atomic_step_cost (cost_N_ICompare (z_bytes (Script_timestamp.to_zint t1)) (z_bytes (Script_timestamp.to_zint t2))) (* Maximum size of an entrypoint in bytes *) let entrypoint_size = 31 let compare_address = let sz = Signature.Public_key_hash.size + entrypoint_size in atomic_step_cost (cost_N_ICompare sz sz) let compare_chain_id = atomic_step_cost (S.safe_int 30) (* Defunctionalized CPS *) type cont = | Compare : 'a Script_typed_ir.comparable_ty * 'a * 'a * cont -> cont | Return : cont let compare : type a. a Script_typed_ir.comparable_ty -> a -> a -> cost = fun ty x y -> let rec compare : type a. a Script_typed_ir.comparable_ty -> a -> a -> cost -> cont -> cost = fun ty x y acc k -> match ty with | Unit_t -> (apply [@tailcall]) Gas.(acc +@ compare_unit) k | Never_t -> ( match x with _ -> .) | Bool_t -> (apply [@tailcall]) Gas.(acc +@ compare_bool) k | String_t -> (apply [@tailcall]) Gas.(acc +@ compare_string x y) k | Signature_t -> (apply [@tailcall]) Gas.(acc +@ compare_signature) k | Bytes_t -> (apply [@tailcall]) Gas.(acc +@ compare_bytes x y) k | Mutez_t -> (apply [@tailcall]) Gas.(acc +@ compare_mutez) k | Int_t -> (apply [@tailcall]) Gas.(acc +@ compare_int x y) k | Nat_t -> (apply [@tailcall]) Gas.(acc +@ compare_nat x y) k | Key_hash_t -> (apply [@tailcall]) Gas.(acc +@ compare_key_hash) k | Key_t -> (apply [@tailcall]) Gas.(acc +@ compare_key) k | Timestamp_t -> (apply [@tailcall]) Gas.(acc +@ compare_timestamp x y) k | Address_t -> (apply [@tailcall]) Gas.(acc +@ compare_address) k | Chain_id_t -> (apply [@tailcall]) Gas.(acc +@ compare_chain_id) k | Pair_t (tl, tr, _, YesYes) -> (* Reasonable over-approximation of the cost of lexicographic comparison. *) let xl, xr = x in let yl, yr = y in (compare [@tailcall]) tl xl yl Gas.(acc +@ compare_pair_tag) (Compare (tr, xr, yr, k)) | Or_t (tl, tr, _, YesYes) -> ( match (x, y) with | L x, L y -> (compare [@tailcall]) tl x y Gas.(acc +@ compare_or_tag) k | L _, R _ -> (apply [@tailcall]) Gas.(acc +@ compare_or_tag) k | R _, L _ -> (apply [@tailcall]) Gas.(acc +@ compare_or_tag) k | R x, R y -> (compare [@tailcall]) tr x y Gas.(acc +@ compare_or_tag) k) | Option_t (t, _, Yes) -> ( match (x, y) with | None, None -> (apply [@tailcall]) Gas.(acc +@ compare_option_tag) k | None, Some _ -> (apply [@tailcall]) Gas.(acc +@ compare_option_tag) k | Some _, None -> (apply [@tailcall]) Gas.(acc +@ compare_option_tag) k | Some x, Some y -> (compare [@tailcall]) t x y Gas.(acc +@ compare_option_tag) k) and apply cost k = match k with | Compare (ty, x, y, k) -> (compare [@tailcall]) ty x y cost k | Return -> cost in compare ty x y Gas.free Return let set_mem (type a) (elt : a) (set : a Script_typed_ir.set) = let open S.Syntax in let (module Box) = Script_set.get set in let per_elt_cost = Box.OPS.elt_size elt |> Size.to_int |> S.safe_int in let size = S.safe_int Box.size in let intercept = atomic_step_cost (S.safe_int 115) in Gas.(intercept +@ (log2 size *@ per_elt_cost)) let set_update (type a) (elt : a) (set : a Script_typed_ir.set) = let open S.Syntax in let (module Box) = Script_set.get set in let per_elt_cost = Box.OPS.elt_size elt |> Size.to_int |> S.safe_int in let size = S.safe_int Box.size in let intercept = atomic_step_cost (S.safe_int 130) in (* The 2 factor reflects the update vs mem overhead as benchmarked on non-structured data *) Gas.(intercept +@ (S.safe_int 2 * log2 size *@ per_elt_cost)) let map_mem (type k v) (elt : k) (map : (k, v) Script_typed_ir.map) = let open S.Syntax in let (module Box) = Script_map.get_module map in let per_elt_cost = Box.OPS.key_size elt |> Size.to_int |> S.safe_int in let size = S.safe_int Box.size in let intercept = atomic_step_cost (S.safe_int 80) in Gas.(intercept +@ (log2 size *@ per_elt_cost)) let map_get = map_mem let map_update (type k v) (elt : k) (map : (k, v) Script_typed_ir.map) = let open S.Syntax in let (module Box) = Script_map.get_module map in let per_elt_cost = Box.OPS.key_size elt |> Size.to_int |> S.safe_int in let size = S.safe_int Box.size in let intercept = atomic_step_cost (S.safe_int 80) in (* The 2 factor reflects the update vs mem overhead as benchmarked on non-structured data *) Gas.(intercept +@ (S.safe_int 2 * log2 size *@ per_elt_cost)) let map_get_and_update (type k v) (elt : k) (map : (k, v) Script_typed_ir.map) = let open S.Syntax in let (module Box) = Script_map.get_module map in let per_elt_cost = Box.OPS.key_size elt |> Size.to_int |> S.safe_int in let size = S.safe_int Box.size in let intercept = atomic_step_cost (S.safe_int 80) in (* The 3 factor reflects the update vs mem overhead as benchmarked on non-structured data *) Gas.(intercept +@ (S.safe_int 3 * log2 size *@ per_elt_cost)) let view_get (elt : Script_string.t) (m : Script_typed_ir.view_map) = map_get elt m let view_update (elt : Script_string.t) (m : Script_typed_ir.view_map) = map_update elt m let join_tickets : 'a Script_typed_ir.comparable_ty -> 'a Script_typed_ir.ticket -> 'a Script_typed_ir.ticket -> Gas.cost = fun ty ticket_a ticket_b -> let contents_comparison = compare ty ticket_a.contents ticket_b.contents in Gas.( contents_comparison +@ compare_address +@ add_nat (ticket_a.amount :> Script_int.n Script_int.num) (ticket_b.amount :> Script_int.n Script_int.num)) let emit = atomic_step_cost cost_N_IEmit (* Continuations *) module Control = struct let nil = atomic_step_cost cost_N_KNil let cons = atomic_step_cost cost_N_KCons let return = atomic_step_cost cost_N_KReturn let view_exit = atomic_step_cost cost_N_KView_exit let map_head = atomic_step_cost cost_N_KMap_head let undip = atomic_step_cost cost_N_KUndip let loop_in = atomic_step_cost cost_N_KLoop_in let loop_in_left = atomic_step_cost cost_N_KLoop_in_left let iter = atomic_step_cost cost_N_KIter let list_enter_body xs ys_len = atomic_step_cost (cost_N_KList_enter_body xs ys_len) let list_exit_body = atomic_step_cost cost_N_KList_exit_body let map_enter_body = atomic_step_cost cost_N_KMap_enter_body let map_exit_body (type k v) (key : k) (map : (k, v) Script_typed_ir.map) = map_update key map end (* --------------------------------------------------------------------- *) (* Hand-crafted models *) (* The cost functions below where not benchmarked, a cost model was derived from looking at similar instructions. *) (* Cost for Concat_string is paid in two steps: when entering the interpreter, the user pays for the cost of computing the information necessary to compute the actual gas (so it's meta-gas): indeed, one needs to run through the list of strings to compute the total allocated cost. [concat_string_precheck] corresponds to the meta-gas cost of this computation. *) let concat_string_precheck (l : 'a Script_list.t) = (* we set the precheck to be slightly more expensive than cost_N_IList_iter *) atomic_step_cost (S.mul (S.safe_int l.length) (S.safe_int 10)) (* This is the cost of allocating a string and blitting existing ones into it. *) let concat_string total_bytes = atomic_step_cost S.(add (S.safe_int 100) (S.shift_right total_bytes 1)) (* Same story as Concat_string. *) let concat_bytes total_bytes = atomic_step_cost S.(add (S.safe_int 100) (S.shift_right total_bytes 1)) (* Cost of Unpack pays two integer comparisons, and a Bytes slice *) let unpack bytes = let blen = Bytes.length bytes in let open S.Syntax in atomic_step_cost (S.safe_int 260 + (S.safe_int blen lsr 1)) (* TODO benchmark *) (* FIXME: imported from 006, needs proper benchmarks *) let unpack_failed bytes = (* We cannot instrument failed deserialization, so we take worst case fees: a set of size 1 bytes values. *) let blen = String.length bytes in let len = S.safe_int blen in let d = Z.numbits (Z.of_int blen) in (len *@ alloc_mbytes_cost 1) +@ len *@ (S.safe_int d *@ (alloc_cost (S.safe_int 3) +@ step_cost S.one)) end module Typechecking = struct open Michelson_v1_gas_costs let public_key_optimized = atomic_step_cost @@ S.( max cost_DECODING_PUBLIC_KEY_ed25519 (max cost_DECODING_PUBLIC_KEY_secp256k1 (max cost_DECODING_PUBLIC_KEY_p256 cost_DECODING_PUBLIC_KEY_bls))) let public_key_readable = atomic_step_cost @@ S.( max cost_B58CHECK_DECODING_PUBLIC_KEY_ed25519 (max cost_B58CHECK_DECODING_PUBLIC_KEY_secp256k1 (max cost_B58CHECK_DECODING_PUBLIC_KEY_p256 cost_B58CHECK_DECODING_PUBLIC_KEY_bls))) let key_hash_optimized = atomic_step_cost @@ S.( max cost_DECODING_PUBLIC_KEY_HASH_ed25519 (max cost_DECODING_PUBLIC_KEY_HASH_secp256k1 (max cost_DECODING_PUBLIC_KEY_HASH_p256 cost_DECODING_PUBLIC_KEY_HASH_bls))) let key_hash_readable = atomic_step_cost @@ S.( max cost_B58CHECK_DECODING_PUBLIC_KEY_HASH_ed25519 (max cost_B58CHECK_DECODING_PUBLIC_KEY_HASH_secp256k1 (max cost_B58CHECK_DECODING_PUBLIC_KEY_HASH_p256 cost_B58CHECK_DECODING_PUBLIC_KEY_HASH_bls))) let signature_optimized = atomic_step_cost @@ S.( max cost_DECODING_SIGNATURE_ed25519 (max cost_DECODING_SIGNATURE_secp256k1 (max cost_DECODING_SIGNATURE_p256 cost_DECODING_SIGNATURE_bls))) let signature_readable = atomic_step_cost @@ S.( max cost_B58CHECK_DECODING_SIGNATURE_ed25519 (max cost_B58CHECK_DECODING_SIGNATURE_secp256k1 (max cost_B58CHECK_DECODING_SIGNATURE_p256 cost_B58CHECK_DECODING_SIGNATURE_bls))) let chain_id_optimized = atomic_step_cost cost_DECODING_CHAIN_ID let chain_id_readable = atomic_step_cost cost_B58CHECK_DECODING_CHAIN_ID (* Reasonable approximation *) let address_optimized = key_hash_optimized (* Reasonable approximation *) let contract_optimized = key_hash_optimized (* Reasonable approximation *) let contract_readable = key_hash_readable let bls12_381_g1 = atomic_step_cost cost_DECODING_BLS_G1 let bls12_381_g2 = atomic_step_cost cost_DECODING_BLS_G2 let bls12_381_fr = atomic_step_cost cost_DECODING_BLS_FR let check_printable s = atomic_step_cost (cost_CHECK_PRINTABLE (String.length s)) let merge_cycle = atomic_step_cost cost_TY_EQ let parse_type_cycle = atomic_step_cost cost_PARSE_TYPE let parse_instr_cycle = atomic_step_cost cost_TYPECHECKING_CODE let parse_data_cycle = atomic_step_cost cost_TYPECHECKING_DATA (* Cost of a cycle of checking that a type is dupable *) (* TODO: bench *) let check_dupable_cycle = atomic_step_cost cost_TYPECHECKING_DATA let find_entrypoint_cycle = atomic_step_cost cost_FIND_ENTRYPOINT let bool = free let unit = free let timestamp_readable s = atomic_step_cost (cost_TIMESTAMP_READABLE_DECODING (String.length s)) (* Balance stored at /contracts/index/hash/balance, on 64 bits *) let contract_exists = Gas.cost_of_repr @@ Storage_costs.read_access ~path_length:4 ~read_bytes:8 (* Constructing proof arguments consists in a decreasing loop in the result monad, allocating at each step. We charge a reasonable overapproximation. *) let proof_argument n = atomic_step_cost (S.mul (S.safe_int n) (S.safe_int 50)) let chest_key = atomic_step_cost cost_DECODING_Chest_key let chest ~bytes = atomic_step_cost (cost_DECODING_Chest bytes) end module Unparsing = struct open Michelson_v1_gas_costs let public_key_optimized = atomic_step_cost @@ S.( max cost_ENCODING_PUBLIC_KEY_ed25519 (max cost_ENCODING_PUBLIC_KEY_secp256k1 (max cost_ENCODING_PUBLIC_KEY_p256 cost_ENCODING_PUBLIC_KEY_bls))) let public_key_readable = atomic_step_cost @@ S.( max cost_B58CHECK_ENCODING_PUBLIC_KEY_ed25519 (max cost_B58CHECK_ENCODING_PUBLIC_KEY_secp256k1 (max cost_B58CHECK_ENCODING_PUBLIC_KEY_p256 cost_B58CHECK_ENCODING_PUBLIC_KEY_bls))) let key_hash_optimized = atomic_step_cost @@ S.( max cost_ENCODING_PUBLIC_KEY_HASH_ed25519 (max cost_ENCODING_PUBLIC_KEY_HASH_secp256k1 (max cost_ENCODING_PUBLIC_KEY_HASH_p256 cost_ENCODING_PUBLIC_KEY_HASH_bls))) let key_hash_readable = atomic_step_cost @@ S.( max cost_B58CHECK_ENCODING_PUBLIC_KEY_HASH_ed25519 (max cost_B58CHECK_ENCODING_PUBLIC_KEY_HASH_secp256k1 (max cost_B58CHECK_ENCODING_PUBLIC_KEY_HASH_p256 cost_B58CHECK_ENCODING_PUBLIC_KEY_HASH_bls))) let signature_optimized = atomic_step_cost @@ S.( max cost_ENCODING_SIGNATURE_ed25519 (max cost_ENCODING_SIGNATURE_secp256k1 (max cost_ENCODING_SIGNATURE_p256 cost_ENCODING_SIGNATURE_bls))) let signature_readable = atomic_step_cost @@ S.( max cost_B58CHECK_ENCODING_SIGNATURE_ed25519 (max cost_B58CHECK_ENCODING_SIGNATURE_secp256k1 (max cost_B58CHECK_ENCODING_SIGNATURE_p256 cost_B58CHECK_ENCODING_SIGNATURE_bls))) let chain_id_optimized = atomic_step_cost cost_ENCODING_CHAIN_ID let chain_id_readable = atomic_step_cost cost_B58CHECK_ENCODING_CHAIN_ID let timestamp_readable = atomic_step_cost cost_TIMESTAMP_READABLE_ENCODING (* Reasonable approximation *) let address_optimized = key_hash_optimized (* Reasonable approximation *) let contract_optimized = key_hash_optimized (* Reasonable approximation *) let contract_readable = key_hash_readable let bls12_381_g1 = atomic_step_cost cost_ENCODING_BLS_G1 let bls12_381_g2 = atomic_step_cost cost_ENCODING_BLS_G2 let bls12_381_fr = atomic_step_cost cost_ENCODING_BLS_FR let unparse_type ty = atomic_step_cost @@ cost_UNPARSE_TYPE Script_typed_ir.(ty_size ty |> Type_size.to_int) let unparse_instr_cycle = atomic_step_cost cost_UNPARSING_CODE let unparse_data_cycle = atomic_step_cost cost_UNPARSING_DATA let unit = Gas.free (* Reuse 006 costs. *) let operation bytes = Script.bytes_node_cost bytes let sapling_transaction (t : Sapling.transaction) = let inputs = Size.sapling_transaction_inputs t in let outputs = Size.sapling_transaction_outputs t in let bound_data = Size.sapling_transaction_bound_data t in atomic_step_cost (cost_SAPLING_TRANSACTION_ENCODING ~inputs ~outputs ~bound_data) let sapling_transaction_deprecated (t : Sapling.Legacy.transaction) = let inputs = List.length t.inputs in let outputs = List.length t.outputs in atomic_step_cost (cost_SAPLING_TRANSACTION_ENCODING ~inputs ~outputs ~bound_data:0) let sapling_diff (d : Sapling.diff) = let nfs = List.length d.nullifiers in let cms = List.length d.commitments_and_ciphertexts in atomic_step_cost (cost_SAPLING_DIFF_ENCODING ~nfs ~cms) let chest_key = atomic_step_cost cost_ENCODING_Chest_key let chest ~plaintext_size = atomic_step_cost (cost_ENCODING_Chest plaintext_size) end end module Internal_for_tests = struct let int_cost_of_manager_operation = Cost_of.manager_operation_int end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>