Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Page
Library
Module
Module type
Parameter
Class
Class type
Source
sexp_conv.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
(* Utility Module for S-expression Conversions *) let polymorphic_compare = compare open StdLabels open MoreLabels open Printf open Sexp type sexp_bool = bool type 'a sexp_option = 'a option type 'a sexp_list = 'a list type 'a sexp_array = 'a array type 'a sexp_opaque = 'a (* Conversion of OCaml-values to S-expressions *) external format_float : string -> float -> string = "caml_format_float" (* '%.17g' is guaranteed to be round-trippable. '%.15g' will be round-trippable and not have noise at the last digit or two for a float which was converted from a decimal (string) with <= 15 significant digits. So it's worth trying first to avoid things like "3.1400000000000001". See comment above [to_string_round_trippable] in {!Core_kernel.Float} for detailed explanation and examples. *) let default_string_of_float = ref (fun x -> let y = format_float "%.15G" x in if (float_of_string y) = x then y else format_float "%.17G" x) ;; let read_old_option_format = ref true let write_old_option_format = ref true let list_map f l = List.rev (List.rev_map l ~f) let sexp_of_unit () = List [] let sexp_of_bool b = Atom (string_of_bool b) let sexp_of_string str = Atom str let sexp_of_bytes bytes = Atom (Bytes.to_string bytes) let sexp_of_char c = Atom (String.make 1 c) let sexp_of_int n = Atom (string_of_int n) let sexp_of_float n = Atom (!default_string_of_float n) let sexp_of_int32 n = Atom (Int32.to_string n) let sexp_of_int64 n = Atom (Int64.to_string n) let sexp_of_nativeint n = Atom (Nativeint.to_string n) let sexp_of_ref sexp_of__a rf = sexp_of__a !rf let sexp_of_lazy_t sexp_of__a lv = sexp_of__a (Lazy.force lv) let sexp_of_option sexp_of__a = function | Some x when !write_old_option_format -> List [sexp_of__a x] | Some x -> List [Atom "some"; sexp_of__a x] | None when !write_old_option_format -> List [] | None -> Atom "none" let sexp_of_pair sexp_of__a sexp_of__b (a, b) = List [sexp_of__a a; sexp_of__b b] let sexp_of_triple sexp_of__a sexp_of__b sexp_of__c (a, b, c) = List [sexp_of__a a; sexp_of__b b; sexp_of__c c] (* List.rev (List.rev_map ...) is tail recursive, the OCaml standard library List.map is NOT. *) let sexp_of_list sexp_of__a lst = List (List.rev (List.rev_map lst ~f:sexp_of__a)) let sexp_of_array sexp_of__a ar = let lst_ref = ref [] in for i = Array.length ar - 1 downto 0 do lst_ref := sexp_of__a ar.(i) :: !lst_ref done; List !lst_ref let sexp_of_hashtbl sexp_of_key sexp_of_val htbl = let coll ~key:k ~data:v acc = List [sexp_of_key k; sexp_of_val v] :: acc in List (Hashtbl.fold htbl ~init:[] ~f:coll) let sexp_of_opaque _ = Atom "<opaque>" let sexp_of_fun _ = Atom "<fun>" (* Exception converter registration and lookup *) module Exn_converter = struct (* These exception registration functions assume that context-switches cannot happen unless there is an allocation. It is reasonable to expect that this will remain true for the foreseeable future. That way we avoid using mutexes and thus a dependency on the threads library. *) (* Fast and automatic exception registration *) module Int = struct type t = int let compare t1 t2 = polymorphic_compare (t1 : int) t2 end module Exn_ids = Map.Make (Int) module Obj = struct module Extension_constructor = struct [@@@ocaml.warning "-3"] type t = extension_constructor let id = Obj.extension_id let of_val = Obj.extension_constructor end end let exn_id_map : (Obj.Extension_constructor.t, exn -> Sexp.t) Ephemeron.K1.t Exn_ids.t ref = ref Exn_ids.empty (* [Obj.extension_id] works on both the exception itself, and the extension slot of the exception. *) let rec clean_up_handler (slot : Obj.Extension_constructor.t) = let id = Obj.Extension_constructor.id slot in let old_exn_id_map = !exn_id_map in let new_exn_id_map = Exn_ids.remove id old_exn_id_map in (* This trick avoids mutexes and should be fairly efficient *) if !exn_id_map != old_exn_id_map then clean_up_handler slot else exn_id_map := new_exn_id_map (* Ephemerons are used so that [sexp_of_exn] closure don't keep the extension_constructor live. *) let add ?(finalise = true) extension_constructor sexp_of_exn = let id = Obj.Extension_constructor.id extension_constructor in let rec loop () = let old_exn_id_map = !exn_id_map in let ephe = Ephemeron.K1.create () in Ephemeron.K1.set_data ephe sexp_of_exn; Ephemeron.K1.set_key ephe extension_constructor; let new_exn_id_map = Exn_ids.add old_exn_id_map ~key:id ~data:ephe in (* This trick avoids mutexes and should be fairly efficient *) if !exn_id_map != old_exn_id_map then loop () else begin exn_id_map := new_exn_id_map; if finalise then try Gc.finalise clean_up_handler extension_constructor with Invalid_argument _ -> (* Pre-allocated extension constructors cannot be finalised *) () end in loop () let add_auto ?finalise exn sexp_of_exn = add ?finalise (Obj.Extension_constructor.of_val exn) sexp_of_exn let find_auto exn = let id = Obj.Extension_constructor.id (Obj.Extension_constructor.of_val exn) in match Exn_ids.find id !exn_id_map with | exception Not_found -> None | ephe -> match Ephemeron.K1.get_data ephe with | None -> None | Some sexp_of_exn -> Some (sexp_of_exn exn) module For_unit_tests_only = struct let size () = Exn_ids.fold !exn_id_map ~init:0 ~f:(fun ~key:_ ~data:ephe acc -> match Ephemeron.K1.get_data ephe with | None -> acc | Some _ -> acc + 1 ) end end let sexp_of_exn_opt exn = Exn_converter.find_auto exn let sexp_of_exn exn = match sexp_of_exn_opt exn with | None -> List [Atom (Printexc.to_string exn)] | Some sexp -> sexp let exn_to_string e = Sexp.to_string_hum (sexp_of_exn e) (* {[exception Blah [@@deriving sexp]]} generates a call to the function [Exn_converter.add] defined in this file. So we are guaranted that as soon as we mark an exception as sexpable, this module will be linked in and this printer will be registered, which is what we want. *) let () = Printexc.register_printer (fun exn -> match sexp_of_exn_opt exn with | None -> None | Some sexp -> Some (Sexp.to_string_hum ~indent:2 sexp)) (* Conversion of S-expressions to OCaml-values *) exception Of_sexp_error = Sexp.Of_sexp_error let record_check_extra_fields = ref true let of_sexp_error_exn exc sexp = raise (Of_sexp_error (exc, sexp)) let of_sexp_error what sexp = raise (Of_sexp_error (Failure what, sexp)) let unit_of_sexp sexp = match sexp with | List [] -> () | Atom _ | List _ -> of_sexp_error "unit_of_sexp: empty list needed" sexp let bool_of_sexp sexp = match sexp with | Atom ("true" | "True") -> true | Atom ("false" | "False") -> false | Atom _ -> of_sexp_error "bool_of_sexp: unknown string" sexp | List _ -> of_sexp_error "bool_of_sexp: atom needed" sexp let string_of_sexp sexp = match sexp with | Atom str -> str | List _ -> of_sexp_error "string_of_sexp: atom needed" sexp let bytes_of_sexp sexp = match sexp with | Atom str -> Bytes.of_string str | List _ -> of_sexp_error "bytes_of_sexp: atom needed" sexp let char_of_sexp sexp = match sexp with | Atom str -> if String.length str <> 1 then of_sexp_error "char_of_sexp: atom string must contain one character only" sexp; str.[0] | List _ -> of_sexp_error "char_of_sexp: atom needed" sexp let int_of_sexp sexp = match sexp with | Atom str -> (try int_of_string str with exc -> of_sexp_error ("int_of_sexp: " ^ exn_to_string exc) sexp) | List _ -> of_sexp_error "int_of_sexp: atom needed" sexp let float_of_sexp sexp = match sexp with | Atom str -> (try float_of_string str with exc -> of_sexp_error ("float_of_sexp: " ^ exn_to_string exc) sexp) | List _ -> of_sexp_error "float_of_sexp: atom needed" sexp let int32_of_sexp sexp = match sexp with | Atom str -> (try Int32.of_string str with exc -> of_sexp_error ("int32_of_sexp: " ^ exn_to_string exc) sexp) | List _ -> of_sexp_error "int32_of_sexp: atom needed" sexp let int64_of_sexp sexp = match sexp with | Atom str -> (try Int64.of_string str with exc -> of_sexp_error ("int64_of_sexp: " ^ exn_to_string exc) sexp) | List _ -> of_sexp_error "int64_of_sexp: atom needed" sexp let nativeint_of_sexp sexp = match sexp with | Atom str -> (try Nativeint.of_string str with exc -> of_sexp_error ("nativeint_of_sexp: " ^ exn_to_string exc) sexp) | List _ -> of_sexp_error "nativeint_of_sexp: atom needed" sexp let ref_of_sexp a__of_sexp sexp = ref (a__of_sexp sexp) let lazy_t_of_sexp a__of_sexp sexp = Lazy.from_val (a__of_sexp sexp) let option_of_sexp a__of_sexp sexp = if !read_old_option_format then match sexp with | List [] | Atom ("none" | "None") -> None | List [el] | List [Atom ("some" | "Some"); el] -> Some (a__of_sexp el) | List _ -> of_sexp_error "option_of_sexp: list must represent optional value" sexp | Atom _ -> of_sexp_error "option_of_sexp: only none can be atom" sexp else match sexp with | Atom ("none" | "None") -> None | List [Atom ("some" | "Some"); el] -> Some (a__of_sexp el) | Atom _ -> of_sexp_error "option_of_sexp: only none can be atom" sexp | List _ -> of_sexp_error "option_of_sexp: list must be (some el)" sexp let pair_of_sexp a__of_sexp b__of_sexp sexp = match sexp with | List [a_sexp; b_sexp] -> let a = a__of_sexp a_sexp in let b = b__of_sexp b_sexp in a, b | List _ -> of_sexp_error "pair_of_sexp: list must contain exactly two elements only" sexp | Atom _ -> of_sexp_error "pair_of_sexp: list needed" sexp let triple_of_sexp a__of_sexp b__of_sexp c__of_sexp sexp = match sexp with | List [a_sexp; b_sexp; c_sexp] -> let a = a__of_sexp a_sexp in let b = b__of_sexp b_sexp in let c = c__of_sexp c_sexp in a, b, c | List _ -> of_sexp_error "triple_of_sexp: list must contain exactly three elements only" sexp | Atom _ -> of_sexp_error "triple_of_sexp: list needed" sexp let list_of_sexp a__of_sexp sexp = match sexp with | List lst -> let rev_lst = List.rev_map lst ~f:a__of_sexp in List.rev rev_lst | Atom _ -> of_sexp_error "list_of_sexp: list needed" sexp let array_of_sexp a__of_sexp sexp = match sexp with | List [] -> [||] | List (h :: t) -> let len = List.length t + 1 in let res = Array.make len (a__of_sexp h) in let rec loop i = function | [] -> res | h :: t -> res.(i) <- a__of_sexp h; loop (i + 1) t in loop 1 t | Atom _ -> of_sexp_error "array_of_sexp: list needed" sexp let hashtbl_of_sexp key_of_sexp val_of_sexp sexp = match sexp with | List lst -> let htbl = Hashtbl.create 0 in let act = function | List [k_sexp; v_sexp] -> Hashtbl.add htbl ~key:(key_of_sexp k_sexp) ~data:(val_of_sexp v_sexp) | List _ | Atom _ -> of_sexp_error "hashtbl_of_sexp: tuple list needed" sexp in List.iter lst ~f:act; htbl | Atom _ -> of_sexp_error "hashtbl_of_sexp: list needed" sexp let opaque_of_sexp sexp = of_sexp_error "opaque_of_sexp: cannot convert opaque values" sexp let fun_of_sexp sexp = of_sexp_error "fun_of_sexp: cannot convert function values" sexp (* Registering default exception printers *) let get_flc_error name (file, line, chr) = Atom (sprintf "%s %s:%d:%d" name file line chr) let () = List.iter ~f:(fun (extension_constructor, handler) -> Exn_converter.add ~finalise:false extension_constructor handler) [ ( [%extension_constructor Assert_failure], (function | Assert_failure arg -> get_flc_error "Assert_failure" arg | _ -> assert false) );( [%extension_constructor Exit], (function | Exit -> Atom "Exit" | _ -> assert false) );( [%extension_constructor End_of_file], (function | End_of_file -> Atom "End_of_file" | _ -> assert false) );( [%extension_constructor Failure], (function | Failure arg -> List [Atom "Failure"; Atom arg ] | _ -> assert false) );( [%extension_constructor Not_found], (function | Not_found -> Atom "Not_found" | _ -> assert false) );( [%extension_constructor Invalid_argument], (function | Invalid_argument arg -> List [Atom "Invalid_argument"; Atom arg ] | _ -> assert false) );( [%extension_constructor Match_failure], (function | Match_failure arg -> get_flc_error "Match_failure" arg | _ -> assert false) );( [%extension_constructor Not_found_s], (function | Not_found_s arg -> List [Atom "Not_found_s"; arg ] | _ -> assert false) );( [%extension_constructor Sys_error], (function | Sys_error arg -> List [Atom "Sys_error"; Atom arg ] | _ -> assert false) );( [%extension_constructor Arg.Help], (function | Arg.Help arg -> List [Atom "Arg.Help"; Atom arg ] | _ -> assert false) );( [%extension_constructor Arg.Bad], (function | Arg.Bad arg -> List [Atom "Arg.Bad"; Atom arg ] | _ -> assert false) );( [%extension_constructor Lazy.Undefined], (function | Lazy.Undefined -> Atom "Lazy.Undefined" | _ -> assert false) );( [%extension_constructor Parsing.Parse_error], (function | Parsing.Parse_error -> Atom "Parsing.Parse_error" | _ -> assert false) );( [%extension_constructor Queue.Empty], (function | Queue.Empty -> Atom "Queue.Empty" | _ -> assert false) );( [%extension_constructor Scanf.Scan_failure], (function | Scanf.Scan_failure arg -> List [Atom "Scanf.Scan_failure"; Atom arg ] | _ -> assert false) );( [%extension_constructor Stack.Empty], (function | Stack.Empty -> Atom "Stack.Empty" | _ -> assert false) );( [%extension_constructor Stream.Failure], (function | Stream.Failure -> Atom "Stream.Failure" | _ -> assert false) );( [%extension_constructor Stream.Error], (function | Stream.Error arg -> List [Atom "Stream.Error"; Atom arg ] | _ -> assert false) );( [%extension_constructor Sys.Break], (function | Sys.Break -> Atom "Sys.Break" | _ -> assert false) );( [%extension_constructor Of_sexp_error], (function | Of_sexp_error (exc, sexp) -> List [Atom "Sexplib.Conv.Of_sexp_error"; sexp_of_exn exc; sexp] | _ -> assert false) ); ] external ignore : _ -> unit = "%ignore" external ( = ) : 'a -> 'a -> bool = "%equal"