package async_rpc_kernel

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file implementations.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
open Core_kernel
open Poly
open Async_kernel
open Util

open Implementation_types.Implementations

module P = Protocol
module Reader = Transport.Reader
module Writer = Transport.Writer

(* The Result monad is also used. *)
let (>>|~) = Result.(>>|)

(* Commute Result and Deferred. *)
let defer_result : 'a 'b. ('a Deferred.t,'b) Result.t -> ('a,'b) Result.t Deferred.t =
  function
  | Error _ as err -> return err
  | Ok d ->
    match Deferred.peek d with
    | None -> d >>| fun x -> Ok x
    | Some d -> return (Ok d)

module Deferred_immediate = struct
  let ( >>= ) d f =
    match Deferred.peek d with
    | None -> d >>= f
    | Some x -> f x

  (* We may not be using this at a particular point in time, but we still want [>>=] to be
     rebound when opening [Deferred_immediate] in case we do start using it later. *)
  let _ = ( >>= )

  let ( >>| ) d f =
    match Deferred.peek d with
    | None -> d >>| f
    | Some x -> return (f x)

  let _ = ( >>| )
end

module Responder = Implementation.Expert.Responder

type 'connection_state on_unknown_rpc =
  [ `Raise
  | `Continue
  | `Close_connection
  | `Call of
      ('connection_state
       -> rpc_tag : string
       -> version : int
       -> [ `Close_connection | `Continue ])
  ]

type 'connection_state on_unknown_rpc_with_expert =
  [ 'connection_state on_unknown_rpc
  | `Expert of
      ('connection_state
       -> rpc_tag : string
       -> version : int
       -> Responder.t
       -> Bigstring.t
       -> pos : int
       -> len : int
       -> unit Deferred.t)
  ]

type 'connection_state t = 'connection_state Implementation_types.Implementations.t =
  { implementations : 'connection_state Implementation.F.t Description.Table.t
  ; on_unknown_rpc  : 'connection_state on_unknown_rpc_with_expert
  }

type 'connection_state implementations = 'connection_state t

let descriptions t = Hashtbl.keys t.implementations

module Instance = struct
  type streaming_response = Instance.streaming_response =
    | Pipe : _ Pipe.Reader.t -> streaming_response
    | Direct :
        (_ Implementation_types.Direct_stream_writer.t [@sexp.opaque]) -> streaming_response
  [@@deriving sexp_of]

  type streaming_responses =
    (P.Query_id.t, streaming_response) Hashtbl.t [@@deriving sexp_of]

  type 'a unpacked = 'a Instance.unpacked =
    { implementations          : ('a implementations [@sexp.opaque])
    ; writer                   : Writer.t
    ; open_streaming_responses : streaming_responses
    ; mutable stopped          : bool
    ; connection_state         : 'a
    ; connection_description   : Info.t
    ; connection_close_started : Info.t Deferred.t
    ; mutable last_dispatched_implementation :
        (Description.t * ('a Implementation.F.t [@sexp.opaque])) option
    (* [packed_self] is here so we can essentially pack an unpacked instance without doing
       any additional allocation. *)
    ; packed_self              : (t [@sexp.opaque])
    } [@@deriving sexp_of]

  and t = Instance.t = T : _ unpacked -> t
  let sexp_of_t (T t) = [%sexp_of: _ unpacked] t

  let send_write_error t id sexp =
    let data : _ P.Message.t =
      Response { id; data = Error (Write_error sexp) }
    in
    match Writer.send_bin_prot t.writer P.Message.bin_writer_nat0_t data with
    | Sent () | Closed -> ()
    | Message_too_big _ as r ->
      raise_s [%sexp
        "Failed to send write error to client",
        { error  = (sexp : Sexp.t)
        ; reason = (r : unit Transport.Send_result.t)
        }
      ]
  ;;

  let handle_send_result t id (result : _ Transport.Send_result.t) =
    match result with
    | Sent () -> ()
    | Closed  -> ()
    | Message_too_big _ as r ->
      send_write_error t id ([%sexp_of: unit Transport.Send_result.t] r)
  ;;

  let write_message t ~id bin_writer x =
    if not t.stopped
    then
      Writer.send_bin_prot t.writer bin_writer x
      |> handle_send_result t id
  ;;

  let write_message_expert t ~id bin_writer x ~buf ~pos ~len =
    if not t.stopped
    then
      Writer.send_bin_prot_and_bigstring t.writer bin_writer x ~buf ~pos ~len
      |> handle_send_result t id
  ;;

  let write_response t id bin_writer_data data =
    let bin_writer =
      P.Message.bin_writer_needs_length (Writer_with_length.of_writer bin_writer_data)
    in
    write_message t ~id bin_writer (Response { id; data })
  ;;

  module Cached_stream_writer : sig
    type instance
    type 'a t = 'a Implementation_types.Cached_stream_writer.t

    val create
      :  id:P.Query_id.t
      -> bin_writer:'a Bin_prot.Type_class.writer
      -> 'a t

    val write        : 'a t -> instance -> P.Query_id.t -> 'a -> unit
    val write_expert : 'a t -> instance -> P.Query_id.t -> buf:Bigstring.t -> pos:int -> len:int -> unit
    val write_string : 'a t -> instance -> P.Query_id.t -> string -> unit
  end with type instance := t = struct
    type 'a t = 'a Implementation_types.Cached_stream_writer.t =
      { header_prefix    : string (* Bin_protted constant prefix of the message *)
      ; (* Length of the user data part. We set this field when sending a message. This
           relies on the fact that the message is serialized immediately (which is the
           only acceptable semantics for the transport layer anyway, as it doesn't know if
           the value is mutable or not).

           [data_len] is passed to bin-prot writers by mutating [data_len] instead of by
           passing an additional argument to avoid some allocation.
        *)
        mutable data_len : Nat0.t
      ; bin_writer       : 'a Bin_prot.Type_class.writer
      }


    type void = Void
    let bin_size_void Void = 0
    let bin_write_void _buf ~pos Void = pos

    type void_message = void P.Message.needs_length
    [@@deriving bin_write]

    type void_stream_response_data = void P.Stream_response_data.needs_length
    [@@deriving bin_write]

    (* This is not re-entrant but Async code always runs on one thread at a time *)
    let buffer = Bigstring.create 32
    let cache_bin_protted (bin_writer : _ Bin_prot.Type_class.writer) x =
      let len = bin_writer.write buffer ~pos:0 x in
      Bigstring.To_string.sub buffer ~pos:0 ~len
    ;;

    let create (type a) ~id ~bin_writer : a t =
      let header_prefix =
        cache_bin_protted bin_writer_void_message (Response { id; data = Ok Void })
      in
      { header_prefix
      ; bin_writer
      ; data_len = Nat0.of_int_exn 0
      }
    ;;

    (* This part of the message header is a constant, make it a literal to make the
       writing code slightly faster. *)
    let stream_response_data_header_len      = 4
    let stream_response_data_header_as_int32 = 0x8a79l

    let%test_unit "stream_response_* constants are correct" =
      let len =
        bin_writer_void_stream_response_data.write buffer ~pos:0
          (`Ok Void : void_stream_response_data)
      in
      assert (len = stream_response_data_header_len);
      assert (Bigstring.unsafe_get_int32_t_le buffer ~pos:0
              = stream_response_data_header_as_int32);
    ;;

    let bin_write_string_no_length buf ~pos str =
      let str_len = String.length str in
      (* Very low-level bin_prot stuff... *)
      Bin_prot.Common.assert_pos pos;
      let next = pos + str_len in
      Bin_prot.Common.check_next buf next;
      Bin_prot.Common.unsafe_blit_string_buf ~src_pos:0 str ~dst_pos:pos buf
        ~len:str_len;
      next
    ;;

    (* The two following functions are used by the 3 variants exposed by this module. They
       serialize a [Response { id; data = Ok (`Ok data_len) }] value, taking care of
       writing the [Nat0.t] length prefix where approriate.

       Bear in mind that there are two levels of length prefixes for stream response data
       message: one for the user data (under the `Ok, before the actual data), and one for
       the response data (under the .data field, before the Ok). *)
    let bin_size_nat0_header { header_prefix; data_len; _ } =
      let stream_response_data_nat0_len =
        stream_response_data_header_len + Nat0.bin_size_t data_len
      in
      let stream_response_data_len =
        stream_response_data_nat0_len + (data_len : Nat0.t :> int)
      in
      String.length header_prefix
      + Nat0.bin_size_t (Nat0.of_int_exn stream_response_data_len)
      + stream_response_data_nat0_len

    let bin_write_nat0_header buf ~pos { header_prefix; data_len; _ } =
      let pos = bin_write_string_no_length buf ~pos header_prefix in
      let stream_response_data_len =
        stream_response_data_header_len
        + Nat0.bin_size_t data_len
        + (data_len : Nat0.t :> int)
      in
      let pos = Nat0.bin_write_t buf ~pos (Nat0.of_int_exn stream_response_data_len) in
      let next = pos + 4 in
      Bin_prot.Common.check_next buf next;
      Bigstring.unsafe_set_int32_t_le buf ~pos stream_response_data_header_as_int32;
      Nat0.bin_write_t buf ~pos:next data_len

    let bin_writer_nat0_header : _ Bin_prot.Type_class.writer =
      { size  = bin_size_nat0_header
      ; write = bin_write_nat0_header
      }

    let bin_size_message (t, _) =
      bin_size_nat0_header t + (t.data_len : Nat0.t :> int)

    let bin_write_message buf ~pos (t, data) =
      let pos = bin_write_nat0_header buf ~pos t in
      t.bin_writer.write buf ~pos data

    let bin_writer_message : _ Bin_prot.Type_class.writer =
      { size  = bin_size_message
      ; write = bin_write_message
      }

    let bin_size_message_as_string (t, _) =
      bin_size_nat0_header t + (t.data_len : Nat0.t :> int)

    let bin_write_message_as_string buf ~pos (t, str) =
      let pos = bin_write_nat0_header buf ~pos t in
      bin_write_string_no_length buf ~pos str

    let bin_writer_message_as_string : _ Bin_prot.Type_class.writer =
      { size  = bin_size_message_as_string
      ; write = bin_write_message_as_string
      }

    (* [write] and [write_string] both allocate 3 words for the tuples. [write_expert]
       does not allocate. *)
    let write t (T instance) id data =
      t.data_len <- Nat0.of_int_exn (t.bin_writer.size data);
      write_message instance ~id bin_writer_message (t, data)

    let write_string t (T instance) id str =
      t.data_len <- Nat0.of_int_exn (String.length str);
      write_message instance ~id bin_writer_message_as_string (t, str)

    let write_expert t (T instance) id ~buf ~pos ~len =
      t.data_len <- Nat0.of_int_exn len;
      write_message_expert instance ~id bin_writer_nat0_header t
        ~buf ~pos ~len
  end

  module Direct_stream_writer = struct
    module T = Implementation_types.Direct_stream_writer

    module State = T.State

    module Id = T.Id

    type 'a t = 'a T.t =
      { id            : Id.t
      ; mutable state : 'a State.t
      ; closed        : unit Ivar.t
      ; instance      : Instance.t
      ; query_id      : P.Query_id.t
      ; stream_writer : 'a Cached_stream_writer.t
      ; groups        : 'a group_entry Bag.t
      }

    and 'a group_entry = 'a T.group_entry =
      { group            : 'a T.Group.t
      ; element_in_group : 'a t Bag.Elt.t
      }

    let is_closed t = Ivar.is_full t.closed
    let closed t = Ivar.read t.closed
    let flushed t =
      let (T instance) = t.instance in
      Transport.Writer.flushed instance.writer
    ;;

    let bin_writer t = t.stream_writer.bin_writer

    let write_eof {instance = T instance; query_id; _} =
      write_response instance query_id
        P.Stream_response_data.bin_writer_nat0_t
        (Ok `Eof)
    ;;

    let write_message {instance; stream_writer; query_id; _} x =
      Cached_stream_writer.write stream_writer instance query_id x
    ;;

    let write_message_string {instance; stream_writer; query_id; _} x =
      Cached_stream_writer.write_string stream_writer instance query_id x
    ;;

    let write_message_expert {instance; stream_writer; query_id; _} ~buf ~pos ~len =
      Cached_stream_writer.write_expert stream_writer instance query_id ~buf ~pos ~len
    ;;

    let close_without_removing_from_instance t =
      if not (Ivar.is_full t.closed) then begin
        Ivar.fill t.closed ();
        let groups = t.groups in
        if not (Bag.is_empty groups) then
          Async_kernel_scheduler.Private.Very_low_priority_work.enqueue
            ~f:(fun () ->
              match Bag.remove_one groups with
              | None -> Finished
              | Some { group; element_in_group } ->
                Bag.remove group.components element_in_group;
                Hashtbl.remove group.components_by_id t.id;
                Not_finished);
        match t.state with
        | Not_started _ -> ()
        | Started -> write_eof t
      end
    ;;

    let close ({instance = T instance; query_id; _} as t) =
      close_without_removing_from_instance t;
      Hashtbl.remove instance.open_streaming_responses query_id
    ;;

    let write_without_pushback t x =
      if Ivar.is_full t.closed then
        `Closed
      else begin
        begin match t.state with
        | Not_started q -> Queue.enqueue q (Normal x)
        | Started -> write_message t x
        end;
        `Ok
      end
    ;;

    let write ({instance = T instance; _} as t) x =
      match write_without_pushback t x with
      | `Closed -> `Closed
      | `Ok -> `Flushed (Writer.flushed instance.writer)
    ;;

    module Expert = struct
      let write_without_pushback t ~buf ~pos ~len =
        if Ivar.is_full t.closed then
          `Closed
        else begin
          begin match t.state with
          | Not_started q ->
            Queue.enqueue q (Expert (Bigstring.To_string.sub buf ~pos ~len))
          | Started -> write_message_expert t ~buf ~pos ~len
          end;
          `Ok
        end
      ;;

      let write ({instance = T instance; _} as t) ~buf ~pos ~len =
        match write_without_pushback t ~buf ~pos ~len with
        | `Closed -> `Closed
        | `Ok -> `Flushed (Writer.flushed instance.writer)
      ;;
    end

    let start t =
      match t.state with
      | Started -> failwith "attempted to start writer which was already started"
      | Not_started q ->
        t.state <- Started;
        Queue.iter q ~f:(function
          | Normal x -> write_message        t x
          | Expert x -> write_message_string t x);
        if Ivar.is_full t.closed then write_eof t;
    ;;
  end

let apply_implementation
      t
      implementation
      ~(query : Nat0.t P.Query.t)
      ~read_buffer
      ~read_buffer_pos_ref
  : _ Transport.Handler_result.t =
  let id = query.id in
  match implementation with
  | Implementation.F.One_way (bin_query_reader, f) ->
    let query_contents =
      bin_read_from_bigstring bin_query_reader read_buffer ~pos_ref:read_buffer_pos_ref
        ~len:query.data
        ~location:"server-side one-way rpc message un-bin-io'ing"
    in
    (match query_contents with
     | Error _ as err ->
       Stop err
     | Ok q ->
       try
         f t.connection_state q;
         Continue
       with exn ->
         Stop
           (Rpc_result.uncaught_exn exn
              ~location:"server-side one-way rpc computation")
    )
  | Implementation.F.One_way_expert f ->
    (try
       let len = (query.data :> int) in
       f t.connection_state read_buffer ~pos:!read_buffer_pos_ref ~len;
       read_buffer_pos_ref := !read_buffer_pos_ref + len;
       Continue
     with exn ->
       Stop
         (Rpc_result.uncaught_exn exn
            ~location:"server-side one-way rpc expert computation")
    )
  | Implementation.F.Rpc (bin_query_reader, bin_response_writer, f, result_mode) ->
    let query_contents =
      bin_read_from_bigstring bin_query_reader read_buffer
        ~pos_ref:read_buffer_pos_ref
        ~len:query.data
        ~location:"server-side rpc query un-bin-io'ing"
    in
    begin match result_mode with
    | Implementation.F.Blocking ->
      let data =
        try query_contents >>|~ f t.connection_state with
        | exn ->
          (* In the [Deferred] branch we use [Monitor.try_with], which includes
             backtraces when it catches an exception. For consistency, we also get
             backtraces here. *)
          let backtrace = Backtrace.Exn.most_recent () in
          let sexp =
            [%sexp
              { location = "server-side blocking rpc computation"
              ; exn = (exn : exn)
              ; backtrace = (backtrace : Backtrace.t)
              }]
          in
          Error (Rpc_error.Uncaught_exn sexp)
      in
      write_response t id bin_response_writer data
    | Implementation.F.Deferred ->
      let data =
        Rpc_result.try_with ~run:`Now
          ~location:"server-side rpc computation" (fun () ->
            defer_result (query_contents >>|~ f t.connection_state))
      in
      (* In the common case that the implementation returns a value immediately, we will
         write the response immediately as well (this is also why the above [try_with]
         has [~run:`Now]).  This can be a big performance win for servers that get many
         queries in a single Async cycle. *)
      ( match Deferred.peek data with
        | None -> data >>> write_response t id bin_response_writer
        | Some data -> write_response t id bin_response_writer data );
    end;
    Continue
  | Implementation.F.Rpc_expert (f, result_mode) ->
    let responder = Implementation.Expert.Responder.create query.id t.writer in
    let d =
      (* We need the [Monitor.try_with] even for the blocking mode as the implementation
         might return [Delayed_reponse], so we don't bother optimizing the blocking
         mode. *)
      Monitor.try_with ~run:`Now (fun () ->
        let len = (query.data :> int) in
        let result =
          f t.connection_state responder read_buffer
            ~pos:!read_buffer_pos_ref ~len
        in
        match result_mode with
        | Implementation.F.Deferred -> result
        | Implementation.F.Blocking -> Deferred.return result
      )
    in
    let handle_exn exn =
      let result =
        Rpc_result.uncaught_exn exn ~location:"server-side rpc expert computation"
      in
      if responder.responded then
        result
      else begin
        write_response t id bin_writer_unit result;
        Ok ()
      end
    in
    let check_responded () =
      if responder.responded
      then Ok ()
      else handle_exn (Failure "Expert implementation did not reply")
    in
    let d =
      let open Deferred_immediate in
      d >>| function
      | Ok result ->
        let d =
          match result with
          | Replied -> Deferred.unit
          | Delayed_response d -> d
        in
        if Deferred.is_determined d then
          check_responded ()
        else begin
          upon d
            (fun () ->
               check_responded ()
               |> Rpc_result.or_error
                    ~rpc_tag:query.tag
                    ~rpc_version:query.version
                    ~connection_description:t.connection_description
                    ~connection_close_started:t.connection_close_started
               |> ok_exn);
          Ok ()
        end
      | Error exn -> handle_exn exn
    in
    ( match Deferred.peek d with
      | None ->
        Wait (d >>| fun r ->
              ok_exn (
                Rpc_result.or_error
                  ~rpc_tag:query.tag
                  ~rpc_version:query.version
                  ~connection_description:t.connection_description
                  ~connection_close_started:t.connection_close_started
                  r))
      | Some result ->
        match result with
        | Ok ()   -> Continue
        | Error _ -> Stop result
    )
  | Implementation.F.Streaming_rpc
      (bin_query_reader, bin_init_writer, bin_update_writer, impl) ->
    let stream_query =
      bin_read_from_bigstring P.Stream_query.bin_reader_nat0_t
        read_buffer ~pos_ref:read_buffer_pos_ref
        ~len:query.data
        ~location:"server-side pipe_rpc stream_query un-bin-io'ing"
        ~add_len:(function `Abort -> 0 | `Query (len : Nat0.t) -> (len :> int))
    in
    begin
      match stream_query with
      | Error _err -> ()
      | Ok `Abort ->
        (* Note that there's some delay between when we receive a pipe RPC query and
           when we put something in [open_streaming_responses] (we wait for
           a user-supplied function to return). During this time, an abort message would
           just be ignored. The dispatcher can't abort the query while this is
           happening, though, since the interface doesn't expose the ID required to
           abort the query until after a response has been returned. *)
        Option.iter (Hashtbl.find t.open_streaming_responses query.id) ~f:(function
          | Pipe pipe -> Pipe.close_read pipe
          | Direct w -> Direct_stream_writer.close w
        )
      | Ok (`Query len) ->
        let data =
          bin_read_from_bigstring bin_query_reader read_buffer
            ~pos_ref:read_buffer_pos_ref ~len
            ~location:"streaming_rpc server-side query un-bin-io'ing"
        in
        let stream_writer =
          Cached_stream_writer.create ~id ~bin_writer:bin_update_writer
        in
        let impl_with_state =
          match impl with
          | Pipe f -> `Pipe f
          | Direct f ->
            let writer : _ Direct_stream_writer.t =
              { id         = Direct_stream_writer.Id.create ()
              ; state      = Not_started (Queue.create ())
              ; closed     = Ivar.create ()
              ; instance   = t.packed_self
              ; query_id   = id
              ; groups     = Bag.create ()
              ; stream_writer
              }
            in
            Hashtbl.set t.open_streaming_responses ~key:query.id ~data:(Direct writer);
            `Direct (f, writer)
        in
        let run_impl impl split_ok handle_ok =
          Rpc_result.try_with (fun () -> defer_result (data >>|~ impl))
            ~location:"server-side pipe_rpc computation"
          >>> function
          | Error err ->
            Hashtbl.remove t.open_streaming_responses id;
            write_response t id bin_init_writer (Error err)
          | Ok (Error err) ->
            Hashtbl.remove t.open_streaming_responses id;
            write_response t id bin_init_writer (Ok err)
          | Ok (Ok ok) ->
            let (initial, rest) = split_ok ok in
            write_response t id bin_init_writer (Ok initial);
            handle_ok rest
        in
        match impl_with_state with
        | `Pipe f ->
          run_impl
            (fun data -> f t.connection_state data)
            Fn.id
            (fun pipe_r ->
               Hashtbl.set t.open_streaming_responses ~key:id ~data:(Pipe pipe_r);
               don't_wait_for
                 (Writer.transfer t.writer pipe_r
                    (Cached_stream_writer.write stream_writer t.packed_self id));
               Pipe.closed pipe_r >>> fun () ->
               Pipe.upstream_flushed pipe_r
               >>> function
               | `Ok | `Reader_closed ->
                 write_response t id P.Stream_response_data.bin_writer_nat0_t (Ok `Eof);
                 Hashtbl.remove t.open_streaming_responses id
            )
        | `Direct (f, writer) ->
          run_impl
            (fun data -> f t.connection_state data writer)
            (fun x -> (x, ()))
            (fun () -> Direct_stream_writer.start writer)
    end;
    Continue
;;

  let flush (T t) =
    assert (not t.stopped);
    let producers_flushed =
      Hashtbl.fold t.open_streaming_responses ~init:[]
        ~f:(fun ~key:_ ~data acc ->
          match data with
          | Direct _ -> acc
          | Pipe pipe -> Deferred.ignore_m (Pipe.upstream_flushed pipe) :: acc)
    in
    Deferred.all_unit producers_flushed
  ;;

  let stop (T t) =
    t.stopped <- true;
    Hashtbl.iter t.open_streaming_responses ~f:(function
      | Direct writer ->
        (* Don't remove the writer from the instance, as that would modify the hashtable
           that we are currently iterating over. *)
        Direct_stream_writer.close_without_removing_from_instance writer
      | Pipe _ -> ()
    );
    Hashtbl.clear t.open_streaming_responses
  ;;

  let handle_unknown_rpc on_unknown_rpc error t query : _ Transport.Handler_result.t =
    match on_unknown_rpc with
    | `Continue         -> Continue
    | `Raise            -> Rpc_error.raise error t.connection_description
    | `Close_connection -> Stop (Ok ())
    | `Call f ->
      match
        f t.connection_state ~rpc_tag:(P.Rpc_tag.to_string query.P.Query.tag)
          ~version:query.version
      with
      | `Close_connection -> Stop (Ok ())
      | `Continue         -> Continue
  ;;

  let handle_query_internal t ~(query : Nat0.t P.Query.t)
        ~read_buffer ~read_buffer_pos_ref =
    let { implementations; on_unknown_rpc } = t.implementations in
    let description : Description.t =
      { name = P.Rpc_tag.to_string query.tag; version = query.version }
    in
    match t.last_dispatched_implementation with
    | Some (last_desc, implementation) when Description.equal last_desc description ->
      apply_implementation t implementation ~query ~read_buffer ~read_buffer_pos_ref
    | None | Some _ ->
      match Hashtbl.find implementations description with
      | Some implementation ->
        t.last_dispatched_implementation <- Some (description, implementation);
        apply_implementation t implementation ~query ~read_buffer ~read_buffer_pos_ref
      | None ->
        match on_unknown_rpc with
        | `Expert impl ->
          let {P.Query.tag; version; id; data = len} = query in
          let d =
            let responder = Responder.create id t.writer in
            impl t.connection_state ~rpc_tag:(P.Rpc_tag.to_string tag) ~version
              responder read_buffer ~pos:!read_buffer_pos_ref
              ~len:(len :> int)
          in
          if Deferred.is_determined d
          then Continue
          else Wait d
        | (`Continue | `Raise | `Close_connection | `Call _) as on_unknown_rpc ->
          let error = Rpc_error.Unimplemented_rpc (query.tag, `Version query.version) in
          write_response t query.id P.Message.bin_writer_nat0_t (Error error);
          handle_unknown_rpc on_unknown_rpc error t query
  ;;

  let handle_query (T t) ~query ~read_buffer ~read_buffer_pos_ref =
    if t.stopped || Writer.is_closed t.writer then
      Transport.Handler_result.Stop (Ok ())
    else
      handle_query_internal t ~query ~read_buffer ~read_buffer_pos_ref
  ;;
end

module Direct_stream_writer = Instance.Direct_stream_writer

let create ~implementations:i's ~on_unknown_rpc =
  (* Make sure the tags are unique. *)
  let implementations = Description.Table.create ~size:10 () in
  let dups = Description.Hash_set.create ~size:10 () in
  List.iter i's ~f:(fun (i : _ Implementation.t) ->
    let description =
      { Description.
        name    = P.Rpc_tag.to_string i.tag
      ; version = i.version
      }
    in
    match Hashtbl.add implementations ~key:description ~data:i.f with
    | `Ok -> ()
    | `Duplicate -> Hash_set.add dups description
  );
  if not (Hash_set.is_empty dups) then
    Error (`Duplicate_implementations (Hash_set.to_list dups))
  else
    Ok {
      implementations;
      on_unknown_rpc = (on_unknown_rpc :> _ on_unknown_rpc_with_expert);
    }

let instantiate t
      ~connection_description ~connection_close_started ~connection_state ~writer =
  let rec unpacked : _ Instance.unpacked =
    { implementations = t
    ; writer
    ; open_streaming_responses = Hashtbl.Poly.create ~size:10 ()
    ; connection_state
    ; connection_description
    ; connection_close_started
    ; stopped = false
    ; last_dispatched_implementation = None
    ; packed_self = Instance.T unpacked
    }
  in
  unpacked.packed_self
;;

exception Duplicate_implementations of Description.t list [@@deriving sexp]

let create_exn ~implementations ~on_unknown_rpc =
  match create ~implementations ~on_unknown_rpc with
  | Ok x -> x
  | Error `Duplicate_implementations dups -> raise (Duplicate_implementations dups)

let null () = create_exn ~implementations:[] ~on_unknown_rpc:`Raise

let add_exn t (implementation : _ Implementation.t) =
  let desc : Description.t =
    { name = P.Rpc_tag.to_string implementation.tag
    ; version = implementation.version
    }
  in
  let implementations = Hashtbl.copy t.implementations in
  match Hashtbl.add implementations ~key:desc ~data:implementation.f with
  | `Duplicate -> raise (Duplicate_implementations [desc])
  | `Ok -> { t with implementations }

let add t implementation =
  Or_error.try_with (fun () -> add_exn t implementation)


let lift {implementations; on_unknown_rpc} ~f =
  let implementations =
    Hashtbl.map implementations ~f:(Implementation.F.lift ~f)
  in
  let on_unknown_rpc =
    match on_unknown_rpc with
    | `Raise | `Continue | `Close_connection as x -> x
    | `Call call -> `Call (fun state -> call (f state))
    | `Expert expert -> `Expert (fun state -> expert (f state))
  in
  { implementations; on_unknown_rpc }

module Expert = struct
  module Responder = Responder

  module Rpc_responder = struct
    type t = Responder.t

    let cannot_send r =
      failwiths ~here:[%here] "Message cannot be sent" r [%sexp_of: _ Transport.Send_result.t]
    ;;

    let mark_responded (t : t) =
      if t.responded then failwiths ~here:[%here] "Already responded" t [%sexp_of: Responder.t];
      t.responded <- true;
    ;;

    let schedule (t : t) buf ~pos ~len =
      mark_responded t;
      let header : Nat0.t P.Message.t =
        Response
          { id = t.query_id
          ; data = Ok (Nat0.of_int_exn len)
          }
      in
      match
        Writer.send_bin_prot_and_bigstring_non_copying t.writer
          P.Message.bin_writer_nat0_t header
          ~buf ~pos ~len
      with
      | Sent d -> `Flushed d
      | Closed -> `Connection_closed
      | Message_too_big _ as r -> cannot_send r

    let handle_send_result : unit Transport.Send_result.t -> unit = function
      | Sent () | Closed -> ()
      | Message_too_big _ as r -> cannot_send r

    let write_bigstring (t : t) buf ~pos ~len =
      mark_responded t;
      let header : Nat0.t P.Message.t =
        Response
          { id = t.query_id
          ; data = Ok (Nat0.of_int_exn len)
          }
      in
      Writer.send_bin_prot_and_bigstring t.writer
        P.Message.bin_writer_nat0_t header
        ~buf ~pos ~len
      |> handle_send_result

    let write_error (t : t) error =
      mark_responded t;
      let data =
        Rpc_result.uncaught_exn ~location:"server-side raw rpc computation"
          (Error.to_exn error)
      in
      Writer.send_bin_prot t.writer P.Message.bin_writer_nat0_t
        (Response {id = t.query_id; data})
      |> handle_send_result

    let write_bin_prot (t : t) bin_writer_a a =
      mark_responded t;
      Writer.send_bin_prot t.writer
        (P.Message.bin_writer_needs_length (Writer_with_length.of_writer bin_writer_a))
        (Response {id = t.query_id; data = Ok a})
      |> handle_send_result
  end

  let create_exn = create_exn
end
OCaml

Innovation. Community. Security.