package tezos-protocol-alpha
Tezos/Protocol: economic-protocol definition
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-17.3.tar.gz
sha256=7062cd57addd452852598a2214ade393130efa087b99068d53713bdf912b3680
sha512=08e4091144a03ce3c107fb91a66501bd8b65ca3278917c455a2eaac6df3e108ade63f6ab8340a4bb152d60f404326e464d0ec95d26cafe8e82f870465d24a5fc
doc/src/tezos-protocol-alpha.raw/michelson_v1_gas_costs.ml.html
Source file michelson_v1_gas_costs.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
(*****************************************************************************) (* *) (* Open Source License *) (* Copyright (c) 2018 Dynamic Ledger Solutions, Inc. <contact@tezos.com> *) (* Copyright (c) 2019-2022 Nomadic Labs <contact@nomadic-labs.com> *) (* Copyright (c) 2020 Metastate AG <hello@metastate.dev> *) (* Copyright (c) 2022 DaiLambda, Inc. <contact@dailambda.jp> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) include Michelson_v1_gas_costs_generated module S = Saturation_repr (** Hand-edited/written cost functions *) (* The code is not auto-generated. See https://gitlab.com/tezos/tezos/-/issues/3834 and https://gitlab.com/tezos/tezos/-/issues/4696 *) (* model N_KList_exit_body *) let cost_N_KList_exit_body = S.safe_int 10 (* N_ISapling_verify_update This function depends on another cost function cost_N_IBlake2b. Such code can't be generated by the current Snoop. *) (* model N_ISapling_verify_update *) (* Inferred cost (without cost_N_IBlake2b) is: fun size1 -> fun size2 -> ((432200.469784 + (5738377.05148 * size1)) + (4634026.28586 * size2)) *) let cost_N_ISapling_verify_update size1 size2 bound_data = let open S.Syntax in let v1 = S.safe_int size1 in let v2 = S.safe_int size2 in cost_N_IBlake2b bound_data + S.safe_int 432_500 + (S.safe_int 5_740_000 * v1) + (S.safe_int 4_635_000 * v2) (* N_IApply The current generated model receives int as a flag, but it should receive bool. *) (* model N_IApply *) let cost_N_IApply rec_flag = if rec_flag then S.safe_int 220 else S.safe_int 140 (* N_KIter / N_KMap_enter_body The empty_branch_model are used as the models. However, the defined cost functions receive nothing. *) (* model N_KIter *) let cost_N_KIter = S.safe_int 10 (* model N_KMap_enter_body *) let cost_N_KMap_enter_body = S.safe_int 80 (* N_KList_enter_body The generated model receives the length of `xs` as the first argument and branches on whether it is 0 or not. However, calculating the length makes the performance worse. The model should be changed to receive `xs_is_nil` as the first argument. *) (* model N_KList_enter_body *) (* Approximating 1.797068 x term *) let cost_N_KList_enter_body xs size_ys = match xs with | [] -> let open S.Syntax in let v0 = S.safe_int size_ys in S.safe_int 30 + (v0 + (v0 lsr 1) + (v0 lsr 2) + (v0 lsr 4)) | _ :: _ -> S.safe_int 30 (* model TY_EQ This is the estimated cost of one iteration of ty_eq, extracted and copied manually from the parameter fit for the TY_EQ benchmark (the model is parametric on the size of the type, which we don't have access to in O(1)). *) let cost_TY_EQ = S.safe_int 60 (* model PARSE_TYPE This is the cost of one iteration of parse_ty, extracted by hand from the parameter fit for the PARSE_TYPE benchmark. *) let cost_PARSE_TYPE = S.safe_int 60 (* model UNPARSE_TYPE This is the cost of one iteration of unparse_ty, extracted by hand from the parameter fit for the UNPARSE_TYPE benchmark. *) let cost_UNPARSE_TYPE type_size = S.mul (S.safe_int 20) type_size (* model TYPECHECKING_CODE This is the cost of one iteration of parse_instr, extracted by hand from the parameter fit for the TYPECHECKING_CODE benchmark. *) let cost_TYPECHECKING_CODE = S.safe_int 220 (* model UNPARSING_CODE This is the cost of one iteration of unparse_instr, extracted by hand from the parameter fit for the UNPARSING_CODE benchmark. *) let cost_UNPARSING_CODE = S.safe_int 115 (* model TYPECHECKING_DATA This is the cost of one iteration of parse_data, extracted by hand from the parameter fit for the TYPECHECKING_DATA benchmark. *) let cost_TYPECHECKING_DATA = S.safe_int 100 (* model UNPARSING_DATA This is the cost of one iteration of unparse_data, extracted by hand from the parameter fit for the UNPARSING_DATA benchmark. *) let cost_UNPARSING_DATA = S.safe_int 65 (* TODO: https://gitlab.com/tezos/tezos/-/issues/2264 Benchmark. Currently approximated by 2 comparisons of the longest entrypoint. *) let cost_FIND_ENTRYPOINT = cost_N_ICompare 31 31 (* ------------------------------------------------------------------------ *) (* These functions lack the corresponding models. *) (* model SAPLING_TRANSACTION_ENCODING *) let cost_SAPLING_TRANSACTION_ENCODING ~inputs ~outputs ~bound_data = S.safe_int (1500 + (inputs * 160) + (outputs * 320) + (bound_data lsr 3)) (* model SAPLING_DIFF_ENCODING *) let cost_SAPLING_DIFF_ENCODING ~nfs ~cms = S.safe_int ((nfs * 22) + (cms * 215)) (* ------------------------------------------------------------------------ *) (* The allocation costs (0.5 gas unit per byte) are not negligible for the following models. *) (* model N_IAbs_int *) (* Allocates [size] bytes. *) let cost_N_IAbs_int size = S.safe_int (20 + (size lsr 1)) (* model N_IAnd_int_nat *) (* Allocates [min size1 size2] *) let cost_N_IAnd_int_nat size1 size2 = let open S.Syntax in let v0 = S.safe_int (Compare.Int.min size1 size2) in S.safe_int 35 + (v0 lsr 1) (* model N_IAnd_nat *) (* Allocates [min size1 size2] *) let cost_N_IAnd_nat size1 size2 = let open S.Syntax in let v0 = S.safe_int (Compare.Int.min size1 size2) in S.safe_int 35 + (v0 lsr 1) (* model N_IAnd_bytes *) (* Allocates [min size1 size2] *) (* fun size1 -> fun size2 -> (34.8914840649 + (0.398826813115 * (min size1 size2))) *) let cost_N_IAnd_bytes size1 size2 = let open S.Syntax in let v0 = S.safe_int (Compare.Int.min size1 size2) in S.safe_int 35 + (v0 lsr 1) (* model N_IConcat_bytes_pair *) (* Allocates [size1 + size2] *) let cost_N_IConcat_bytes_pair size1 size2 = let open S.Syntax in let v0 = S.safe_int size1 + S.safe_int size2 in S.safe_int 45 + (v0 lsr 1) (* model N_IConcat_string_pair *) (* Allocates [size1 + size2] *) let cost_N_IConcat_string_pair size1 size2 = let open S.Syntax in let v0 = S.safe_int size1 + S.safe_int size2 in S.safe_int 45 + (v0 lsr 1) (* model N_ILsl_nat *) (* Allocates at most [size + 256] bytes *) let cost_N_ILsl_nat size = let open S.Syntax in let v0 = S.safe_int size in S.safe_int 128 + (v0 lsr 1) (* model N_ILsr_nat *) (* Allocates at most [size] bytes*) let cost_N_ILsr_nat size = let open S.Syntax in let v0 = S.safe_int size in S.safe_int 45 + (v0 lsr 1) (* model N_IOr_bytes *) (* Allocates [max size1 size2] bytes *) (* fun size1 -> fun size2 -> (32.5381507316 + (0.232425212131 * (max size1 size2))) *) let cost_N_IOr_bytes size1 size2 = let open S.Syntax in let v0 = S.safe_int (Compare.Int.max size1 size2) in S.safe_int 35 + (v0 lsr 1) (* model N_ISlice_bytes *) (* Allocates [size] bytes *) let cost_N_ISlice_bytes size = let open S.Syntax in S.safe_int 25 + (S.safe_int size lsr 1) (* model N_ISlice_string *) (* Allocates [size] bytes *) let cost_N_ISlice_string size = let open S.Syntax in S.safe_int 25 + (S.safe_int size lsr 1) (* model N_ISplit_ticket *) (* Allocates [max size1 size2] *) let cost_N_ISplit_ticket size1 size2 = let open S.Syntax in let v1 = S.safe_int (Compare.Int.max size1 size2) in S.safe_int 40 + (v1 lsr 1) (* model N_IXor_bytes *) (* Allocates [max size1 size2] bytes *) (* fun size1 -> fun size2 -> (38.5110342369 + (0.397946895815 * (max size1 size2))) *) let cost_N_IXor_bytes size1 size2 = let open S.Syntax in let v0 = S.safe_int (Compare.Int.max size1 size2) in S.safe_int 40 + (v0 lsr 1) (* Allocates [max size1 size2] *) let cost_linear_op_int size1 size2 = let open S.Syntax in let v0 = S.safe_int (Compare.Int.max size1 size2) in S.safe_int 35 + (v0 lsr 1) (* model N_IAdd_int *) let cost_N_IAdd_int = cost_linear_op_int (* model N_IAdd_nat *) let cost_N_IAdd_nat = cost_linear_op_int (* model N_IAdd_seconds_to_timestamp *) let cost_N_IAdd_seconds_to_timestamp = cost_linear_op_int (* model N_IAdd_timestamp_to_seconds *) let cost_N_IAdd_timestamp_to_seconds = cost_linear_op_int (* model N_ISub_int *) let cost_N_ISub_int = cost_linear_op_int (* model N_ISub_timestamp_seconds *) let cost_N_ISub_timestamp_seconds = cost_linear_op_int (* model N_IXor_nat *) let cost_N_IXor_nat = cost_linear_op_int (* model N_IDiff_timestamps *) let cost_N_IDiff_timestamps = cost_linear_op_int (* model N_IOr_nat *) let cost_N_IOr_nat = cost_linear_op_int let cost_div_int size1 size2 = (* Allocates at most [size1] bytes *) let q = size1 - size2 in let open S.Syntax in let v1 = S.safe_int size1 in if Compare.Int.(q < 0) then S.safe_int 105 + (v1 lsr 1) else let v0 = S.safe_int q * S.safe_int size2 in S.safe_int 105 + (v0 lsr 10) + (v0 lsr 11) + (v0 lsr 13) + (v1 lsr 1) (* model N_IEdiv_int *) let cost_N_IEdiv_int = cost_div_int (* model N_IEdiv_nat *) let cost_N_IEdiv_nat = cost_div_int (* model N_ILsl_bytes *) (* Allocates [size + shift / 8] bytes *) (* fun size1 -> fun size2 -> ((63.0681507316 + (0.667539714647 * size1)) + (0. * size2)) *) let cost_N_ILsl_bytes size shift = let open S_syntax in let v1 = S.safe_int size in let v0 = S.safe_int shift in S.safe_int 65 + (v1 lsr 1) + (v1 lsr 2) + (v0 lsr 4) (* model N_ILsr_bytes *) (* Allocates [max 0 (size - shift / 8)] bytes *) (* fun size1 -> fun size2 -> let q = (size1 - (size2 * 0.125)) in (53.9248173983 + (0.658785032381 * (if (0 < q) then q else 0))) *) let cost_N_ILsr_bytes size shift = let q = size - (shift lsr 3) in let open S.Syntax in if Compare.Int.(q < 0) then S.safe_int 55 else let v0 = S.safe_int q in S.safe_int 55 + (v0 lsr 1) + (v0 lsr 2) (* model N_ISapling_empty_state *) (* Allocates about 600 bytes *) let cost_N_ISapling_empty_state = S.safe_int 300 (* model N_IEmpty_big_map *) (* Allocates about 600 bytes *) let cost_N_IEmpty_big_map = S.safe_int 300 (* ------------------------------------------------------------------------ *) (* The inferred costs of the following models are 0, but we do not allow them cost free. We charge 10 for them. *) (* model N_IExec *) let cost_N_IExec = S.safe_int 10 (* model N_IIf *) let cost_N_IIf = S.safe_int 10 (* model N_IIf_cons *) let cost_N_IIf_cons = S.safe_int 10 (* model N_IIf_left *) let cost_N_IIf_left = S.safe_int 10 (* model N_IIf_none *) let cost_N_IIf_none = S.safe_int 10 (* model N_ILoop *) let cost_N_ILoop = S.safe_int 10 (* model N_ILoop_left *) let cost_N_ILoop_left = S.safe_int 10 (* model N_KCons *) let cost_N_KCons = S.safe_int 10 (* model N_IDip *) let cost_N_IDip = S.safe_int 10 (* ------------------------------------------------------------------------ *) (* IDropN and IDipN use non affine models with multiple cases. The inferred cost functions are more complex than the following affine functions. *) (* model N_IDropN *) (* Approximating 2.713108 x term *) let cost_N_IDropN size = let open S.Syntax in let v0 = S.safe_int size in S.safe_int 30 + (S.safe_int 2 * v0) + (v0 lsr 1) + (v0 lsr 3) (* model N_IDipN *) (* Approximating 4.05787663635 x term *) let cost_N_IDipN size = let open S.Syntax in let v0 = S.safe_int size in S.safe_int 15 + (S.safe_int 4 * v0) (* ------------------------------------------------------------------------ *) (* N_IOpt_map has 2 salts, "some" and "none". Therefore 2 codes are generated for N_IOpt_map. *) (* model N_IOpt_mapnone__alpha *) (* 4.59406074329 *) let cost_N_IOpt_map = S.safe_int 10 (* ------------------------------------------------------------------------ *) (* Following functions are partially carbonated: they charge some gas by themselves. Their inferred gas parameters cannot be directly used since they should contain the partial carbonation. *) (* model N_IContract *) (* Inferred value: 703.26072741 *) (* Most computation happens in [parse_contract_for_script], which is carbonated. *) let cost_N_IContract = S.safe_int 30 (* model N_ICreate_contract *) (* Inferred value: 814.154060743 *) (* Most computation happens in [create_contract], which is carbonated. *) let cost_N_ICreate_contract = S.safe_int 60 (* model N_ITransfer_tokens *) (* Inferred value: 230.707394077 *) (* Most computation happens in [transfer], which is carbonated. *) let cost_N_ITransfer_tokens = S.safe_int 60 (* model IEmit *) (* Inferred value: 244.687394077 *) (* Most computation happens in [emit_event], which is carbonated. *) let cost_N_IEmit = S.safe_int 30 (* ------------------------------------------------------------------------ *) (* The following functions use very different parameters than the inferred ones. Comments to explain the difference are required. *) (* model CHECK_PRINTABLE *) (* Inferred: fun size -> (0. + (1.42588022179 * size)) *) let cost_CHECK_PRINTABLE size = let open S_syntax in S.safe_int 14 + (S.safe_int 10 * S.safe_int size) (* model N_IList_iter *) (* Inferred: 2.26028815324 *) let cost_N_IList_iter = S.safe_int 20
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>