Source file opamFormula.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
type relop = [`Eq|`Neq|`Geq|`Gt|`Leq|`Lt]
let neg_relop = function
| `Eq -> `Neq
| `Neq -> `Eq
| `Geq -> `Lt
| `Gt -> `Leq
| `Leq -> `Gt
| `Lt -> `Geq
type version_constraint = relop * OpamPackage.Version.t
type atom = OpamPackage.Name.t * version_constraint option
let string_of_atom = function
| n, None -> OpamPackage.Name.to_string n
| n, Some (r,c) ->
Printf.sprintf "%s (%s %s)"
(OpamPackage.Name.to_string n)
(OpamPrinter.relop r)
(OpamPackage.Version.to_string c)
let short_string_of_atom = function
| n, None -> OpamPackage.Name.to_string n
| n, Some (`Eq,c) ->
Printf.sprintf "%s.%s"
(OpamPackage.Name.to_string n)
(OpamPackage.Version.to_string c)
| n, Some (r,c) ->
Printf.sprintf "%s%s%s"
(OpamPackage.Name.to_string n)
(OpamPrinter.relop r)
(OpamPackage.Version.to_string c)
let string_of_atoms atoms =
OpamStd.List.concat_map " & " short_string_of_atom atoms
type 'a conjunction = 'a list
let string_of_conjunction string_of_atom c =
Printf.sprintf "(%s)" (OpamStd.List.concat_map " & " string_of_atom c)
type 'a disjunction = 'a list
let string_of_disjunction string_of_atom c =
Printf.sprintf "(%s)" (OpamStd.List.concat_map " | " string_of_atom c)
type 'a cnf = 'a list list
let string_of_cnf string_of_atom cnf =
let string_of_clause c =
let left, right = match c with [_] -> "", "" | _ -> "(", ")" in
OpamStd.List.concat_map ~left ~right " | " string_of_atom c
in
OpamStd.List.concat_map " & " string_of_clause cnf
type 'a dnf = 'a list list
let string_of_dnf string_of_atom cnf =
let string_of_clause c =
let left, right = match c with [_] -> "", "" | _ -> "(", ")" in
OpamStd.List.concat_map ~left ~right " & " string_of_atom c
in
OpamStd.List.concat_map " | " string_of_clause cnf
type 'a formula =
| Empty
| Atom of 'a
| Block of 'a formula
| And of 'a formula * 'a formula
| Or of 'a formula * 'a formula
let make_and a b = match a, b with
| Empty, r | r, Empty -> r
| a, b -> And (a, b)
let make_or a b = match a, b with
| Empty, r | r, Empty -> r
| a, b -> Or (a, b)
let string_of_formula string_of_a f =
let rec aux ?(in_and=false) f =
let paren_if ?(cond=false) s =
if cond || OpamFormatConfig.(!r.all_parens)
then Printf.sprintf "(%s)" s
else s
in
match f with
| Empty -> "0"
| Atom a -> paren_if (string_of_a a)
| Block x -> Printf.sprintf "(%s)" (aux x)
| And(x,y) ->
paren_if
(Printf.sprintf "%s & %s"
(aux ~in_and:true x) (aux ~in_and:true y))
| Or(x,y) ->
paren_if ~cond:in_and
(Printf.sprintf "%s | %s" (aux x) (aux y))
in
aux f
let rec map f = function
| Empty -> Empty
| Atom x -> f x
| And(x,y) -> make_and (map f x) (map f y)
| Or(x,y) -> make_or (map f x) (map f y)
| Block x ->
match map f x with
| Empty -> Empty
| x -> Block x
let rec map_formula f t =
let t = f t in
match t with
| Block x -> Block (map_formula f x)
| And(x,y) -> make_and (map_formula f x) (map_formula f y)
| Or(x,y) -> make_or (map_formula f x) (map_formula f y)
| x -> x
let rec map_up_formula f t =
let t = match t with
| Block x -> f (Block (map_up_formula f x))
| And(x,y) -> f (make_and (map_up_formula f x) (map_up_formula f y))
| Or(x,y) -> f (make_or (map_up_formula f x) (map_up_formula f y))
| Atom x -> f (Atom x)
| Empty -> Empty
in
f t
let neg neg_atom =
map_formula
(function
| And(x,y) -> Or(x,y)
| Or(x,y) -> And(x,y)
| Atom x -> Atom (neg_atom x)
| x -> x)
let rec iter f = function
| Empty -> ()
| Atom x -> f x
| Block x -> iter f x
| And(x,y) -> iter f x; iter f y
| Or(x,y) -> iter f x; iter f y
let rec fold_left f i = function
| Empty -> i
| Atom x -> f i x
| Block x -> fold_left f i x
| And(x,y) -> fold_left f (fold_left f i x) y
| Or(x,y) -> fold_left f (fold_left f i x) y
let rec fold_right f i = function
| Empty -> i
| Atom x -> f i x
| Block x -> fold_right f i x
| And(x,y) -> fold_right f (fold_right f i y) x
| Or(x,y) -> fold_right f (fold_right f i y) x
type version_formula = version_constraint formula
type t = (OpamPackage.Name.t * version_formula) formula
let rec eval atom = function
| Empty -> true
| Atom x -> atom x
| Block x -> eval atom x
| And(x,y) -> eval atom x && eval atom y
| Or(x,y) -> eval atom x || eval atom y
let rec partial_eval atom = function
| Empty -> `Formula Empty
| Atom x -> atom x
| And(x,y) ->
(match partial_eval atom x, partial_eval atom y with
| `False, _ | _, `False -> `False
| `True, f | f, `True -> f
| `Formula x, `Formula y -> `Formula (And (x,y)))
| Or(x,y) ->
(match partial_eval atom x, partial_eval atom y with
| `True, _ | _, `True -> `True
| `False, f | f, `False -> f
| `Formula x, `Formula y -> `Formula (Or (x,y)))
| Block x -> partial_eval atom x
let check_relop relop c = match relop with
| `Eq -> c = 0
| `Neq -> c <> 0
| `Geq -> c >= 0
| `Gt -> c > 0
| `Leq -> c <= 0
| `Lt -> c < 0
let eval_relop relop v1 v2 =
check_relop relop (OpamPackage.Version.compare v1 v2)
let check_version_formula f v =
eval (fun (relop, vref) -> eval_relop relop v vref) f
let check (name,cstr) package =
name = OpamPackage.name package &&
match cstr with
| None -> true
| Some (relop, v) -> eval_relop relop (OpamPackage.version package) v
let packages_of_atoms pkgset atoms =
let by_name =
List.fold_left (fun acc (n,_ as atom) ->
OpamPackage.Name.Map.update n (fun a -> atom::a) [] acc)
OpamPackage.Name.Map.empty atoms
in
OpamPackage.Name.Map.fold (fun name atoms acc ->
OpamPackage.Set.union acc @@
OpamPackage.Set.filter
(fun nv -> List.for_all (fun a -> check a nv) atoms)
(OpamPackage.packages_of_name pkgset name))
by_name OpamPackage.Set.empty
let to_string t =
let string_of_constraint (relop, version) =
Printf.sprintf "%s %s" (OpamPrinter.relop relop)
(OpamPackage.Version.to_string version) in
let string_of_pkg = function
| n, Empty -> OpamPackage.Name.to_string n
| n, (Atom _ as c) ->
Printf.sprintf "%s %s"
(OpamPackage.Name.to_string n)
(string_of_formula string_of_constraint c)
| n, c ->
Printf.sprintf "%s (%s)"
(OpamPackage.Name.to_string n)
(string_of_formula string_of_constraint c) in
string_of_formula string_of_pkg t
let cnf_of_formula t =
let rec mk_left x y = match y with
| Block y -> mk_left x y
| And (a,b) -> And (mk_left x a, mk_left x b)
| Empty -> x
| _ -> Or (x,y) in
let rec mk_right x y = match x with
| Block x -> mk_right x y
| And (a,b) -> And (mk_right a y, mk_right b y)
| Empty -> y
| _ -> mk_left x y in
let rec mk = function
| Empty -> Empty
| Block x -> mk x
| Atom x -> Atom x
| And (x,y) -> And (mk x, mk y)
| Or (x,y) -> mk_right (mk x) (mk y) in
mk t
let dnf_of_formula t =
let rec mk_left x y = match y with
| Block y -> mk_left x y
| Or (a,b) -> Or (mk_left x a, mk_left x b)
| _ -> And (x,y) in
let rec mk_right x y = match x with
| Block x -> mk_right x y
| Or (a,b) -> Or (mk_right a y, mk_right b y)
| _ -> mk_left x y in
let rec mk = function
| Empty -> Empty
| Block x -> mk x
| Atom x -> Atom x
| Or (x,y) -> Or (mk x, mk y)
| And (x,y) -> mk_right (mk x) (mk y) in
mk t
let verifies f nv =
let name_formula =
map (fun ((n, _) as a) -> if n = OpamPackage.name nv then Atom a else Empty)
(dnf_of_formula f)
in
name_formula <> Empty &&
eval (fun (_name, cstr) ->
check_version_formula cstr (OpamPackage.version nv))
name_formula
let packages pkgset f =
let names =
fold_left (fun acc (name, _) ->
OpamPackage.Name.Set.add name acc)
OpamPackage.Name.Set.empty f
in
let dnf = dnf_of_formula f in
OpamPackage.Name.Set.fold (fun name acc ->
let name_formula =
map (fun ((n, _) as a) -> if n = name then Atom a else Empty) dnf
in
OpamPackage.Set.union acc @@
OpamPackage.Set.filter (fun nv ->
let v = OpamPackage.version nv in
eval (fun (_name, cstr) -> check_version_formula cstr v)
name_formula)
(OpamPackage.packages_of_name pkgset name))
names OpamPackage.Set.empty
let to_atom_formula (t:t): atom formula =
map (fun (x, c) -> match c with
| Empty -> Atom (x, None)
| cs -> map (fun c -> Atom (x, Some c)) cs)
t
let of_atom_formula (a:atom formula): t =
let atom (n, v) =
match v with
| None -> Atom (n, Empty)
| Some (r,v) -> Atom (n, Atom (r,v)) in
map atom a
let ands l = List.fold_left make_and Empty l
let rec ands_to_list = function
| Empty -> []
| And (e,f) ->
List.rev_append (rev_ands_to_list e) (ands_to_list f)
| Block f -> ands_to_list f
| x -> [x]
and rev_ands_to_list = function
| Empty -> []
| Block f -> rev_ands_to_list f
| And (e,f) ->
List.rev_append (ands_to_list f) (rev_ands_to_list e)
| x -> [x]
let of_conjunction c =
of_atom_formula (ands (List.rev_map (fun x -> Atom x) c))
let ors l = List.fold_left make_or Empty l
let rec ors_to_list = function
| Empty -> []
| Or (e,f) ->
List.rev_append (rev_ors_to_list e) (ors_to_list f)
| Block f -> ors_to_list f
| x -> [x]
and rev_ors_to_list = function
| Empty -> []
| Or (e,f) ->
List.rev_append (ors_to_list f) (rev_ors_to_list e)
| Block f -> rev_ors_to_list f
| x -> [x]
let is_conjunction t =
let rec aux = function
| Or _ -> false
| And (a,b) -> aux a && aux b
| Block a -> aux a
| _ -> true
in
aux t
let is_disjunction t =
let rec aux = function
| And _ -> false
| Or (a,b) -> aux a && aux b
| Block a -> aux a
| _ -> true
in
aux t
let atoms t =
fold_right (fun accu x -> x::accu) [] (to_atom_formula t)
let to_cnf t =
let atf = to_atom_formula t in
let atoms = fold_right (fun acc a -> a::acc) [] in
let conj = rev_ands_to_list atf in
if List.for_all is_disjunction conj then
List.rev_map atoms conj
else
List.rev_map atoms @@ rev_ands_to_list @@ cnf_of_formula atf
let to_dnf t =
let atf = to_atom_formula t in
let atoms = fold_right (fun acc a -> a::acc) [] in
let disj = rev_ors_to_list atf in
if List.for_all is_conjunction disj then
List.rev_map atoms disj
else
List.rev_map atoms @@ rev_ors_to_list @@ dnf_of_formula atf
let to_conjunction t =
if is_conjunction t then atoms t
else failwith (Printf.sprintf "%s is not a valid conjunction" (to_string t))
let to_disjunction t =
if is_disjunction t then atoms t
else failwith (Printf.sprintf "%s is not a valid disjunction" (to_string t))
let of_disjunction d =
of_atom_formula (ors (List.rev_map (fun x -> Atom x) d))
let get_disjunction_formula version_set cstr =
List.rev_map (fun ff ->
match ands_to_list ff with
| [] -> assert false
| [Atom _] as at -> at
| _ ->
OpamPackage.Version.Set.filter (check_version_formula ff) version_set |>
OpamPackage.Version.Set.elements |>
List.map (fun v -> Atom (`Eq, v)))
(rev_ors_to_list cstr) |>
List.flatten
let set_to_disjunction set t =
List.map (function
| And _ ->
failwith (Printf.sprintf "%s is not a valid disjunction" (to_string t))
| Or _ | Block _ | Empty -> assert false
| Atom (name, Empty) -> [name, None]
| Atom (name, Atom a) -> [name, Some a]
| Atom (name, cstr) ->
get_disjunction_formula
(OpamPackage.versions_of_name set name)
cstr |>
List.map (function
| Atom (relop, v) -> name, Some (relop, v)
| _ -> assert false))
(ors_to_list t) |>
List.flatten
let simplify_ineq_formula vcomp f =
let vals = fold_left (fun acc (_op, x) -> x::acc) [] f in
let vals = List.sort_uniq vcomp vals in
let vals_a = Array.of_list vals in
let val_of_int i = vals_a.(i/2) in
let int_of_val =
let m = List.mapi (fun i v -> v, 2 * i + 1) vals in
fun v -> List.assoc v m
in
let rec mk_ranges acc n = if n < 0 then acc else mk_ranges (n::acc) (n-1) in
let ranges = mk_ranges [] (2 * Array.length vals_a + 2) in
let int_formula = map (fun (op, x) -> Atom (op, int_of_val x)) f in
let vals =
List.map (fun i ->
eval (fun (relop, iref) -> check_relop relop (i - iref)) int_formula,
i)
ranges
in
if List.for_all (fun (t, _) -> not t) vals then None else
let rec aux = function
| (true, _) :: ((true, _) :: _ as r) -> aux r
| (false, _) :: ((false, _) :: _ as r) -> aux r
| (true, _) :: (false, x) :: ((true, _) :: _ as r) when x mod 2 = 1 ->
(`Neq, x) :: aux r
| (false, _) :: (true, x) :: ((false, _) :: _ as r) when x mod 2 = 1 ->
(`Eq, x) :: aux r
| (true, _) :: ((false, x) :: _ as r) ->
(if x mod 2 = 1 then `Lt, x else `Leq, x-1) :: aux r
| (false, _) :: ((true, x) :: _ as r) ->
(if x mod 2 = 1 then `Geq, x else `Gt, x-1) :: aux r
| [_] | []-> []
in
let rec aux2 = function
| (`Geq|`Gt|`Neq as op, i) :: r ->
let rec find_upper acc = function
| (`Leq|`Lt as op, i) :: r ->
ands (List.rev_append acc [Atom (op, val_of_int i)]) :: aux2 r
| (`Neq, i) :: r ->
find_upper (Atom (`Neq, val_of_int i) :: acc) r
| r -> ands (List.rev acc) :: aux2 r
in
find_upper [Atom (op, val_of_int i)] r
| (op, i) :: r -> Atom (op, val_of_int i) :: aux2 r
| [] -> [Empty]
in
Some (ors (aux2 (aux vals)))
let simplify_version_formula f =
simplify_ineq_formula OpamPackage.Version.compare f
(** Takes an ordered list of atoms and a predicate, returns a formula describing
the subset of matching atoms *)
let gen_formula l f =
let l = List.map (fun x -> f x, x) l in
let rec aux (t, x as bound) l = match t, l with
| true, (false, y) :: (true, _) :: r
| false, (true, y) :: (false, _) :: r ->
let a = (if t then `Neq else `Eq), y in
(match aux bound r with
| b :: r -> b :: a :: r
| r -> a :: r)
| true, (true, _) :: r
| false, (false, _) :: r ->
aux bound r
| true, (false, _ as bound') :: r
| false, (true, _ as bound') :: r ->
((if t then `Geq else `Lt), x) :: aux bound' r
| _, [] -> [(if t then `Geq else `Lt), x]
in
let rec aux2 = function
| (`Geq|`Neq), _ as a :: r ->
let rec find_upper acc = function
| `Lt, _ as a :: r ->
ands (List.rev_append acc [Atom a]) :: aux2 r
| `Neq, _ as a :: r ->
find_upper (Atom a :: acc) r
| r -> ands (List.rev acc) :: aux2 r
in
find_upper [Atom a] r
| a :: r -> Atom a :: aux2 r
| [] -> [Empty]
in
match l with
| [] -> Some Empty
| (t, x) :: r ->
match aux (t, x) r with
| [] -> assert false
| [`Geq, _] -> Some Empty
| [`Lt, _] -> None
| _ :: r -> Some (ors (aux2 r))
let formula_of_version_set set subset =
match
gen_formula
(OpamPackage.Version.Set.elements set)
(fun x -> OpamPackage.Version.Set.mem x subset)
with
| Some f -> f
| None -> invalid_arg "Empty subset"
let simplify_version_set set f =
let module S = OpamPackage.Version.Set in
if S.is_empty set then Empty else
let set = fold_left (fun set (_relop, v) -> S.add v set) set f in
gen_formula (S.elements set) (check_version_formula f) |>
OpamStd.Option.default f