Source file v3.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
# 1 "v3.in.ml"
module type T = sig
module CamlinternalFormatBasics : module type of struct
include Tezos_protocol_environment_sigs_internals.CamlinternalFormatBasics
end
module Pervasives : sig
# 1 "v3/pervasives.mli"
(** The OCaml Standard library.
This module is automatically opened at the beginning of each
compilation. All components of this module can therefore be
referred by their short name, without prefixing them by [Stdlib].
It particular, it provides the basic operations over the built-in
types (numbers, booleans, byte sequences, strings, exceptions,
references, lists, arrays, input-output channels, ...) and the
{{!modules}standard library modules}.
*)
(** {1 Exceptions} *)
external raise : exn -> 'a = "%raise"
(** Raise the given exception value *)
external raise_notrace : exn -> 'a = "%raise_notrace"
(** A faster version [raise] which does not record the backtrace.
@since 4.02.0
*)
val invalid_arg : string -> 'a
(** Raise exception [Invalid_argument] with the given string. *)
val failwith : string -> 'a
(** Raise exception [Failure] with the given string. *)
exception Exit
(** The [Exit] exception is not raised by any library function. It is
provided for use in your programs. *)
(** {1 Boolean operations} *)
external not : bool -> bool = "%boolnot"
(** The boolean negation. *)
external ( && ) : bool -> bool -> bool = "%sequand"
(** The boolean 'and'. Evaluation is sequential, left-to-right:
in [e1 && e2], [e1] is evaluated first, and if it returns [false],
[e2] is not evaluated at all.
Right-associative operator, see {!Ocaml_operators} for more information.
*)
external ( || ) : bool -> bool -> bool = "%sequor"
(** The boolean 'or'. Evaluation is sequential, left-to-right:
in [e1 || e2], [e1] is evaluated first, and if it returns [true],
[e2] is not evaluated at all.
Right-associative operator, see {!Ocaml_operators} for more information.
*)
(** {1 Debugging} *)
external __LOC__ : string = "%loc_LOC"
(** [__LOC__] returns the location at which this expression appears in
the file currently being parsed by the compiler, with the standard
error format of OCaml: "File %S, line %d, characters %d-%d".
@since 4.02.0
*)
external __FILE__ : string = "%loc_FILE"
(** [__FILE__] returns the name of the file currently being
parsed by the compiler.
@since 4.02.0
*)
external __LINE__ : int = "%loc_LINE"
(** [__LINE__] returns the line number at which this expression
appears in the file currently being parsed by the compiler.
@since 4.02.0
*)
external __MODULE__ : string = "%loc_MODULE"
(** [__MODULE__] returns the module name of the file being
parsed by the compiler.
@since 4.02.0
*)
external __POS__ : string * int * int * int = "%loc_POS"
(** [__POS__] returns a tuple [(file,lnum,cnum,enum)], corresponding
to the location at which this expression appears in the file
currently being parsed by the compiler. [file] is the current
filename, [lnum] the line number, [cnum] the character position in
the line and [enum] the last character position in the line.
@since 4.02.0
*)
external __LOC_OF__ : 'a -> string * 'a = "%loc_LOC"
(** [__LOC_OF__ expr] returns a pair [(loc, expr)] where [loc] is the
location of [expr] in the file currently being parsed by the
compiler, with the standard error format of OCaml: "File %S, line
%d, characters %d-%d".
@since 4.02.0
*)
external __LINE_OF__ : 'a -> int * 'a = "%loc_LINE"
(** [__LINE_OF__ expr] returns a pair [(line, expr)], where [line] is the
line number at which the expression [expr] appears in the file
currently being parsed by the compiler.
@since 4.02.0
*)
external __POS_OF__ : 'a -> (string * int * int * int) * 'a = "%loc_POS"
(** [__POS_OF__ expr] returns a pair [(loc,expr)], where [loc] is a
tuple [(file,lnum,cnum,enum)] corresponding to the location at
which the expression [expr] appears in the file currently being
parsed by the compiler. [file] is the current filename, [lnum] the
line number, [cnum] the character position in the line and [enum]
the last character position in the line.
@since 4.02.0
*)
(** {1 Composition operators} *)
external ( |> ) : 'a -> ('a -> 'b) -> 'b = "%revapply"
(** Reverse-application operator: [x |> f |> g] is exactly equivalent
to [g (f (x))].
Left-associative operator, see {!Ocaml_operators} for more information.
@since 4.01
*)
external ( @@ ) : ('a -> 'b) -> 'a -> 'b = "%apply"
(** Application operator: [g @@ f @@ x] is exactly equivalent to
[g (f (x))].
Right-associative operator, see {!Ocaml_operators} for more information.
@since 4.01
*)
(** {1 Integer arithmetic} *)
(** Integers are [Sys.int_size] bits wide.
All operations are taken modulo 2{^[Sys.int_size]}.
They do not fail on overflow. *)
external ( ~- ) : int -> int = "%negint"
(** Unary negation. You can also write [- e] instead of [~- e].
Unary operator, see {!Ocaml_operators} for more information.
*)
external ( ~+ ) : int -> int = "%identity"
(** Unary addition. You can also write [+ e] instead of [~+ e].
Unary operator, see {!Ocaml_operators} for more information.
@since 3.12.0
*)
external succ : int -> int = "%succint"
(** [succ x] is [x + 1]. *)
external pred : int -> int = "%predint"
(** [pred x] is [x - 1]. *)
external ( + ) : int -> int -> int = "%addint"
(** Integer addition.
Left-associative operator, see {!Ocaml_operators} for more information.
*)
external ( - ) : int -> int -> int = "%subint"
(** Integer subtraction.
Left-associative operator, , see {!Ocaml_operators} for more information.
*)
external ( * ) : int -> int -> int = "%mulint"
(** Integer multiplication.
Left-associative operator, see {!Ocaml_operators} for more information.
*)
external ( / ) : int -> int -> int = "%divint"
(** Integer division.
Raise [Division_by_zero] if the second argument is 0.
Integer division rounds the real quotient of its arguments towards zero.
More precisely, if [x >= 0] and [y > 0], [x / y] is the greatest integer
less than or equal to the real quotient of [x] by [y]. Moreover,
[(- x) / y = x / (- y) = - (x / y)].
Left-associative operator, see {!Ocaml_operators} for more information.
*)
external ( mod ) : int -> int -> int = "%modint"
(** Integer remainder. If [y] is not zero, the result
of [x mod y] satisfies the following properties:
[x = (x / y) * y + x mod y] and
[abs(x mod y) <= abs(y) - 1].
If [y = 0], [x mod y] raises [Division_by_zero].
Note that [x mod y] is negative only if [x < 0].
Raise [Division_by_zero] if [y] is zero.
Left-associative operator, see {!Ocaml_operators} for more information.
*)
val abs : int -> int
(** Return the absolute value of the argument. Note that this may be
negative if the argument is [min_int]. *)
val max_int : int
(** The greatest representable integer. *)
val min_int : int
(** The smallest representable integer. *)
(** {2 Bitwise operations} *)
external ( land ) : int -> int -> int = "%andint"
(** Bitwise logical and.
Left-associative operator, see {!Ocaml_operators} for more information.
*)
external ( lor ) : int -> int -> int = "%orint"
(** Bitwise logical or.
Left-associative operator, see {!Ocaml_operators} for more information.
*)
external ( lxor ) : int -> int -> int = "%xorint"
(** Bitwise logical exclusive or.
Left-associative operator, see {!Ocaml_operators} for more information.
*)
val lnot : int -> int
(** Bitwise logical negation. *)
external ( lsl ) : int -> int -> int = "%lslint"
(** [n lsl m] shifts [n] to the left by [m] bits.
The result is unspecified if [m < 0] or [m > Sys.int_size].
Right-associative operator, see {!Ocaml_operators} for more information.
*)
external ( lsr ) : int -> int -> int = "%lsrint"
(** [n lsr m] shifts [n] to the right by [m] bits.
This is a logical shift: zeroes are inserted regardless of
the sign of [n].
The result is unspecified if [m < 0] or [m > Sys.int_size].
Right-associative operator, see {!Ocaml_operators} for more information.
*)
external ( asr ) : int -> int -> int = "%asrint"
(** [n asr m] shifts [n] to the right by [m] bits.
This is an arithmetic shift: the sign bit of [n] is replicated.
The result is unspecified if [m < 0] or [m > Sys.int_size].
Right-associative operator, see {!Ocaml_operators} for more information.
*)
(** {1 String operations}
More string operations are provided in module {!String}.
*)
val ( ^ ) : string -> string -> string
(** String concatenation.
Right-associative operator, see {!Ocaml_operators} for more information.
*)
(** {1 Character operations}
More character operations are provided in module {!Char}.
*)
external int_of_char : char -> int = "%identity"
(** Return the ASCII code of the argument. *)
val char_of_int : int -> char
(** Return the character with the given ASCII code.
Raise [Invalid_argument "char_of_int"] if the argument is
outside the range 0--255. *)
(** {1 Unit operations} *)
external ignore : 'a -> unit = "%ignore"
(** Discard the value of its argument and return [()].
For instance, [ignore(f x)] discards the result of
the side-effecting function [f]. It is equivalent to
[f x; ()], except that the latter may generate a
compiler warning; writing [ignore(f x)] instead
avoids the warning. *)
(** {1 String conversion functions} *)
val string_of_bool : bool -> string
(** Return the string representation of a boolean. As the returned values
may be shared, the user should not modify them directly.
*)
val bool_of_string_opt: string -> bool option
(** Convert the given string to a boolean.
Return [None] if the string is not ["true"] or ["false"].
@since 4.05
*)
val string_of_int : int -> string
(** Return the string representation of an integer, in decimal. *)
val int_of_string_opt: string -> int option
(** Convert the given string to an integer.
The string is read in decimal (by default, or if the string
begins with [0u]), in hexadecimal (if it begins with [0x] or
[0X]), in octal (if it begins with [0o] or [0O]), or in binary
(if it begins with [0b] or [0B]).
The [0u] prefix reads the input as an unsigned integer in the range
[[0, 2*max_int+1]]. If the input exceeds {!max_int}
it is converted to the signed integer
[min_int + input - max_int - 1].
The [_] (underscore) character can appear anywhere in the string
and is ignored.
Return [None] if the given string is not a valid representation of an
integer, or if the integer represented exceeds the range of integers
representable in type [int].
@since 4.05
*)
(** {1 Pair operations} *)
external fst : 'a * 'b -> 'a = "%field0"
(** Return the first component of a pair. *)
external snd : 'a * 'b -> 'b = "%field1"
(** Return the second component of a pair. *)
(** {1 List operations}
More list operations are provided in module {!List}.
*)
val ( @ ) : 'a list -> 'a list -> 'a list
(** List concatenation. Not tail-recursive (length of the first argument).
Right-associative operator, see {!Ocaml_operators} for more information.
*)
(** {1 References} *)
type 'a ref = { mutable contents : 'a }
(** The type of references (mutable indirection cells) containing
a value of type ['a]. *)
external ref : 'a -> 'a ref = "%makemutable"
(** Return a fresh reference containing the given value. *)
external ( ! ) : 'a ref -> 'a = "%field0"
(** [!r] returns the current contents of reference [r].
Equivalent to [fun r -> r.contents].
Unary operator, see {!Ocaml_operators} for more information.
*)
external ( := ) : 'a ref -> 'a -> unit = "%setfield0"
(** [r := a] stores the value of [a] in reference [r].
Equivalent to [fun r v -> r.contents <- v].
Right-associative operator, see {!Ocaml_operators} for more information.
*)
external incr : int ref -> unit = "%incr"
(** Increment the integer contained in the given reference.
Equivalent to [fun r -> r := succ !r]. *)
external decr : int ref -> unit = "%decr"
(** Decrement the integer contained in the given reference.
Equivalent to [fun r -> r := pred !r]. *)
(** {1 Result type} *)
(** @since 4.03.0 *)
type ('a,'b) result = Ok of 'a | Error of 'b
(** {1 Operations on format strings} *)
(** Format strings are character strings with special lexical conventions
that defines the functionality of formatted input/output functions. Format
strings are used to read data with formatted input functions from module
{!Scanf} and to print data with formatted output functions from modules
{!Printf} and {!Format}.
Format strings are made of three kinds of entities:
- {e conversions specifications}, introduced by the special character ['%']
followed by one or more characters specifying what kind of argument to
read or print,
- {e formatting indications}, introduced by the special character ['@']
followed by one or more characters specifying how to read or print the
argument,
- {e plain characters} that are regular characters with usual lexical
conventions. Plain characters specify string literals to be read in the
input or printed in the output.
There is an additional lexical rule to escape the special characters ['%']
and ['@'] in format strings: if a special character follows a ['%']
character, it is treated as a plain character. In other words, ["%%"] is
considered as a plain ['%'] and ["%@"] as a plain ['@'].
For more information about conversion specifications and formatting
indications available, read the documentation of modules {!Scanf},
{!Printf} and {!Format}.
*)
(** Format strings have a general and highly polymorphic type
[('a, 'b, 'c, 'd, 'e, 'f) format6].
The two simplified types, [format] and [format4] below are
included for backward compatibility with earlier releases of
OCaml.
The meaning of format string type parameters is as follows:
- ['a] is the type of the parameters of the format for formatted output
functions ([printf]-style functions);
['a] is the type of the values read by the format for formatted input
functions ([scanf]-style functions).
- ['b] is the type of input source for formatted input functions and the
type of output target for formatted output functions.
For [printf]-style functions from module {!Printf}, ['b] is typically
[out_channel];
for [printf]-style functions from module {!Format}, ['b] is typically
{!Format.formatter};
for [scanf]-style functions from module {!Scanf}, ['b] is typically
{!Scanf.Scanning.in_channel}.
Type argument ['b] is also the type of the first argument given to
user's defined printing functions for [%a] and [%t] conversions,
and user's defined reading functions for [%r] conversion.
- ['c] is the type of the result of the [%a] and [%t] printing
functions, and also the type of the argument transmitted to the
first argument of [kprintf]-style functions or to the
[kscanf]-style functions.
- ['d] is the type of parameters for the [scanf]-style functions.
- ['e] is the type of the receiver function for the [scanf]-style functions.
- ['f] is the final result type of a formatted input/output function
invocation: for the [printf]-style functions, it is typically [unit];
for the [scanf]-style functions, it is typically the result type of the
receiver function.
*)
type ('a, 'b, 'c, 'd, 'e, 'f) format6 =
('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.format6
type ('a, 'b, 'c, 'd) format4 = ('a, 'b, 'c, 'c, 'c, 'd) format6
type ('a, 'b, 'c) format = ('a, 'b, 'c, 'c) format4
val string_of_format : ('a, 'b, 'c, 'd, 'e, 'f) format6 -> string
(** Converts a format string into a string. *)
external format_of_string :
('a, 'b, 'c, 'd, 'e, 'f) format6 ->
('a, 'b, 'c, 'd, 'e, 'f) format6 = "%identity"
(** [format_of_string s] returns a format string read from the string
literal [s].
Note: [format_of_string] can not convert a string argument that is not a
literal. If you need this functionality, use the more general
{!Scanf.format_from_string} function.
*)
val ( ^^ ) :
('a, 'b, 'c, 'd, 'e, 'f) format6 ->
('f, 'b, 'c, 'e, 'g, 'h) format6 ->
('a, 'b, 'c, 'd, 'g, 'h) format6
(** [f1 ^^ f2] catenates format strings [f1] and [f2]. The result is a
format string that behaves as the concatenation of format strings [f1] and
[f2]: in case of formatted output, it accepts arguments from [f1], then
arguments from [f2]; in case of formatted input, it returns results from
[f1], then results from [f2].
Right-associative operator, see {!Ocaml_operators} for more information.
*)
end
# 6 "v3.in.ml"
open Pervasives
module String : sig
# 1 "v3/string.mli"
(** String operations.
A string is an immutable data structure that contains a
fixed-length sequence of (single-byte) characters. Each character
can be accessed in constant time through its index.
Given a string [s] of length [l], we can access each of the [l]
characters of [s] via its index in the sequence. Indexes start at
[0], and we will call an index valid in [s] if it falls within the
range [[0...l-1]] (inclusive). A position is the point between two
characters or at the beginning or end of the string. We call a
position valid in [s] if it falls within the range [[0...l]]
(inclusive). Note that the character at index [n] is between
positions [n] and [n+1].
Two parameters [start] and [len] are said to designate a valid
substring of [s] if [len >= 0] and [start] and [start+len] are
valid positions in [s].
Note: OCaml strings used to be modifiable in place, for instance via
the {!String.set} and {!String.blit} functions described below. This
usage is only possible when the compiler is put in "unsafe-string"
mode by giving the [-unsafe-string] command-line option. This
compatibility mode makes the types [string] and [bytes] (see module
{!Bytes}) interchangeable so that functions expecting byte sequences
can also accept strings as arguments and modify them.
The distinction between [bytes] and [string] was introduced in OCaml
4.02, and the "unsafe-string" compatibility mode was the default
until OCaml 4.05. Starting with 4.06, the compatibility mode is
opt-in; we intend to remove the option in the future.
*)
external length : string -> int = "%string_length"
(** Return the length (number of characters) of the given string. *)
external get : string -> int -> char = "%string_safe_get"
(** [String.get s n] returns the character at index [n] in string [s].
You can also write [s.[n]] instead of [String.get s n].
Raise [Invalid_argument] if [n] not a valid index in [s]. *)
val make : int -> char -> string
(** [String.make n c] returns a fresh string of length [n],
filled with the character [c].
Raise [Invalid_argument] if [n < 0] or [n > ]{!Sys.max_string_length}. *)
val init : int -> (int -> char) -> string
(** [String.init n f] returns a string of length [n], with character
[i] initialized to the result of [f i] (called in increasing
index order).
Raise [Invalid_argument] if [n < 0] or [n > ]{!Sys.max_string_length}.
@since 4.02.0
*)
val sub : string -> int -> int -> string
(** [String.sub s start len] returns a fresh string of length [len],
containing the substring of [s] that starts at position [start] and
has length [len].
Raise [Invalid_argument] if [start] and [len] do not
designate a valid substring of [s]. *)
val blit : string -> int -> bytes -> int -> int -> unit
(** Same as {!Bytes.blit_string}. *)
val concat : string -> string list -> string
(** [String.concat sep sl] concatenates the list of strings [sl],
inserting the separator string [sep] between each.
Raise [Invalid_argument] if the result is longer than
{!Sys.max_string_length} bytes. *)
val iter : (char -> unit) -> string -> unit
(** [String.iter f s] applies function [f] in turn to all
the characters of [s]. It is equivalent to
[f s.[0]; f s.[1]; ...; f s.[String.length s - 1]; ()]. *)
val iteri : (int -> char -> unit) -> string -> unit
(** Same as {!String.iter}, but the
function is applied to the index of the element as first argument
(counting from 0), and the character itself as second argument.
@since 4.00.0 *)
val map : (char -> char) -> string -> string
(** [String.map f s] applies function [f] in turn to all the
characters of [s] (in increasing index order) and stores the
results in a new string that is returned.
@since 4.00.0 *)
val mapi : (int -> char -> char) -> string -> string
(** [String.mapi f s] calls [f] with each character of [s] and its
index (in increasing index order) and stores the results in a new
string that is returned.
@since 4.02.0 *)
val trim : string -> string
(** Return a copy of the argument, without leading and trailing
whitespace. The characters regarded as whitespace are: [' '],
['\012'], ['\n'], ['\r'], and ['\t']. If there is neither leading nor
trailing whitespace character in the argument, return the original
string itself, not a copy.
@since 4.00.0 *)
val escaped : string -> string
(** Return a copy of the argument, with special characters
represented by escape sequences, following the lexical
conventions of OCaml.
All characters outside the ASCII printable range (32..126) are
escaped, as well as backslash and double-quote.
If there is no special character in the argument that needs
escaping, return the original string itself, not a copy.
Raise [Invalid_argument] if the result is longer than
{!Sys.max_string_length} bytes.
The function {!Scanf.unescaped} is a left inverse of [escaped],
i.e. [Scanf.unescaped (escaped s) = s] for any string [s] (unless
[escape s] fails). *)
val index_opt: string -> char -> int option
(** [String.index_opt s c] returns the index of the first
occurrence of character [c] in string [s], or
[None] if [c] does not occur in [s].
@since 4.05 *)
val rindex_opt: string -> char -> int option
(** [String.rindex_opt s c] returns the index of the last occurrence
of character [c] in string [s], or [None] if [c] does not occur in
[s].
@since 4.05 *)
val index_from_opt: string -> int -> char -> int option
(** [String.index_from_opt s i c] returns the index of the
first occurrence of character [c] in string [s] after position [i]
or [None] if [c] does not occur in [s] after position [i].
[String.index_opt s c] is equivalent to [String.index_from_opt s 0 c].
Raise [Invalid_argument] if [i] is not a valid position in [s].
@since 4.05
*)
val rindex_from_opt: string -> int -> char -> int option
(** [String.rindex_from_opt s i c] returns the index of the
last occurrence of character [c] in string [s] before position [i+1]
or [None] if [c] does not occur in [s] before position [i+1].
[String.rindex_opt s c] is equivalent to
[String.rindex_from_opt s (String.length s - 1) c].
Raise [Invalid_argument] if [i+1] is not a valid position in [s].
@since 4.05
*)
val contains : string -> char -> bool
(** [String.contains s c] tests if character [c]
appears in the string [s]. *)
val contains_from : string -> int -> char -> bool
(** [String.contains_from s start c] tests if character [c]
appears in [s] after position [start].
[String.contains s c] is equivalent to
[String.contains_from s 0 c].
Raise [Invalid_argument] if [start] is not a valid position in [s]. *)
val rcontains_from : string -> int -> char -> bool
(** [String.rcontains_from s stop c] tests if character [c]
appears in [s] before position [stop+1].
Raise [Invalid_argument] if [stop < 0] or [stop+1] is not a valid
position in [s]. *)
val uppercase_ascii : string -> string
(** Return a copy of the argument, with all lowercase letters
translated to uppercase, using the US-ASCII character set.
@since 4.03.0 *)
val lowercase_ascii : string -> string
(** Return a copy of the argument, with all uppercase letters
translated to lowercase, using the US-ASCII character set.
@since 4.03.0 *)
val capitalize_ascii : string -> string
(** Return a copy of the argument, with the first character set to uppercase,
using the US-ASCII character set.
@since 4.03.0 *)
val uncapitalize_ascii : string -> string
(** Return a copy of the argument, with the first character set to lowercase,
using the US-ASCII character set.
@since 4.03.0 *)
type t = string
(** An alias for the type of strings. *)
val compare: t -> t -> int
(** The comparison function for strings, with the same specification as
{!Stdlib.compare}. Along with the type [t], this function [compare]
allows the module [String] to be passed as argument to the functors
{!Set.Make} and {!Map.Make}. *)
val equal: t -> t -> bool
(** The equal function for strings.
@since 4.03.0 *)
val split_on_char: char -> string -> string list
(** [String.split_on_char sep s] returns the list of all (possibly empty)
substrings of [s] that are delimited by the [sep] character.
The function's output is specified by the following invariants:
- The list is not empty.
- Concatenating its elements using [sep] as a separator returns a
string equal to the input ([String.concat (String.make 1 sep)
(String.split_on_char sep s) = s]).
- No string in the result contains the [sep] character.
@since 4.04.0
*)
end
# 10 "v3.in.ml"
module Char : sig
# 1 "v3/char.mli"
(** Character operations. *)
external code : char -> int = "%identity"
(** Return the ASCII code of the argument. *)
val chr : int -> char
(** Return the character with the given ASCII code.
Raise [Invalid_argument "Char.chr"] if the argument is
outside the range 0--255. *)
val escaped : char -> string
(** Return a string representing the given character,
with special characters escaped following the lexical conventions
of OCaml.
All characters outside the ASCII printable range (32..126) are
escaped, as well as backslash, double-quote, and single-quote. *)
val lowercase_ascii : char -> char
(** Convert the given character to its equivalent lowercase character,
using the US-ASCII character set.
@since 4.03.0 *)
val uppercase_ascii : char -> char
(** Convert the given character to its equivalent uppercase character,
using the US-ASCII character set.
@since 4.03.0 *)
type t = char
(** An alias for the type of characters. *)
val compare: t -> t -> int
(** The comparison function for characters, with the same specification as
{!Stdlib.compare}. Along with the type [t], this function [compare]
allows the module [Char] to be passed as argument to the functors
{!Set.Make} and {!Map.Make}. *)
val equal: t -> t -> bool
(** The equal function for chars.
@since 4.03.0 *)
end
# 12 "v3.in.ml"
module Bytes : sig
# 1 "v3/bytes.mli"
(** Byte sequence operations.
A byte sequence is a mutable data structure that contains a
fixed-length sequence of bytes. Each byte can be indexed in
constant time for reading or writing.
Given a byte sequence [s] of length [l], we can access each of the
[l] bytes of [s] via its index in the sequence. Indexes start at
[0], and we will call an index valid in [s] if it falls within the
range [[0...l-1]] (inclusive). A position is the point between two
bytes or at the beginning or end of the sequence. We call a
position valid in [s] if it falls within the range [[0...l]]
(inclusive). Note that the byte at index [n] is between positions
[n] and [n+1].
Two parameters [start] and [len] are said to designate a valid
range of [s] if [len >= 0] and [start] and [start+len] are valid
positions in [s].
Byte sequences can be modified in place, for instance via the [set]
and [blit] functions described below. See also strings (module
{!String}), which are almost the same data structure, but cannot be
modified in place.
Bytes are represented by the OCaml type [char].
@since 4.02.0
*)
external length : bytes -> int = "%bytes_length"
(** Return the length (number of bytes) of the argument. *)
external get : bytes -> int -> char = "%bytes_safe_get"
(** [get s n] returns the byte at index [n] in argument [s].
Raise [Invalid_argument] if [n] is not a valid index in [s]. *)
external set : bytes -> int -> char -> unit = "%bytes_safe_set"
(** [set s n c] modifies [s] in place, replacing the byte at index [n]
with [c].
Raise [Invalid_argument] if [n] is not a valid index in [s]. *)
val make : int -> char -> bytes
(** [make n c] returns a new byte sequence of length [n], filled with
the byte [c].
Raise [Invalid_argument] if [n < 0] or [n > ]{!Sys.max_string_length}. *)
val init : int -> (int -> char) -> bytes
(** [Bytes.init n f] returns a fresh byte sequence of length [n], with
character [i] initialized to the result of [f i] (in increasing
index order).
Raise [Invalid_argument] if [n < 0] or [n > ]{!Sys.max_string_length}. *)
val empty : bytes
(** A byte sequence of size 0. *)
val copy : bytes -> bytes
(** Return a new byte sequence that contains the same bytes as the
argument. *)
val of_string : string -> bytes
(** Return a new byte sequence that contains the same bytes as the
given string. *)
val to_string : bytes -> string
(** Return a new string that contains the same bytes as the given byte
sequence. *)
val sub : bytes -> int -> int -> bytes
(** [sub s start len] returns a new byte sequence of length [len],
containing the subsequence of [s] that starts at position [start]
and has length [len].
Raise [Invalid_argument] if [start] and [len] do not designate a
valid range of [s]. *)
val sub_string : bytes -> int -> int -> string
(** Same as [sub] but return a string instead of a byte sequence. *)
val extend : bytes -> int -> int -> bytes
(** [extend s left right] returns a new byte sequence that contains
the bytes of [s], with [left] uninitialized bytes prepended and
[right] uninitialized bytes appended to it. If [left] or [right]
is negative, then bytes are removed (instead of appended) from
the corresponding side of [s].
Raise [Invalid_argument] if the result length is negative or
longer than {!Sys.max_string_length} bytes. *)
val fill : bytes -> int -> int -> char -> unit
(** [fill s start len c] modifies [s] in place, replacing [len]
characters with [c], starting at [start].
Raise [Invalid_argument] if [start] and [len] do not designate a
valid range of [s]. *)
val blit : bytes -> int -> bytes -> int -> int -> unit
(** [blit src srcoff dst dstoff len] copies [len] bytes from sequence
[src], starting at index [srcoff], to sequence [dst], starting at
index [dstoff]. It works correctly even if [src] and [dst] are the
same byte sequence, and the source and destination intervals
overlap.
Raise [Invalid_argument] if [srcoff] and [len] do not
designate a valid range of [src], or if [dstoff] and [len]
do not designate a valid range of [dst]. *)
val blit_string : string -> int -> bytes -> int -> int -> unit
(** [blit src srcoff dst dstoff len] copies [len] bytes from string
[src], starting at index [srcoff], to byte sequence [dst],
starting at index [dstoff].
Raise [Invalid_argument] if [srcoff] and [len] do not
designate a valid range of [src], or if [dstoff] and [len]
do not designate a valid range of [dst]. *)
val concat : bytes -> bytes list -> bytes
(** [concat sep sl] concatenates the list of byte sequences [sl],
inserting the separator byte sequence [sep] between each, and
returns the result as a new byte sequence.
Raise [Invalid_argument] if the result is longer than
{!Sys.max_string_length} bytes. *)
val cat : bytes -> bytes -> bytes
(** [cat s1 s2] concatenates [s1] and [s2] and returns the result
as new byte sequence.
Raise [Invalid_argument] if the result is longer than
{!Sys.max_string_length} bytes. *)
val iter : (char -> unit) -> bytes -> unit
(** [iter f s] applies function [f] in turn to all the bytes of [s].
It is equivalent to [f (get s 0); f (get s 1); ...; f (get s
(length s - 1)); ()]. *)
val iteri : (int -> char -> unit) -> bytes -> unit
(** Same as {!Bytes.iter}, but the function is applied to the index of
the byte as first argument and the byte itself as second
argument. *)
val map : (char -> char) -> bytes -> bytes
(** [map f s] applies function [f] in turn to all the bytes of [s]
(in increasing index order) and stores the resulting bytes in
a new sequence that is returned as the result. *)
val mapi : (int -> char -> char) -> bytes -> bytes
(** [mapi f s] calls [f] with each character of [s] and its
index (in increasing index order) and stores the resulting bytes
in a new sequence that is returned as the result. *)
val trim : bytes -> bytes
(** Return a copy of the argument, without leading and trailing
whitespace. The bytes regarded as whitespace are the ASCII
characters [' '], ['\012'], ['\n'], ['\r'], and ['\t']. *)
val escaped : bytes -> bytes
(** Return a copy of the argument, with special characters represented
by escape sequences, following the lexical conventions of OCaml.
All characters outside the ASCII printable range (32..126) are
escaped, as well as backslash and double-quote.
Raise [Invalid_argument] if the result is longer than
{!Sys.max_string_length} bytes. *)
val index_opt: bytes -> char -> int option
(** [index_opt s c] returns the index of the first occurrence of byte [c]
in [s] or [None] if [c] does not occur in [s].
@since 4.05 *)
val rindex_opt: bytes -> char -> int option
(** [rindex_opt s c] returns the index of the last occurrence of byte [c]
in [s] or [None] if [c] does not occur in [s].
@since 4.05 *)
val index_from_opt: bytes -> int -> char -> int option
(** [index_from _opts i c] returns the index of the first occurrence of
byte [c] in [s] after position [i] or [None] if [c] does not occur in [s]
after position [i].
[Bytes.index_opt s c] is equivalent to [Bytes.index_from_opt s 0 c].
Raise [Invalid_argument] if [i] is not a valid position in [s].
@since 4.05 *)
val rindex_from_opt: bytes -> int -> char -> int option
(** [rindex_from_opt s i c] returns the index of the last occurrence
of byte [c] in [s] before position [i+1] or [None] if [c] does not
occur in [s] before position [i+1]. [rindex_opt s c] is equivalent to
[rindex_from s (Bytes.length s - 1) c].
Raise [Invalid_argument] if [i+1] is not a valid position in [s].
@since 4.05 *)
val contains : bytes -> char -> bool
(** [contains s c] tests if byte [c] appears in [s]. *)
val contains_from : bytes -> int -> char -> bool
(** [contains_from s start c] tests if byte [c] appears in [s] after
position [start]. [contains s c] is equivalent to [contains_from
s 0 c].
Raise [Invalid_argument] if [start] is not a valid position in [s]. *)
val rcontains_from : bytes -> int -> char -> bool
(** [rcontains_from s stop c] tests if byte [c] appears in [s] before
position [stop+1].
Raise [Invalid_argument] if [stop < 0] or [stop+1] is not a valid
position in [s]. *)
val uppercase_ascii : bytes -> bytes
(** Return a copy of the argument, with all lowercase letters
translated to uppercase, using the US-ASCII character set.
@since 4.03.0 *)
val lowercase_ascii : bytes -> bytes
(** Return a copy of the argument, with all uppercase letters
translated to lowercase, using the US-ASCII character set.
@since 4.03.0 *)
val capitalize_ascii : bytes -> bytes
(** Return a copy of the argument, with the first character set to uppercase,
using the US-ASCII character set.
@since 4.03.0 *)
val uncapitalize_ascii : bytes -> bytes
(** Return a copy of the argument, with the first character set to lowercase,
using the US-ASCII character set.
@since 4.03.0 *)
type t = bytes
(** An alias for the type of byte sequences. *)
val compare: t -> t -> int
(** The comparison function for byte sequences, with the same
specification as {!Stdlib.compare}. Along with the type [t],
this function [compare] allows the module [Bytes] to be passed as
argument to the functors {!Set.Make} and {!Map.Make}. *)
val equal: t -> t -> bool
(** The equality function for byte sequences.
@since 4.03.0 *)
end
# 14 "v3.in.ml"
module Int32 : sig
# 1 "v3/int32.mli"
(** 32-bit integers.
This module provides operations on the type [int32]
of signed 32-bit integers. Unlike the built-in [int] type,
the type [int32] is guaranteed to be exactly 32-bit wide on all
platforms. All arithmetic operations over [int32] are taken
modulo 2{^32}.
Performance notice: values of type [int32] occupy more memory
space than values of type [int], and arithmetic operations on
[int32] are generally slower than those on [int]. Use [int32]
only when the application requires exact 32-bit arithmetic.
Literals for 32-bit integers are suffixed by l:
{[
let zero: int32 = 0l
let one: int32 = 1l
let m_one: int32 = -1l
]}
*)
val zero : int32
(** The 32-bit integer 0. *)
val one : int32
(** The 32-bit integer 1. *)
val minus_one : int32
(** The 32-bit integer -1. *)
external neg : int32 -> int32 = "%int32_neg"
(** Unary negation. *)
external add : int32 -> int32 -> int32 = "%int32_add"
(** Addition. *)
external sub : int32 -> int32 -> int32 = "%int32_sub"
(** Subtraction. *)
external mul : int32 -> int32 -> int32 = "%int32_mul"
(** Multiplication. *)
external div : int32 -> int32 -> int32 = "%int32_div"
(** Integer division. Raise [Division_by_zero] if the second
argument is zero. This division rounds the real quotient of
its arguments towards zero, as specified for {!Stdlib.(/)}. *)
external rem : int32 -> int32 -> int32 = "%int32_mod"
(** Integer remainder. If [y] is not zero, the result
of [Int32.rem x y] satisfies the following property:
[x = Int32.add (Int32.mul (Int32.div x y) y) (Int32.rem x y)].
If [y = 0], [Int32.rem x y] raises [Division_by_zero]. *)
val succ : int32 -> int32
(** Successor. [Int32.succ x] is [Int32.add x Int32.one]. *)
val pred : int32 -> int32
(** Predecessor. [Int32.pred x] is [Int32.sub x Int32.one]. *)
val abs : int32 -> int32
(** Return the absolute value of its argument. *)
val max_int : int32
(** The greatest representable 32-bit integer, 2{^31} - 1. *)
val min_int : int32
(** The smallest representable 32-bit integer, -2{^31}. *)
external logand : int32 -> int32 -> int32 = "%int32_and"
(** Bitwise logical and. *)
external logor : int32 -> int32 -> int32 = "%int32_or"
(** Bitwise logical or. *)
external logxor : int32 -> int32 -> int32 = "%int32_xor"
(** Bitwise logical exclusive or. *)
val lognot : int32 -> int32
(** Bitwise logical negation. *)
external shift_left : int32 -> int -> int32 = "%int32_lsl"
(** [Int32.shift_left x y] shifts [x] to the left by [y] bits.
The result is unspecified if [y < 0] or [y >= 32]. *)
external shift_right : int32 -> int -> int32 = "%int32_asr"
(** [Int32.shift_right x y] shifts [x] to the right by [y] bits.
This is an arithmetic shift: the sign bit of [x] is replicated
and inserted in the vacated bits.
The result is unspecified if [y < 0] or [y >= 32]. *)
external shift_right_logical : int32 -> int -> int32 = "%int32_lsr"
(** [Int32.shift_right_logical x y] shifts [x] to the right by [y] bits.
This is a logical shift: zeroes are inserted in the vacated bits
regardless of the sign of [x].
The result is unspecified if [y < 0] or [y >= 32]. *)
external of_int : int -> int32 = "%int32_of_int"
(** Convert the given integer (type [int]) to a 32-bit integer
(type [int32]). On 64-bit platforms, the argument is taken
modulo 2{^32}. *)
external to_int : int32 -> int = "%int32_to_int"
(** Convert the given 32-bit integer (type [int32]) to an
integer (type [int]). On 32-bit platforms, the 32-bit integer
is taken modulo 2{^31}, i.e. the high-order bit is lost
during the conversion. On 64-bit platforms, the conversion
is exact. *)
val of_string_opt: string -> int32 option
(** Same as [of_string], but return [None] instead of raising.
@since 4.05 *)
val to_string : int32 -> string
(** Return the string representation of its argument, in signed decimal. *)
type t = int32
(** An alias for the type of 32-bit integers. *)
val compare: t -> t -> int
(** The comparison function for 32-bit integers, with the same specification as
{!Stdlib.compare}. Along with the type [t], this function [compare]
allows the module [Int32] to be passed as argument to the functors
{!Set.Make} and {!Map.Make}. *)
val equal: t -> t -> bool
(** The equal function for int32s.
@since 4.03.0 *)
end
# 16 "v3.in.ml"
module Int64 : sig
# 1 "v3/int64.mli"
(** 64-bit integers.
This module provides operations on the type [int64] of
signed 64-bit integers. Unlike the built-in [int] type,
the type [int64] is guaranteed to be exactly 64-bit wide on all
platforms. All arithmetic operations over [int64] are taken
modulo 2{^64}
Performance notice: values of type [int64] occupy more memory
space than values of type [int], and arithmetic operations on
[int64] are generally slower than those on [int]. Use [int64]
only when the application requires exact 64-bit arithmetic.
Literals for 64-bit integers are suffixed by L:
{[
let zero: int64 = 0L
let one: int64 = 1L
let m_one: int64 = -1L
]}
*)
val zero : int64
(** The 64-bit integer 0. *)
val one : int64
(** The 64-bit integer 1. *)
val minus_one : int64
(** The 64-bit integer -1. *)
external neg : int64 -> int64 = "%int64_neg"
(** Unary negation. *)
external add : int64 -> int64 -> int64 = "%int64_add"
(** Addition. *)
external sub : int64 -> int64 -> int64 = "%int64_sub"
(** Subtraction. *)
external mul : int64 -> int64 -> int64 = "%int64_mul"
(** Multiplication. *)
external div : int64 -> int64 -> int64 = "%int64_div"
(** Integer division. Raise [Division_by_zero] if the second
argument is zero. This division rounds the real quotient of
its arguments towards zero, as specified for {!Stdlib.(/)}. *)
external rem : int64 -> int64 -> int64 = "%int64_mod"
(** Integer remainder. If [y] is not zero, the result
of [Int64.rem x y] satisfies the following property:
[x = Int64.add (Int64.mul (Int64.div x y) y) (Int64.rem x y)].
If [y = 0], [Int64.rem x y] raises [Division_by_zero]. *)
val succ : int64 -> int64
(** Successor. [Int64.succ x] is [Int64.add x Int64.one]. *)
val pred : int64 -> int64
(** Predecessor. [Int64.pred x] is [Int64.sub x Int64.one]. *)
val abs : int64 -> int64
(** Return the absolute value of its argument. *)
val max_int : int64
(** The greatest representable 64-bit integer, 2{^63} - 1. *)
val min_int : int64
(** The smallest representable 64-bit integer, -2{^63}. *)
external logand : int64 -> int64 -> int64 = "%int64_and"
(** Bitwise logical and. *)
external logor : int64 -> int64 -> int64 = "%int64_or"
(** Bitwise logical or. *)
external logxor : int64 -> int64 -> int64 = "%int64_xor"
(** Bitwise logical exclusive or. *)
val lognot : int64 -> int64
(** Bitwise logical negation. *)
external shift_left : int64 -> int -> int64 = "%int64_lsl"
(** [Int64.shift_left x y] shifts [x] to the left by [y] bits.
The result is unspecified if [y < 0] or [y >= 64]. *)
external shift_right : int64 -> int -> int64 = "%int64_asr"
(** [Int64.shift_right x y] shifts [x] to the right by [y] bits.
This is an arithmetic shift: the sign bit of [x] is replicated
and inserted in the vacated bits.
The result is unspecified if [y < 0] or [y >= 64]. *)
external shift_right_logical : int64 -> int -> int64 = "%int64_lsr"
(** [Int64.shift_right_logical x y] shifts [x] to the right by [y] bits.
This is a logical shift: zeroes are inserted in the vacated bits
regardless of the sign of [x].
The result is unspecified if [y < 0] or [y >= 64]. *)
external of_int : int -> int64 = "%int64_of_int"
(** Convert the given integer (type [int]) to a 64-bit integer
(type [int64]). *)
external to_int : int64 -> int = "%int64_to_int"
(** Convert the given 64-bit integer (type [int64]) to an
integer (type [int]). On 64-bit platforms, the 64-bit integer
is taken modulo 2{^63}, i.e. the high-order bit is lost
during the conversion. On 32-bit platforms, the 64-bit integer
is taken modulo 2{^31}, i.e. the top 33 bits are lost
during the conversion. *)
external of_int32 : int32 -> int64 = "%int64_of_int32"
(** Convert the given 32-bit integer (type [int32])
to a 64-bit integer (type [int64]). *)
external to_int32 : int64 -> int32 = "%int64_to_int32"
(** Convert the given 64-bit integer (type [int64]) to a
32-bit integer (type [int32]). The 64-bit integer
is taken modulo 2{^32}, i.e. the top 32 bits are lost
during the conversion. *)
val of_string_opt: string -> int64 option
(** Same as [of_string], but return [None] instead of raising.
@since 4.05 *)
val to_string : int64 -> string
(** Return the string representation of its argument, in decimal. *)
type t = int64
(** An alias for the type of 64-bit integers. *)
val compare: t -> t -> int
(** The comparison function for 64-bit integers, with the same specification as
{!Stdlib.compare}. Along with the type [t], this function [compare]
allows the module [Int64] to be passed as argument to the functors
{!Set.Make} and {!Map.Make}. *)
val equal: t -> t -> bool
(** The equal function for int64s.
@since 4.03.0 *)
end
# 18 "v3.in.ml"
module Format : sig
# 1 "v3/format.mli"
(** Pretty-printing.
This module implements a pretty-printing facility to format values
within {{!boxes}'pretty-printing boxes'} and {{!tags}'semantic tags'}
combined with a set of {{!fpp}printf-like functions}.
The pretty-printer splits lines at specified {{!breaks}break hints},
and indents lines according to the box structure.
Similarly, {{!tags}semantic tags} can be used to decouple text
presentation from its contents.
This pretty-printing facility is implemented as an overlay on top of
abstract {{!section:formatter}formatters} which provide basic output
functions.
Some formatters are predefined, notably:
- {!std_formatter} outputs to {{!Stdlib.stdout}stdout}
- {!err_formatter} outputs to {{!Stdlib.stderr}stderr}
Most functions in the {!Format} module come in two variants:
a short version that operates on {!std_formatter} and the
generic version prefixed by [pp_] that takes a formatter
as its first argument.
More formatters can be created with {!formatter_of_out_channel},
{!formatter_of_buffer}, {!formatter_of_symbolic_output_buffer}
or using {{!section:formatter}custom formatters}.
*)
(** {1 Introduction}
For a gentle introduction to the basics of pretty-printing using
[Format], read
{{:http://caml.inria.fr/resources/doc/guides/format.en.html}
http://caml.inria.fr/resources/doc/guides/format.en.html}.
You may consider this module as providing an extension to the
[printf] facility to provide automatic line splitting. The addition of
pretty-printing annotations to your regular [printf] format strings gives
you fancy indentation and line breaks.
Pretty-printing annotations are described below in the documentation of
the function {!Format.fprintf}.
You may also use the explicit pretty-printing box management and printing
functions provided by this module. This style is more basic but more
verbose than the concise [fprintf] format strings.
For instance, the sequence
[open_box 0; print_string "x ="; print_space ();
print_int 1; close_box (); print_newline ()]
that prints [x = 1] within a pretty-printing box, can be
abbreviated as [printf "@[%s@ %i@]@." "x =" 1], or even shorter
[printf "@[x =@ %i@]@." 1].
Rule of thumb for casual users of this library:
- use simple pretty-printing boxes (as obtained by [open_box 0]);
- use simple break hints as obtained by [print_cut ()] that outputs a
simple break hint, or by [print_space ()] that outputs a space
indicating a break hint;
- once a pretty-printing box is open, display its material with basic
printing functions (e. g. [print_int] and [print_string]);
- when the material for a pretty-printing box has been printed, call
[close_box ()] to close the box;
- at the end of pretty-printing, flush the pretty-printer to display all
the remaining material, e.g. evaluate [print_newline ()].
The behavior of pretty-printing commands is unspecified
if there is no open pretty-printing box. Each box opened by
one of the [open_] functions below must be closed using [close_box]
for proper formatting. Otherwise, some of the material printed in the
boxes may not be output, or may be formatted incorrectly.
In case of interactive use, each phrase is executed in the initial state
of the standard pretty-printer: after each phrase execution, the
interactive system closes all open pretty-printing boxes, flushes all
pending text, and resets the standard pretty-printer.
Warning: mixing calls to pretty-printing functions of this module with
calls to {!Stdlib} low level output functions is error prone.
The pretty-printing functions output material that is delayed in the
pretty-printer queue and stacks in order to compute proper line
splitting. In contrast, basic I/O output functions write directly in
their output device. As a consequence, the output of a basic I/O function
may appear before the output of a pretty-printing function that has been
called before. For instance,
[
Stdlib.print_string "<";
Format.print_string "PRETTY";
Stdlib.print_string ">";
Format.print_string "TEXT";
]
leads to output [<>PRETTYTEXT].
*)
type formatter
(** Abstract data corresponding to a pretty-printer (also called a
formatter) and all its machinery. See also {!section:formatter}. *)
(** {1:boxes Pretty-printing boxes} *)
(** The pretty-printing engine uses the concepts of pretty-printing box and
break hint to drive indentation and line splitting behavior of the
pretty-printer.
Each different pretty-printing box kind introduces a specific line splitting
policy:
- within an {e horizontal} box, break hints never split the line (but the
line may be split in a box nested deeper),
- within a {e vertical} box, break hints always split the line,
- within an {e horizontal/vertical} box, if the box fits on the current line
then break hints never split the line, otherwise break hint always split
the line,
- within a {e compacting} box, a break hint never splits the line,
unless there is no more room on the current line.
Note that line splitting policy is box specific: the policy of a box does
not rule the policy of inner boxes. For instance, if a vertical box is
nested in an horizontal box, all break hints within the vertical box will
split the line.
*)
val pp_open_box : formatter -> int -> unit
(** [pp_open_box ppf d] opens a new compacting pretty-printing box with
offset [d] in the formatter [ppf].
Within this box, the pretty-printer prints as much as possible material on
every line.
A break hint splits the line if there is no more room on the line to
print the remainder of the box.
Within this box, the pretty-printer emphasizes the box structure: a break
hint also splits the line if the splitting ``moves to the left''
(i.e. the new line gets an indentation smaller than the one of the current
line).
This box is the general purpose pretty-printing box.
If the pretty-printer splits the line in the box, offset [d] is added to
the current indentation.
*)
val pp_close_box : formatter -> unit -> unit
(** Closes the most recently open pretty-printing box. *)
val pp_open_hbox : formatter -> unit -> unit
(** [pp_open_hbox ppf ()] opens a new 'horizontal' pretty-printing box.
This box prints material on a single line.
Break hints in a horizontal box never split the line.
(Line splitting may still occur inside boxes nested deeper).
*)
val pp_open_vbox : formatter -> int -> unit
(** [pp_open_vbox ppf d] opens a new 'vertical' pretty-printing box
with offset [d].
This box prints material on as many lines as break hints in the box.
Every break hint in a vertical box splits the line.
If the pretty-printer splits the line in the box, [d] is added to the
current indentation.
*)
val pp_open_hvbox : formatter -> int -> unit
(** [pp_open_hvbox ppf d] opens a new 'horizontal/vertical' pretty-printing box
with offset [d].
This box behaves as an horizontal box if it fits on a single line,
otherwise it behaves as a vertical box.
If the pretty-printer splits the line in the box, [d] is added to the
current indentation.
*)
val pp_open_hovbox : formatter -> int -> unit
(** [pp_open_hovbox ppf d] opens a new 'horizontal-or-vertical'
pretty-printing box with offset [d].
This box prints material as much as possible on every line.
A break hint splits the line if there is no more room on the line to
print the remainder of the box.
If the pretty-printer splits the line in the box, [d] is added to the
current indentation.
*)
(** {1 Formatting functions} *)
val pp_print_string : formatter -> string -> unit
(** [pp_print_string ppf s] prints [s] in the current pretty-printing box. *)
val pp_print_as : formatter -> int -> string -> unit
(** [pp_print_as ppf len s] prints [s] in the current pretty-printing box.
The pretty-printer formats [s] as if it were of length [len].
*)
val pp_print_int : formatter -> int -> unit
(** Print an integer in the current pretty-printing box. *)
val pp_print_char : formatter -> char -> unit
(** Print a character in the current pretty-printing box. *)
val pp_print_bool : formatter -> bool -> unit
(** Print a boolean in the current pretty-printing box. *)
(** {1:breaks Break hints} *)
(** A 'break hint' tells the pretty-printer to output some space or split the
line whichever way is more appropriate to the current pretty-printing box
splitting rules.
Break hints are used to separate printing items and are mandatory to let
the pretty-printer correctly split lines and indent items.
Simple break hints are:
- the 'space': output a space or split the line if appropriate,
- the 'cut': split the line if appropriate.
Note: the notions of space and line splitting are abstract for the
pretty-printing engine, since those notions can be completely redefined
by the programmer.
However, in the pretty-printer default setting, ``output a space'' simply
means printing a space character (ASCII code 32) and ``split the line''
means printing a newline character (ASCII code 10).
*)
val pp_print_space : formatter -> unit -> unit
(** [pp_print_space ppf ()] emits a 'space' break hint:
the pretty-printer may split the line at this point,
otherwise it prints one space.
[pp_print_space ppf ()] is equivalent to [pp_print_break ppf 1 0].
*)
val pp_print_cut : formatter -> unit -> unit
(** [pp_print_cut ppf ()] emits a 'cut' break hint:
the pretty-printer may split the line at this point,
otherwise it prints nothing.
[pp_print_cut ppf ()] is equivalent to [pp_print_break ppf 0 0].
*)
val pp_print_break : formatter -> int -> int -> unit
(** [pp_print_break ppf nspaces offset] emits a 'full' break hint:
the pretty-printer may split the line at this point,
otherwise it prints [nspaces] spaces.
If the pretty-printer splits the line, [offset] is added to
the current indentation.
*)
val pp_print_custom_break :
formatter ->
fits:(string * int * string) ->
breaks:(string * int * string) ->
unit
(** [pp_print_custom_break ppf ~fits:(s1, n, s2) ~breaks:(s3, m, s4)] emits a
custom break hint: the pretty-printer may split the line at this point.
If it does not split the line, then the [s1] is emitted, then [n] spaces,
then [s2].
If it splits the line, then it emits the [s3] string, then an indent
(according to the box rules), then an offset of [m] spaces, then the [s4]
string.
While [n] and [m] are handled by [formatter_out_functions.out_indent], the
strings will be handled by [formatter_out_functions.out_string]. This allows
for a custom formatter that handles indentation distinctly, for example,
outputs [<br/>] tags or [ ] entities.
The custom break is useful if you want to change which visible
(non-whitespace) characters are printed in case of break or no break. For
example, when printing a list [ [a; b; c] ], you might want to add a
trailing semicolon when it is printed vertically:
{[
[
a;
b;
c;
]
]}
You can do this as follows:
{[
printf "@[<v 0>[@;<0 2>@[<v 0>a;@,b;@,c@]%t]@]@\n"
(pp_print_custom_break ~fits:("", 0, "") ~breaks:(";", 0, ""))
]}
@since 4.08.0
*)
val pp_force_newline : formatter -> unit -> unit
(** Force a new line in the current pretty-printing box.
The pretty-printer must split the line at this point,
Not the normal way of pretty-printing, since imperative line splitting may
interfere with current line counters and box size calculation.
Using break hints within an enclosing vertical box is a better
alternative.
*)
val pp_print_if_newline : formatter -> unit -> unit
(** Execute the next formatting command if the preceding line
has just been split. Otherwise, ignore the next formatting
command.
*)
(** {1 Pretty-printing termination} *)
val pp_print_flush : formatter -> unit -> unit
(** End of pretty-printing: resets the pretty-printer to initial state.
All open pretty-printing boxes are closed, all pending text is printed.
In addition, the pretty-printer low level output device is flushed to
ensure that all pending text is really displayed.
Note: never use [print_flush] in the normal course of a pretty-printing
routine, since the pretty-printer uses a complex buffering machinery to
properly indent the output; manually flushing those buffers at random
would conflict with the pretty-printer strategy and result to poor
rendering.
Only consider using [print_flush] when displaying all pending material is
mandatory (for instance in case of interactive use when you want the user
to read some text) and when resetting the pretty-printer state will not
disturb further pretty-printing.
Warning: If the output device of the pretty-printer is an output channel,
repeated calls to [print_flush] means repeated calls to {!Stdlib.flush}
to flush the out channel; these explicit flush calls could foil the
buffering strategy of output channels and could dramatically impact
efficiency.
*)
val pp_print_newline : formatter -> unit -> unit
(** End of pretty-printing: resets the pretty-printer to initial state.
All open pretty-printing boxes are closed, all pending text is printed.
Equivalent to {!print_flush} followed by a new line.
See corresponding words of caution for {!print_flush}.
Note: this is not the normal way to output a new line;
the preferred method is using break hints within a vertical pretty-printing
box.
*)
(** {1 Margin} *)
val pp_set_margin : formatter -> int -> unit
(** [pp_set_margin ppf d] sets the right margin to [d] (in characters):
the pretty-printer splits lines that overflow the right margin according to
the break hints given.
Nothing happens if [d] is smaller than 2.
If [d] is too large, the right margin is set to the maximum
admissible value (which is greater than [10 ^ 9]).
If [d] is less than the current maximum indentation limit, the
maximum indentation limit is decreased while trying to preserve
a minimal ratio [max_indent/margin>=50%] and if possible
the current difference [margin - max_indent].
See also {!pp_set_geometry}.
*)
val pp_get_margin : formatter -> unit -> int
(** Returns the position of the right margin. *)
(** {1 Maximum indentation limit} *)
val pp_set_max_indent : formatter -> int -> unit
(** [pp_set_max_indent ppf d] sets the maximum indentation limit of lines
to [d] (in characters):
once this limit is reached, new pretty-printing boxes are rejected to the
left, unless the enclosing box fully fits on the current line.
As an illustration,
{[ set_margin 10; set_max_indent 5; printf "@[123456@[7@]89A@]@." ]}
yields
{[
123456
789A
]}
because the nested box ["@[7@]"] is opened after the maximum indentation
limit ([7>5]) and its parent box does not fit on the current line.
Either decreasing the length of the parent box to make it fit on a line:
{[ printf "@[123456@[7@]89@]@." ]}
or opening an intermediary box before the maximum indentation limit which
fits on the current line
{[ printf "@[123@[456@[7@]89@]A@]@." ]}
avoids the rejection to the left of the inner boxes and print respectively
["123456789"] and ["123456789A"] .
Note also that vertical boxes never fit on a line whereas horizontal boxes
always fully fit on the current line.
Nothing happens if [d] is smaller than 2.
If [d] is too large, the limit is set to the maximum
admissible value (which is greater than [10 ^ 9]).
If [d] is greater or equal than the current margin, it is ignored,
and the current maximum indentation limit is kept.
See also {!pp_set_geometry}.
*)
val pp_get_max_indent : formatter -> unit -> int
(** Return the maximum indentation limit (in characters). *)
(** {1 Maximum formatting depth} *)
(** The maximum formatting depth is the maximum number of pretty-printing
boxes simultaneously open.
Material inside boxes nested deeper is printed as an ellipsis (more
precisely as the text returned by {!get_ellipsis_text} [()]).
*)
val pp_set_max_boxes : formatter -> int -> unit
(** [pp_set_max_boxes ppf max] sets the maximum number of pretty-printing
boxes simultaneously open.
Material inside boxes nested deeper is printed as an ellipsis (more
precisely as the text returned by {!get_ellipsis_text} [()]).
Nothing happens if [max] is smaller than 2.
*)
val pp_get_max_boxes : formatter -> unit -> int
(** Returns the maximum number of pretty-printing boxes allowed before
ellipsis.
*)
val pp_over_max_boxes : formatter -> unit -> bool
(** Tests if the maximum number of pretty-printing boxes allowed have already
been opened.
*)
(** {1 Tabulation boxes} *)
(**
A {e tabulation box} prints material on lines divided into cells of fixed
length. A tabulation box provides a simple way to display vertical columns
of left adjusted text.
This box features command [set_tab] to define cell boundaries, and command
[print_tab] to move from cell to cell and split the line when there is no
more cells to print on the line.
Note: printing within tabulation box is line directed, so arbitrary line
splitting inside a tabulation box leads to poor rendering. Yet, controlled
use of tabulation boxes allows simple printing of columns within
module {!Format}.
*)
val pp_open_tbox : formatter -> unit -> unit
(** [open_tbox ()] opens a new tabulation box.
This box prints lines separated into cells of fixed width.
Inside a tabulation box, special {e tabulation markers} defines points of
interest on the line (for instance to delimit cell boundaries).
Function {!Format.set_tab} sets a tabulation marker at insertion point.
A tabulation box features specific {e tabulation breaks} to move to next
tabulation marker or split the line. Function {!Format.print_tbreak} prints
a tabulation break.
*)
val pp_close_tbox : formatter -> unit -> unit
(** Closes the most recently opened tabulation box. *)
val pp_set_tab : formatter -> unit -> unit
(** Sets a tabulation marker at current insertion point. *)
val pp_print_tab : formatter -> unit -> unit
(** [print_tab ()] emits a 'next' tabulation break hint: if not already set on
a tabulation marker, the insertion point moves to the first tabulation
marker on the right, or the pretty-printer splits the line and insertion
point moves to the leftmost tabulation marker.
It is equivalent to [print_tbreak 0 0]. *)
val pp_print_tbreak : formatter -> int -> int -> unit
(** [print_tbreak nspaces offset] emits a 'full' tabulation break hint.
If not already set on a tabulation marker, the insertion point moves to the
first tabulation marker on the right and the pretty-printer prints
[nspaces] spaces.
If there is no next tabulation marker on the right, the pretty-printer
splits the line at this point, then insertion point moves to the leftmost
tabulation marker of the box.
If the pretty-printer splits the line, [offset] is added to
the current indentation.
*)
(** {1 Ellipsis} *)
val pp_set_ellipsis_text : formatter -> string -> unit
(** Set the text of the ellipsis printed when too many pretty-printing boxes
are open (a single dot, [.], by default).
*)
val pp_get_ellipsis_text : formatter -> unit -> string
(** Return the text of the ellipsis. *)
(** {1 Convenience formatting functions.} *)
val pp_print_list:
?pp_sep:(formatter -> unit -> unit) ->
(formatter -> 'a -> unit) -> (formatter -> 'a list -> unit)
(** [pp_print_list ?pp_sep pp_v ppf l] prints items of list [l],
using [pp_v] to print each item, and calling [pp_sep]
between items ([pp_sep] defaults to {!pp_print_cut}.
Does nothing on empty lists.
@since 4.02.0
*)
val pp_print_text : formatter -> string -> unit
(** [pp_print_text ppf s] prints [s] with spaces and newlines respectively
printed using {!pp_print_space} and {!pp_force_newline}.
@since 4.02.0
*)
val pp_print_option :
?none:(formatter -> unit -> unit) ->
(formatter -> 'a -> unit) -> (formatter -> 'a option -> unit)
(** [pp_print_option ?none pp_v ppf o] prints [o] on [ppf]
using [pp_v] if [o] is [Some v] and [none] if it is [None]. [none]
prints nothing by default.
@since 4.08 *)
val pp_print_result :
ok:(formatter -> 'a -> unit) -> error:(formatter -> 'e -> unit) ->
formatter -> ('a, 'e) result -> unit
(** [pp_print_result ~ok ~error ppf r] prints [r] on [ppf] using
[ok] if [r] is [Ok _] and [error] if [r] is [Error _].
@since 4.08 *)
(** {1:fpp Formatted pretty-printing} *)
(**
Module [Format] provides a complete set of [printf] like functions for
pretty-printing using format string specifications.
Specific annotations may be added in the format strings to give
pretty-printing commands to the pretty-printing engine.
Those annotations are introduced in the format strings using the [@]
character. For instance, [@ ] means a space break, [@,] means a cut,
[@\[] opens a new box, and [@\]] closes the last open box.
*)
val fprintf : formatter -> ('a, formatter, unit) format -> 'a
(** [fprintf ff fmt arg1 ... argN] formats the arguments [arg1] to [argN]
according to the format string [fmt], and outputs the resulting string on
the formatter [ff].
The format string [fmt] is a character string which contains three types of
objects: plain characters and conversion specifications as specified in
the {!Printf} module, and pretty-printing indications specific to the
[Format] module.
The pretty-printing indication characters are introduced by
a [@] character, and their meanings are:
- [@\[]: open a pretty-printing box. The type and offset of the
box may be optionally specified with the following syntax:
the [<] character, followed by an optional box type indication,
then an optional integer offset, and the closing [>] character.
Pretty-printing box type is one of [h], [v], [hv], [b], or [hov].
'[h]' stands for an 'horizontal' pretty-printing box,
'[v]' stands for a 'vertical' pretty-printing box,
'[hv]' stands for an 'horizontal/vertical' pretty-printing box,
'[b]' stands for an 'horizontal-or-vertical' pretty-printing box
demonstrating indentation,
'[hov]' stands a simple 'horizontal-or-vertical' pretty-printing box.
For instance, [@\[<hov 2>] opens an 'horizontal-or-vertical'
pretty-printing box with indentation 2 as obtained with [open_hovbox 2].
For more details about pretty-printing boxes, see the various box opening
functions [open_*box].
- [@\]]: close the most recently opened pretty-printing box.
- [@,]: output a 'cut' break hint, as with [print_cut ()].
- [@ ]: output a 'space' break hint, as with [print_space ()].
- [@;]: output a 'full' break hint as with [print_break]. The
[nspaces] and [offset] parameters of the break hint may be
optionally specified with the following syntax:
the [<] character, followed by an integer [nspaces] value,
then an integer [offset], and a closing [>] character.
If no parameters are provided, the good break defaults to a
'space' break hint.
- [@.]: flush the pretty-printer and split the line, as with
[print_newline ()].
- [@<n>]: print the following item as if it were of length [n].
Hence, [printf "@<0>%s" arg] prints [arg] as a zero length string.
If [@<n>] is not followed by a conversion specification,
then the following character of the format is printed as if
it were of length [n].
- [@\{]: open a semantic tag. The name of the tag may be optionally
specified with the following syntax:
the [<] character, followed by an optional string
specification, and the closing [>] character. The string
specification is any character string that does not contain the
closing character ['>']. If omitted, the tag name defaults to the
empty string.
For more details about semantic tags, see the functions {!open_stag} and
{!close_stag}.
- [@\}]: close the most recently opened semantic tag.
- [@?]: flush the pretty-printer as with [print_flush ()].
This is equivalent to the conversion [%!].
- [@\n]: force a newline, as with [force_newline ()], not the normal way
of pretty-printing, you should prefer using break hints inside a vertical
pretty-printing box.
Note: To prevent the interpretation of a [@] character as a
pretty-printing indication, escape it with a [%] character.
Old quotation mode [@@] is deprecated since it is not compatible with
formatted input interpretation of character ['@'].
Example: [printf "@[%s@ %d@]@." "x =" 1] is equivalent to
[open_box (); print_string "x ="; print_space ();
print_int 1; close_box (); print_newline ()].
It prints [x = 1] within a pretty-printing 'horizontal-or-vertical' box.
*)
val sprintf : ('a, unit, string) format -> 'a
(** Same as [printf] above, but instead of printing on a formatter,
returns a string containing the result of formatting the arguments.
Note that the pretty-printer queue is flushed at the end of {e each
call} to [sprintf].
In case of multiple and related calls to [sprintf] to output
material on a single string, you should consider using [fprintf]
with the predefined formatter [str_formatter] and call
[flush_str_formatter ()] to get the final result.
Alternatively, you can use [Format.fprintf] with a formatter writing to a
buffer of your own: flushing the formatter and the buffer at the end of
pretty-printing returns the desired string.
*)
val asprintf : ('a, formatter, unit, string) format4 -> 'a
(** Same as [printf] above, but instead of printing on a formatter,
returns a string containing the result of formatting the arguments.
The type of [asprintf] is general enough to interact nicely with [%a]
conversions.
@since 4.01.0
*)
val dprintf :
('a, formatter, unit, formatter -> unit) format4 -> 'a
(** Same as {!fprintf}, except the formatter is the last argument.
[dprintf "..." a b c] is a function of type
[formatter -> unit] which can be given to a format specifier [%t].
This can be used as a replacement for {!asprintf} to delay
formatting decisions. Using the string returned by {!asprintf} in a
formatting context forces formatting decisions to be taken in
isolation, and the final string may be created
prematurely. {!dprintf} allows delay of formatting decisions until
the final formatting context is known.
For example:
{[
let t = Format.dprintf "%i@ %i@ %i" 1 2 3 in
...
Format.printf "@[<v>%t@]" t
]}
@since 4.08.0
*)
val ifprintf : formatter -> ('a, formatter, unit) format -> 'a
(** Same as [fprintf] above, but does not print anything.
Useful to ignore some material when conditionally printing.
@since 3.10.0
*)
(** Formatted Pretty-Printing with continuations. *)
val kfprintf :
(formatter -> 'a) -> formatter ->
('b, formatter, unit, 'a) format4 -> 'b
(** Same as [fprintf] above, but instead of returning immediately,
passes the formatter to its first argument at the end of printing. *)
val kdprintf :
((formatter -> unit) -> 'a) ->
('b, formatter, unit, 'a) format4 -> 'b
(** Same as {!dprintf} above, but instead of returning immediately,
passes the suspended printer to its first argument at the end of printing.
@since 4.08.0
*)
val ikfprintf :
(formatter -> 'a) -> formatter ->
('b, formatter, unit, 'a) format4 -> 'b
(** Same as [kfprintf] above, but does not print anything.
Useful to ignore some material when conditionally printing.
@since 3.12.0
*)
val ksprintf : (string -> 'a) -> ('b, unit, string, 'a) format4 -> 'b
(** Same as [sprintf] above, but instead of returning the string,
passes it to the first argument. *)
val kasprintf : (string -> 'a) -> ('b, formatter, unit, 'a) format4 -> 'b
(** Same as [asprintf] above, but instead of returning the string,
passes it to the first argument.
@since 4.03
*)
end
# 20 "v3.in.ml"
module Logging : sig
# 1 "v3/logging.mli"
(** Logging levels. See [docs/developer/guidelines.rst] for their meaning *)
type level = Debug | Info | Notice | Warning | Error | Fatal
(** Logs a message. It is the shell's responsibility to manage the actual
logging.
Even though logging may involve system calls, formatting, or other work, the
shell guarantees that calling this function doesn't transfer control over
another promise. Consequently, the performance of this function can be
considered predictable from the point of view of gas-consumption.
Note that the function call has predictable performance, but that it is the
caller's responsibility to ensure that argument evaluation has predictable
performance too. E.g., [log Notice "%s" (Format.asprint …)] may spend time
formatting the argument string. *)
val log : level -> ('a, Format.formatter, unit, unit) format4 -> 'a
(** Same as [log] but more efficient with a simpler interface. *)
val log_string : level -> string -> unit
end
# 22 "v3.in.ml"
module Hex : sig
# 1 "v3/hex.mli"
(** Hexadecimal encoding.
[Hex] defines hexadecimal encodings for {{!char}characters},
{{!string}strings} and {{!cstruct}Cstruct.t} buffers. *)
type t = [`Hex of string]
(** The type var hexadecimal values. *)
(** {1:char Characters} *)
val of_char: char -> char * char
(** [of_char c] is the the hexadecimal encoding of the character
[c]. *)
val to_char: char -> char -> char
(** [to_char x y] is the character corresponding to the [xy]
hexadecimal encoding. *)
(** {1:string Strings} *)
val of_string: ?ignore:char list -> string -> t
(** [of_string s] is the hexadecimal representation of the binary
string [s]. If [ignore] is set, skip the characters in the list
when converting. Eg [of_string ~ignore:[' '] "a f"]. The default
value of [ignore] is [[]]). *)
val to_string: t -> string
(** [to_string t] is the binary string [s] such that [of_string s] is
[t]. *)
(** {1:byte Bytes} *)
val of_bytes: ?ignore:char list -> bytes -> t
(** [of_bytes s] is the hexadecimal representation of the binary
string [s]. If [ignore] is set, skip the characters in the list
when converting. Eg [of_bytes ~ignore:[' '] "a f"]. The default
value of [ignore] is [[]]). *)
val to_bytes: t -> bytes
(** [to_bytes t] is the binary string [s] such that [of_bytes s] is
[t]. *)
(** {1 Debugging} *)
val hexdump_s: ?print_row_numbers:bool -> ?print_chars:bool -> t -> string
(** Same as [hexdump] except returns a string. *)
(** {1 Pretty printing} *)
val pp : Format.formatter -> t -> unit [@@ocaml.toplevel_printer]
(** [pp fmt t] will output a human-readable hex representation of [t]
to the formatter [fmt]. *)
val show : t -> string
(** [show t] will return a human-readable hex representation of [t] as
a string. *)
end
# 24 "v3.in.ml"
module Z : sig
# 1 "v3/z.mli"
(**
Integers.
This modules provides arbitrary-precision integers.
Small integers internally use a regular OCaml [int].
When numbers grow too large, we switch transparently to GMP numbers
([mpn] numbers fully allocated on the OCaml heap).
This interface is rather similar to that of [Int32] and [Int64],
with some additional functions provided natively by GMP
(GCD, square root, pop-count, etc.).
This file is part of the Zarith library
http://forge.ocamlcore.org/projects/zarith .
It is distributed under LGPL 2 licensing, with static linking exception.
See the LICENSE file included in the distribution.
Copyright (c) 2010-2011 Antoine Miné, Abstraction project.
Abstraction is part of the LIENS (Laboratoire d'Informatique de l'ENS),
a joint laboratory by:
CNRS (Centre national de la recherche scientifique, France),
ENS (École normale supérieure, Paris, France),
INRIA Rocquencourt (Institut national de recherche en informatique, France).
*)
(** {1 Toplevel} *)
(** For an optimal experience with the [ocaml] interactive toplevel,
the magic commands are:
{[
#load "zarith.cma";;
#install_printer Z.pp_print;;
]}
Alternatively, using the new [Zarith_top] toplevel module, simply:
{[
#require "zarith.top";;
]}
*)
(** {1 Types} *)
type t
(** Type of integers of arbitrary length. *)
exception Overflow
(** Raised by conversion functions when the value cannot be represented in
the destination type.
*)
(** {1 Construction} *)
val zero: t
(** The number 0. *)
val one: t
(** The number 1. *)
val minus_one: t
(** The number -1. *)
external of_int: int -> t = "%identity"
(** Converts from a base integer. *)
external of_int32: int32 -> t = "ml_z_of_int32"
(** Converts from a 32-bit integer. *)
external of_int64: int64 -> t = "ml_z_of_int64"
(** Converts from a 64-bit integer. *)
val of_string: string -> t
(** Converts a string to an integer.
An optional [-] prefix indicates a negative number, while a [+]
prefix is ignored.
An optional prefix [0x], [0o], or [0b] (following the optional [-]
or [+] prefix) indicates that the number is,
represented, in hexadecimal, octal, or binary, respectively.
Otherwise, base 10 is assumed.
(Unlike C, a lone [0] prefix does not denote octal.)
Raises an [Invalid_argument] exception if the string is not a
syntactically correct representation of an integer.
*)
val of_substring : string -> pos:int -> len:int -> t
(** [of_substring s ~pos ~len] is the same as [of_string (String.sub s
pos len)]
*)
val of_string_base: int -> string -> t
(** Parses a number represented as a string in the specified base,
with optional [-] or [+] prefix.
The base must be between 2 and 16.
*)
external of_substring_base
: int -> string -> pos:int -> len:int -> t
= "ml_z_of_substring_base"
(** [of_substring_base base s ~pos ~len] is the same as [of_string_base
base (String.sub s pos len)]
*)
(** {1 Basic arithmetic operations} *)
val succ: t -> t
(** Returns its argument plus one. *)
val pred: t -> t
(** Returns its argument minus one. *)
val abs: t -> t
(** Absolute value. *)
val neg: t -> t
(** Unary negation. *)
val add: t -> t -> t
(** Addition. *)
val sub: t -> t -> t
(** Subtraction. *)
val mul: t -> t -> t
(** Multiplication. *)
val div: t -> t -> t
(** Integer division. The result is truncated towards zero
and obeys the rule of signs.
Raises [Division_by_zero] if the divisor (second argument) is 0.
*)
val rem: t -> t -> t
(** Integer remainder. Can raise a [Division_by_zero].
The result of [rem a b] has the sign of [a], and its absolute value is
strictly smaller than the absolute value of [b].
The result satisfies the equality [a = b * div a b + rem a b].
*)
external div_rem: t -> t -> (t * t) = "ml_z_div_rem"
(** Computes both the integer quotient and the remainder.
[div_rem a b] is equal to [(div a b, rem a b)].
Raises [Division_by_zero] if [b = 0].
*)
external cdiv: t -> t -> t = "ml_z_cdiv"
(** Integer division with rounding towards +oo (ceiling).
Can raise a [Division_by_zero].
*)
external fdiv: t -> t -> t = "ml_z_fdiv"
(** Integer division with rounding towards -oo (floor).
Can raise a [Division_by_zero].
*)
val ediv_rem: t -> t -> (t * t)
(** Euclidean division and remainder. [ediv_rem a b] returns a pair [(q, r)]
such that [a = b * q + r] and [0 <= r < |b|].
Raises [Division_by_zero] if [b = 0].
*)
val ediv: t -> t -> t
(** Euclidean division. [ediv a b] is equal to [fst (ediv_rem a b)].
The result satisfies [0 <= a - b * ediv a b < |b|].
Raises [Division_by_zero] if [b = 0].
*)
val erem: t -> t -> t
(** Euclidean remainder. [erem a b] is equal to [snd (ediv_rem a b)].
The result satisfies [0 <= erem a b < |b|] and
[a = b * ediv a b + erem a b]. Raises [Division_by_zero] if [b = 0].
*)
val divexact: t -> t -> t
(** [divexact a b] divides [a] by [b], only producing correct result when the
division is exact, i.e., when [b] evenly divides [a].
It should be faster than general division.
Can raise a [Division_by_zero].
*)
external divisible: t -> t -> bool = "ml_z_divisible"
(** [divisible a b] returns [true] if [a] is exactly divisible by [b].
Unlike the other division functions, [b = 0] is accepted
(only 0 is considered divisible by 0).
*)
external congruent: t -> t -> t -> bool = "ml_z_congruent"
(** [congruent a b c] returns [true] if [a] is congruent to [b] modulo [c].
Unlike the other division functions, [c = 0] is accepted
(only equal numbers are considered equal congruent 0).
*)
(** {1 Bit-level operations} *)
(** For all bit-level operations, negative numbers are considered in 2's
complement representation, starting with a virtual infinite number of
1s.
*)
val logand: t -> t -> t
(** Bitwise logical and. *)
val logor: t -> t -> t
(** Bitwise logical or. *)
val logxor: t -> t -> t
(** Bitwise logical exclusive or. *)
val lognot: t -> t
(** Bitwise logical negation.
The identity [lognot a]=[-a-1] always hold.
*)
val shift_left: t -> int -> t
(** Shifts to the left.
Equivalent to a multiplication by a power of 2.
The second argument must be nonnegative.
*)
val shift_right: t -> int -> t
(** Shifts to the right.
This is an arithmetic shift,
equivalent to a division by a power of 2 with rounding towards -oo.
The second argument must be nonnegative.
*)
val shift_right_trunc: t -> int -> t
(** Shifts to the right, rounding towards 0.
This is equivalent to a division by a power of 2, with truncation.
The second argument must be nonnegative.
*)
external numbits: t -> int = "ml_z_numbits" [@@noalloc]
(** Returns the number of significant bits in the given number.
If [x] is zero, [numbits x] returns 0. Otherwise,
[numbits x] returns a positive integer [n] such that
[2^{n-1} <= |x| < 2^n]. Note that [numbits] is defined
for negative arguments, and that [numbits (-x) = numbits x]. *)
external trailing_zeros: t -> int = "ml_z_trailing_zeros" [@@noalloc]
(** Returns the number of trailing 0 bits in the given number.
If [x] is zero, [trailing_zeros x] returns [max_int].
Otherwise, [trailing_zeros x] returns a nonnegative integer [n]
which is the largest [n] such that [2^n] divides [x] evenly.
Note that [trailing_zeros] is defined for negative arguments,
and that [trailing_zeros (-x) = trailing_zeros x]. *)
val testbit: t -> int -> bool
(** [testbit x n] return the value of bit number [n] in [x]:
[true] if the bit is 1, [false] if the bit is 0.
Bits are numbered from 0. Raise [Invalid_argument] if [n]
is negative. *)
external popcount: t -> int = "ml_z_popcount"
(** Counts the number of bits set.
Raises [Overflow] for negative arguments, as those have an infinite
number of bits set.
*)
external hamdist: t -> t -> int = "ml_z_hamdist"
(** Counts the number of different bits.
Raises [Overflow] if the arguments have different signs
(in which case the distance is infinite).
*)
(** {1 Conversions} *)
(** Note that, when converting to an integer type that cannot represent the
converted value, an [Overflow] exception is raised.
*)
val to_int: t -> int
(** Converts to a base integer. May raise [Overflow]. *)
external to_int32: t -> int32 = "ml_z_to_int32"
(** Converts to a 32-bit integer. May raise [Overflow]. *)
external to_int64: t -> int64 = "ml_z_to_int64"
(** Converts to a 64-bit integer. May raise [Overflow]. *)
val to_string: t -> string
(** Gives a human-readable, decimal string representation of the argument. *)
external format: string -> t -> string = "ml_z_format"
(** Gives a string representation of the argument in the specified
printf-like format.
The general specification has the following form:
[% \[flags\] \[width\] type]
Where the type actually indicates the base:
- [i], [d], [u]: decimal
- [b]: binary
- [o]: octal
- [x]: lowercase hexadecimal
- [X]: uppercase hexadecimal
Supported flags are:
- [+]: prefix positive numbers with a [+] sign
- space: prefix positive numbers with a space
- [-]: left-justify (default is right justification)
- [0]: pad with zeroes (instead of spaces)
- [#]: alternate formatting (actually, simply output a literal-like prefix: [0x], [0b], [0o])
Unlike the classic [printf], all numbers are signed (even hexadecimal ones),
there is no precision field, and characters that are not part of the format
are simply ignored (and not copied in the output).
*)
external fits_int: t -> bool = "ml_z_fits_int" [@@noalloc]
(** Whether the argument fits in a regular [int]. *)
external fits_int32: t -> bool = "ml_z_fits_int32" [@@noalloc]
(** Whether the argument fits in an [int32]. *)
external fits_int64: t -> bool = "ml_z_fits_int64" [@@noalloc]
(** Whether the argument fits in an [int64]. *)
(** {1 Printing} *)
val pp_print: Format.formatter -> t -> unit
(** Prints the argument on the specified formatter.
Can be used as [%a] format printer in [Format.printf] and as
argument to [#install_printer] in the top-level.
*)
(** {1 Ordering} *)
external compare: t -> t -> int = "ml_z_compare" [@@noalloc]
(** Comparison. [compare x y] returns 0 if [x] equals [y],
-1 if [x] is smaller than [y], and 1 if [x] is greater than [y].
Note that Pervasive.compare can be used to compare reliably two integers
only on OCaml 3.12.1 and later versions.
*)
external equal: t -> t -> bool = "ml_z_equal" [@@noalloc]
(** Equality test. *)
val leq: t -> t -> bool
(** Less than or equal. *)
val geq: t -> t -> bool
(** Greater than or equal. *)
val lt: t -> t -> bool
(** Less than (and not equal). *)
val gt: t -> t -> bool
(** Greater than (and not equal). *)
external sign: t -> int = "ml_z_sign" [@@noalloc]
(** Returns -1, 0, or 1 when the argument is respectively negative, null, or
positive.
*)
val min: t -> t -> t
(** Returns the minimum of its arguments. *)
val max: t -> t -> t
(** Returns the maximum of its arguments. *)
val is_even: t -> bool
(** Returns true if the argument is even (divisible by 2), false if odd. *)
val is_odd: t -> bool
(** Returns true if the argument is odd, false if even. *)
(** {1 Powers} *)
external pow: t -> int -> t = "ml_z_pow"
(** [pow base exp] raises [base] to the [exp] power.
[exp] must be nonnegative.
Note that only exponents fitting in a machine integer are supported, as
larger exponents would surely make the result's size overflow the
address space.
*)
external sqrt: t -> t = "ml_z_sqrt"
(** Returns the square root. The result is truncated (rounded down
to an integer).
Raises an [Invalid_argument] on negative arguments.
*)
external sqrt_rem: t -> (t * t) = "ml_z_sqrt_rem"
(** Returns the square root truncated, and the remainder.
Raises an [Invalid_argument] on negative arguments.
*)
external root: t -> int -> t = "ml_z_root"
(** [root x n] computes the [n]-th root of [x].
[n] must be positive and, if [n] is even, then [x] must be nonnegative.
Otherwise, an [Invalid_argument] is raised.
*)
external rootrem: t -> int -> t * t = "ml_z_rootrem"
(** [rootrem x n] computes the [n]-th root of [x] and the remainder
[x-root**n].
[n] must be positive and, if [n] is even, then [x] must be nonnegative.
Otherwise, an [Invalid_argument] is raised.
*)
external perfect_power: t -> bool = "ml_z_perfect_power"
(** True if the argument has the form [a^b], with [b>1] *)
external perfect_square: t -> bool = "ml_z_perfect_square"
(** True if the argument has the form [a^2]. *)
val log2: t -> int
(** Returns the base-2 logarithm of its argument, rounded down to
an integer. If [x] is positive, [log2 x] returns the largest [n]
such that [2^n <= x]. If [x] is negative or zero, [log2 x] raise
the [Invalid_argument] exception. *)
val log2up: t -> int
(** Returns the base-2 logarithm of its argument, rounded up to
an integer. If [x] is positive, [log2up x] returns the smallest [n]
such that [x <= 2^n]. If [x] is negative or zero, [log2up x] raise
the [Invalid_argument] exception. *)
(** {1 Representation} *)
external size: t -> int = "ml_z_size" [@@noalloc]
(** Returns the number of machine words used to represent the number. *)
(** [extract a off len] returns a nonnegative number corresponding to bits
[off] to [off]+[len]-1 of [b].
Negative [a] are considered in infinite-length 2's complement
representation.
*)
(** [signed_extract a off len] extracts bits [off] to [off]+[len]-1 of [b],
as [extract] does, then sign-extends bit [len-1] of the result
(that is, bit [off + len - 1] of [a]). The result is between
[- 2{^[len]-1}] (included) and [2{^[len]-1}] (excluded),
and equal to [extract a off len] modulo [2{^len}].
*)
external to_bits: t -> string = "ml_z_to_bits"
(** Returns a binary representation of the argument.
The string result should be interpreted as a sequence of bytes,
corresponding to the binary representation of the absolute value of
the argument in little endian ordering.
The sign is not stored in the string.
*)
external of_bits: string -> t = "ml_z_of_bits"
(** Constructs a number from a binary string representation.
The string is interpreted as a sequence of bytes in little endian order,
and the result is always positive.
We have the identity: [of_bits (to_bits x) = abs x].
However, we can have [to_bits (of_bits s) <> s] due to the presence of
trailing zeros in s.
*)
end
# 26 "v3.in.ml"
module Lwt : sig
# 1 "v3/lwt.mli"
(** {2 Fundamentals} *)
(** {3 Promises} *)
type +'a t
(** Promises for values of type ['a].
A {b promise} is a memory cell that is always in one of three {b states}:
- {e fulfilled}, and containing one value of type ['a],
- {e rejected}, and containing one exception, or
- {e pending}, in which case it may become fulfilled or rejected later.
A {e resolved} promise is one that is either fulfilled or rejected, i.e. not
pending. Once a promise is resolved, its content cannot change. So, promises
are {e write-once references}. The only possible state changes are (1) from
pending to fulfilled and (2) from pending to rejected.
Promises are typically “read” by attaching {b callbacks} to them. The most
basic functions for that are {!Lwt.bind}, which attaches a callback that is
called when a promise becomes fulfilled, and {!Lwt.catch}, for rejection.
Promise variables of this type, ['a Lwt.t], are actually {b read-only} in
Lwt. Separate {e resolvers} of type ['a ]{!Lwt.u} are used to write to them.
Promises and their resolvers are created together by calling {!Lwt.wait}.
There is one exception to this: most promises can be {e canceled} by calling
{!Lwt.cancel}, without going through a resolver. *)
val return : 'a -> 'a t
(** [Lwt.return v] creates a new {{: #TYPEt} promise} that is {e already
fulfilled} with value [v].
This is needed to satisfy the type system in some cases. For example, in a
[match] expression where one case evaluates to a promise, the other cases
have to evaluate to promises as well:
{[
match need_input with
| true -> Lwt_io.(read_line stdin) (* Has type string Lwt.t... *)
| false -> Lwt.return "" (* ...so wrap empty string in a promise. *)
]}
Another typical usage is in {{: #VALbind} [let%lwt]}. The expression after
the “[in]” has to evaluate to a promise. So, if you compute an ordinary
value instead, you have to wrap it:
{[
let%lwt line = Lwt_io.(read_line stdin) in
Lwt.return (line ^ ".")
]} *)
(** {3 Callbacks} *)
val bind : 'a t -> ('a -> 'b t) -> 'b t
(** [Lwt.bind p_1 f] makes it so that [f] will run when [p_1] is {{: #TYPEt}
{e fulfilled}}.
When [p_1] is fulfilled with value [v_1], the callback [f] is called with
that same value [v_1]. Eventually, after perhaps starting some I/O or other
computation, [f] returns promise [p_2].
[Lwt.bind] itself returns immediately. It only attaches the callback [f] to
[p_1] – it does not wait for [p_2]. {e What} [Lwt.bind] returns is yet a
third promise, [p_3]. Roughly speaking, fulfillment of [p_3] represents both
[p_1] and [p_2] becoming fulfilled, one after the other.
A minimal example of this is an echo program:
{[
let () =
let p_3 =
Lwt.bind
Lwt_io.(read_line stdin)
(fun line -> Lwt_io.printl line)
in
Lwt_main.run p_3
(* ocamlfind opt -linkpkg -thread -package lwt.unix code.ml && ./a.out *)
]}
Rejection of [p_1] and [p_2], and raising an exception in [f], are all
forwarded to rejection of [p_3].
{b Precise behavior}
[Lwt.bind] returns a promise [p_3] immediately. [p_3] starts out pending,
and is resolved as follows:
- The first condition to wait for is that [p_1] becomes resolved. It does
not matter whether [p_1] is already resolved when [Lwt.bind] is called, or
becomes resolved later – the rest of the behavior is the same.
- If and when [p_1] becomes resolved, it will, by definition, be either
fulfilled or rejected.
- If [p_1] is rejected, [p_3] is rejected with the same exception.
- If [p_1] is fulfilled, with value [v], [f] is applied to [v].
- [f] may finish by returning the promise [p_2], or raising an exception.
- If [f] raises an exception, [p_3] is rejected with that exception.
- Finally, the remaining case is when [f] returns [p_2]. From that point on,
[p_3] is effectively made into a reference to [p_2]. This means they have
the same state, undergo the same state changes, and performing any
operation on one is equivalent to performing it on the other.
{b Syntactic sugar}
[Lwt.bind] is almost never written directly, because sequences of [Lwt.bind]
result in growing indentation and many parentheses:
{[
let () =
Lwt_main.run begin
Lwt.bind Lwt_io.(read_line stdin) (fun line ->
Lwt.bind (Lwt_unix.sleep 1.) (fun () ->
Lwt_io.printf "One second ago, you entered %s\n" line))
end
(* ocamlfind opt -linkpkg -thread -package lwt.unix code.ml && ./a.out *)
]}
The recommended way to write [Lwt.bind] is using the [let%lwt] syntactic
sugar:
{[
let () =
Lwt_main.run begin
let%lwt line = Lwt_io.(read_line stdin) in
let%lwt () = Lwt_unix.sleep 1. in
Lwt_io.printf "One second ago, you entered %s\n" line
end
(* ocamlfind opt -linkpkg -thread -package lwt_ppx,lwt.unix code.ml && ./a.out *)
]}
This uses the Lwt {{: Ppx_lwt.html} PPX} (preprocessor). Note that we had to
add package [lwt_ppx] to the command line for building this program. We will
do that throughout this manual.
Another way to write [Lwt.bind], that you may encounter while reading code,
is with the [>>=] operator:
{[
open Lwt.Infix
let () =
Lwt_main.run begin
Lwt_io.(read_line stdin) >>= fun line ->
Lwt_unix.sleep 1. >>= fun () ->
Lwt_io.printf "One second ago, you entered %s\n" line
end
(* ocamlfind opt -linkpkg -thread -package lwt.unix code.ml && ./a.out *)
]}
The [>>=] operator comes from the module {!Lwt.Infix}, which is why we
opened it at the beginning of the program.
See also {!Lwt.map}. *)
(** {2 Convenience} *)
(** {3 Callback helpers} *)
val map : ('a -> 'b) -> 'a t -> 'b t
(** [Lwt.map f p_1] is similar to {!Lwt.bind}[ p_1 f], but [f] is not expected
to return a promise.
This function is more convenient that {!Lwt.bind} when [f] inherently does
not return a promise. An example is [Stdlib.int_of_string]:
{[
let read_int : unit -> int Lwt.t = fun () ->
Lwt.map
int_of_string
Lwt_io.(read_line stdin)
let () =
Lwt_main.run begin
let%lwt number = read_int () in
Lwt_io.printf "%i\n" number
end
(* ocamlfind opt -linkpkg -thread -package lwt_ppx,lwt.unix code.ml && ./a.out *)
]}
By comparison, the {!Lwt.bind} version is more awkward:
{[
let read_int : unit -> int Lwt.t = fun () ->
Lwt.bind
Lwt_io.(read_line stdin)
(fun line -> Lwt.return (int_of_string line))
]}
As with {!Lwt.bind}, sequences of calls to [Lwt.map] result in excessive
indentation and parentheses. The recommended syntactic sugar for avoiding
this is the {{: #VAL(>|=)} [>|=]} operator, which comes from module
[Lwt.Infix]:
{[
open Lwt.Infix
let read_int : unit -> int Lwt.t = fun () ->
Lwt_io.(read_line stdin) >|= int_of_string
]}
The detailed operation follows. For consistency with the promises in
{!Lwt.bind}, the {e two} promises involved are named [p_1] and [p_3]:
- [p_1] is the promise passed to [Lwt.map].
- [p_3] is the promise returned by [Lwt.map].
[Lwt.map] returns a promise [p_3]. [p_3] starts out pending. It is resolved
as follows:
- [p_1] may be, or become, resolved. In that case, by definition, it will
become fulfilled or rejected. Fulfillment is the interesting case, but the
behavior on rejection is simpler, so we focus on rejection first.
- When [p_1] becomes rejected, [p_3] is rejected with the same exception.
- When [p_1] instead becomes fulfilled, call the value it is fulfilled with
[v].
- [f v] is applied. If this finishes, it may either return another value, or
raise an exception.
- If [f v] returns another value [v'], [p_3] is fulfilled with [v'].
- If [f v] raises exception [exn], [p_3] is rejected with [exn]. *)
(** {3 Pre-allocated promises} *)
val return_unit : unit t
(** [Lwt.return_unit] is defined as {!Lwt.return}[ ()], but this definition is
evaluated only once, during initialization of module [Lwt], at the beginning
of your program.
This means the promise is allocated only once. By contrast, each time
{!Lwt.return}[ ()] is evaluated, it allocates a new promise.
It is recommended to use [Lwt.return_unit] only where you know the
allocations caused by an instance of {!Lwt.return}[ ()] are a performance
bottleneck. Generally, the cost of I/O tends to dominate the cost of
{!Lwt.return}[ ()] anyway.
In future Lwt, we hope to perform this optimization, of using a single,
pre-allocated promise, automatically, wherever {!Lwt.return}[ ()] is
written. *)
val return_none : (_ option) t
(** [Lwt.return_none] is like {!Lwt.return_unit}, but for
{!Lwt.return}[ None]. *)
val return_nil : (_ list) t
(** [Lwt.return_nil] is like {!Lwt.return_unit}, but for {!Lwt.return}[ []]. *)
val return_true : bool t
(** [Lwt.return_true] is like {!Lwt.return_unit}, but for
{!Lwt.return}[ true]. *)
val return_false : bool t
(** [Lwt.return_false] is like {!Lwt.return_unit}, but for
{!Lwt.return}[ false]. *)
end
# 28 "v3.in.ml"
module Data_encoding : sig
# 1 "v3/data_encoding.mli"
(** In memory JSON data *)
type json =
[ `O of (string * json) list
| `Bool of bool
| `Float of float
| `A of json list
| `Null
| `String of string ]
type json_schema
type 'a t
type 'a encoding = 'a t
val classify : 'a encoding -> [`Fixed of int | `Dynamic | `Variable]
val splitted : json:'a encoding -> binary:'a encoding -> 'a encoding
val null : unit encoding
val empty : unit encoding
val unit : unit encoding
val constant : string -> unit encoding
val int8 : int encoding
val uint8 : int encoding
val int16 : int encoding
val uint16 : int encoding
val int31 : int encoding
val int32 : int32 encoding
val int64 : int64 encoding
val n : Z.t encoding
val z : Z.t encoding
val bool : bool encoding
val string : string encoding
val bytes : bytes encoding
val option : 'a encoding -> 'a option encoding
val string_enum : (string * 'a) list -> 'a encoding
module Fixed : sig
val string : int -> string encoding
val bytes : int -> bytes encoding
val add_padding : 'a encoding -> int -> 'a encoding
end
module Variable : sig
val string : string encoding
val bytes : bytes encoding
val array : ?max_length:int -> 'a encoding -> 'a array encoding
val list : ?max_length:int -> 'a encoding -> 'a list encoding
end
module Bounded : sig
val string : int -> string encoding
val bytes : int -> bytes encoding
end
val dynamic_size :
?kind:[`Uint30 | `Uint16 | `Uint8] -> 'a encoding -> 'a encoding
val json : json encoding
val json_schema : json_schema encoding
type 'a field
val req :
?title:string -> ?description:string -> string -> 't encoding -> 't field
val opt :
?title:string ->
?description:string ->
string ->
't encoding ->
't option field
val varopt :
?title:string ->
?description:string ->
string ->
't encoding ->
't option field
val dft :
?title:string ->
?description:string ->
string ->
't encoding ->
't ->
't field
val obj1 : 'f1 field -> 'f1 encoding
val obj2 : 'f1 field -> 'f2 field -> ('f1 * 'f2) encoding
val obj3 : 'f1 field -> 'f2 field -> 'f3 field -> ('f1 * 'f2 * 'f3) encoding
val obj4 :
'f1 field ->
'f2 field ->
'f3 field ->
'f4 field ->
('f1 * 'f2 * 'f3 * 'f4) encoding
val obj5 :
'f1 field ->
'f2 field ->
'f3 field ->
'f4 field ->
'f5 field ->
('f1 * 'f2 * 'f3 * 'f4 * 'f5) encoding
val obj6 :
'f1 field ->
'f2 field ->
'f3 field ->
'f4 field ->
'f5 field ->
'f6 field ->
('f1 * 'f2 * 'f3 * 'f4 * 'f5 * 'f6) encoding
val obj7 :
'f1 field ->
'f2 field ->
'f3 field ->
'f4 field ->
'f5 field ->
'f6 field ->
'f7 field ->
('f1 * 'f2 * 'f3 * 'f4 * 'f5 * 'f6 * 'f7) encoding
val obj8 :
'f1 field ->
'f2 field ->
'f3 field ->
'f4 field ->
'f5 field ->
'f6 field ->
'f7 field ->
'f8 field ->
('f1 * 'f2 * 'f3 * 'f4 * 'f5 * 'f6 * 'f7 * 'f8) encoding
val obj9 :
'f1 field ->
'f2 field ->
'f3 field ->
'f4 field ->
'f5 field ->
'f6 field ->
'f7 field ->
'f8 field ->
'f9 field ->
('f1 * 'f2 * 'f3 * 'f4 * 'f5 * 'f6 * 'f7 * 'f8 * 'f9) encoding
val obj10 :
'f1 field ->
'f2 field ->
'f3 field ->
'f4 field ->
'f5 field ->
'f6 field ->
'f7 field ->
'f8 field ->
'f9 field ->
'f10 field ->
('f1 * 'f2 * 'f3 * 'f4 * 'f5 * 'f6 * 'f7 * 'f8 * 'f9 * 'f10) encoding
val tup1 : 'f1 encoding -> 'f1 encoding
val tup2 : 'f1 encoding -> 'f2 encoding -> ('f1 * 'f2) encoding
val tup3 :
'f1 encoding -> 'f2 encoding -> 'f3 encoding -> ('f1 * 'f2 * 'f3) encoding
val tup4 :
'f1 encoding ->
'f2 encoding ->
'f3 encoding ->
'f4 encoding ->
('f1 * 'f2 * 'f3 * 'f4) encoding
val tup5 :
'f1 encoding ->
'f2 encoding ->
'f3 encoding ->
'f4 encoding ->
'f5 encoding ->
('f1 * 'f2 * 'f3 * 'f4 * 'f5) encoding
val tup6 :
'f1 encoding ->
'f2 encoding ->
'f3 encoding ->
'f4 encoding ->
'f5 encoding ->
'f6 encoding ->
('f1 * 'f2 * 'f3 * 'f4 * 'f5 * 'f6) encoding
val tup7 :
'f1 encoding ->
'f2 encoding ->
'f3 encoding ->
'f4 encoding ->
'f5 encoding ->
'f6 encoding ->
'f7 encoding ->
('f1 * 'f2 * 'f3 * 'f4 * 'f5 * 'f6 * 'f7) encoding
val tup8 :
'f1 encoding ->
'f2 encoding ->
'f3 encoding ->
'f4 encoding ->
'f5 encoding ->
'f6 encoding ->
'f7 encoding ->
'f8 encoding ->
('f1 * 'f2 * 'f3 * 'f4 * 'f5 * 'f6 * 'f7 * 'f8) encoding
val tup9 :
'f1 encoding ->
'f2 encoding ->
'f3 encoding ->
'f4 encoding ->
'f5 encoding ->
'f6 encoding ->
'f7 encoding ->
'f8 encoding ->
'f9 encoding ->
('f1 * 'f2 * 'f3 * 'f4 * 'f5 * 'f6 * 'f7 * 'f8 * 'f9) encoding
val tup10 :
'f1 encoding ->
'f2 encoding ->
'f3 encoding ->
'f4 encoding ->
'f5 encoding ->
'f6 encoding ->
'f7 encoding ->
'f8 encoding ->
'f9 encoding ->
'f10 encoding ->
('f1 * 'f2 * 'f3 * 'f4 * 'f5 * 'f6 * 'f7 * 'f8 * 'f9 * 'f10) encoding
val merge_objs : 'o1 encoding -> 'o2 encoding -> ('o1 * 'o2) encoding
val merge_tups : 'a1 encoding -> 'a2 encoding -> ('a1 * 'a2) encoding
val array : ?max_length:int -> 'a encoding -> 'a array encoding
val list : ?max_length:int -> 'a encoding -> 'a list encoding
val assoc : 'a encoding -> (string * 'a) list encoding
type case_tag = Tag of int | Json_only
type 't case
val case :
title:string ->
?description:string ->
case_tag ->
'a encoding ->
('t -> 'a option) ->
('a -> 't) ->
't case
type match_result
type 'a matching_function = 'a -> match_result
type tag_size = [`Uint8 | `Uint16]
val matched : ?tag_size:tag_size -> int -> 'a encoding -> 'a -> match_result
val matching :
?tag_size:tag_size -> 't matching_function -> 't case list -> 't encoding
val union : ?tag_size:tag_size -> 't case list -> 't encoding
val def :
string -> ?title:string -> ?description:string -> 't encoding -> 't encoding
val conv :
('a -> 'b) -> ('b -> 'a) -> ?schema:json_schema -> 'b encoding -> 'a encoding
val conv_with_guard :
('a -> 'b) ->
('b -> ('a, string) result) ->
?schema:json_schema ->
'b encoding ->
'a encoding
val with_decoding_guard :
('a -> (unit, string) result) -> 'a encoding -> 'a encoding
val mu :
string ->
?title:string ->
?description:string ->
('a encoding -> 'a encoding) ->
'a encoding
type 'a lazy_t
val lazy_encoding : 'a encoding -> 'a lazy_t encoding
val force_decode : 'a lazy_t -> 'a option
val force_bytes : 'a lazy_t -> bytes
val make_lazy : 'a encoding -> 'a -> 'a lazy_t
val apply_lazy :
fun_value:('a -> 'b) ->
fun_bytes:(bytes -> 'b) ->
fun_combine:('b -> 'b -> 'b) ->
'a lazy_t ->
'b
module Json : sig
val schema : ?definitions_path:string -> 'a encoding -> json_schema
val construct : 't encoding -> 't -> json
val destruct : 't encoding -> json -> 't
(** JSON Error *)
type path = path_item list
and path_item =
[ `Field of string (** A field in an object. *)
| `Index of int (** An index in an array. *)
| `Star (** Any / every field or index. *)
| `Next (** The next element after an array. *) ]
(** Exception raised by destructors, with the location in the original
JSON structure and the specific error. *)
exception Cannot_destruct of (path * exn)
(** Unexpected kind of data encountered (w/ the expectation). *)
exception Unexpected of string * string
(** Some {!union} couldn't be destructed, w/ the reasons for each {!type-case}. *)
exception No_case_matched of exn list
(** Array of unexpected size encountered (w/ the expectation). *)
exception Bad_array_size of int * int
(** Missing field in an object. *)
exception Missing_field of string
(** Supernumerary field in an object. *)
exception Unexpected_field of string
val print_error :
?print_unknown:(Format.formatter -> exn -> unit) ->
Format.formatter ->
exn ->
unit
(** Helpers for writing encoders. *)
val cannot_destruct : ('a, Format.formatter, unit, 'b) format4 -> 'a
val wrap_error : ('a -> 'b) -> 'a -> 'b
val pp : Format.formatter -> json -> unit
end
module Binary : sig
val fixed_length : 'a encoding -> int option
val maximum_length : 'a encoding -> int option
val length : 'a encoding -> 'a -> int
val to_bytes_opt : ?buffer_size:int -> 'a encoding -> 'a -> bytes option
val to_bytes_exn : ?buffer_size:int -> 'a encoding -> 'a -> bytes
val of_bytes_opt : 'a encoding -> bytes -> 'a option
val to_string_opt : ?buffer_size:int -> 'a encoding -> 'a -> string option
val to_string_exn : ?buffer_size:int -> 'a encoding -> 'a -> string
val of_string_opt : 'a encoding -> string -> 'a option
end
(** [check_size size encoding] ensures that the binary encoding
of a value will not be allowed to exceed [size] bytes. The reader
and the writer fails otherwise. This function do not modify
the JSON encoding. *)
val check_size : int -> 'a encoding -> 'a encoding
end
# 30 "v3.in.ml"
module Raw_hashes : sig
# 1 "v3/raw_hashes.mli"
val blake2b : bytes -> bytes
val sha256 : bytes -> bytes
val sha512 : bytes -> bytes
val keccak256 : bytes -> bytes
val sha3_256 : bytes -> bytes
val sha3_512 : bytes -> bytes
end
# 32 "v3.in.ml"
module Compare : sig
# 1 "v3/compare.mli"
module type COMPARABLE = sig
type t
val compare : t -> t -> int
end
module type S = sig
type t
val ( = ) : t -> t -> bool
val ( <> ) : t -> t -> bool
val ( < ) : t -> t -> bool
val ( <= ) : t -> t -> bool
val ( >= ) : t -> t -> bool
val ( > ) : t -> t -> bool
val compare : t -> t -> int
val equal : t -> t -> bool
val max : t -> t -> t
val min : t -> t -> t
end
module Make (P : COMPARABLE) : S with type t := P.t
module Char : S with type t = char
module Bool : S with type t = bool
module Int : S with type t = int
module Int32 : S with type t = int32
module Uint32 : S with type t = int32
module Int64 : S with type t = int64
module Uint64 : S with type t = int64
module String : S with type t = string
module Bytes : S with type t = bytes
module Z : S with type t = Z.t
module List (P : COMPARABLE) : S with type t = P.t list
module Option (P : COMPARABLE) : S with type t = P.t option
end
# 34 "v3.in.ml"
module Time : sig
# 1 "v3/time.mli"
type t
include Compare.S with type t := t
val add : t -> int64 -> t
val diff : t -> t -> int64
val of_seconds : int64 -> t
val to_seconds : t -> int64
val of_notation : string -> t option
val of_notation_exn : string -> t
val to_notation : t -> string
val encoding : t Data_encoding.t
val rfc_encoding : t Data_encoding.t
val pp_hum : Format.formatter -> t -> unit
end
# 36 "v3.in.ml"
module TzEndian : sig
# 1 "v3/tzEndian.mli"
val get_int32 : bytes -> int -> int32
val get_int32_string : string -> int -> int32
val set_int32 : bytes -> int -> int32 -> unit
val set_int8 : bytes -> int -> int -> unit
val get_int8 : bytes -> int -> int
val get_int8_string : string -> int -> int
val set_int16 : bytes -> int -> int -> unit
val get_int16 : bytes -> int -> int
val get_int16_string : string -> int -> int
val set_int64 : bytes -> int -> int64 -> unit
val get_int64 : bytes -> int -> int64
val get_int64_string : string -> int -> int64
val get_uint8 : bytes -> int -> int
val get_uint8_string : string -> int -> int
val set_uint8 : bytes -> int -> int -> unit
val get_uint16 : bytes -> int -> int
val get_uint16_string : string -> int -> int
val set_uint16 : bytes -> int -> int -> unit
end
# 38 "v3.in.ml"
module Bits : sig
# 1 "v3/bits.mli"
(** Assuming [x >= 0], [numbits x] is the number of bits needed to
represent [x]. This is also the unique [k] such that [2^{k - 1}
<= x < 2^k] if [x > 0] and [0] otherwise. *)
val numbits : int -> int
end
# 40 "v3.in.ml"
module Equality_witness : sig
# 1 "v3/equality_witness.mli"
(**
This module provides support for type equalities and runtime type identifiers.
For two types [a] and [b], [(a, b) eq] is a witness that [a = b]. This is
a standard generalized algebraic datatype on top of which type-level
programming techniques can be implemented.
Given a type [a], an inhabitant of [a t] is a dynamic identifier for [a].
Identifiers can be compared for equality. They are also equipped with a
hash function.
WARNING: the hash function changes at every run. Therefore, the result
of the hash function should never be stored.
Notice that dynamic identifiers are not unique: two identifiers for [a]
can have distinct hash and can be physically distinct. Hence, only [eq]
can decide if two type identifiers correspond to the same type.
*)
(** A proof witness that two types are equal. *)
type (_, _) eq = Refl : ('a, 'a) eq
(** A dynamic representation for ['a]. *)
type 'a t
(** [make ()] is a dynamic representation for ['a]. A fresh identifier
is returned each time [make ()] is evaluated. *)
val make : unit -> 'a t
(** [eq ida idb] returns a proof that [a = b] if [ida] and [idb]
identify the same type. *)
val eq : 'a t -> 'b t -> ('a, 'b) eq option
(** [hash id] returns a hash for [id]. *)
val hash : 'a t -> int
end
# 42 "v3.in.ml"
module FallbackArray : sig
# 1 "v3/fallbackArray.mli"
(**
This module implements arrays equipped with accessors that cannot
raise exceptions. Reading out of the bounds of the arrays return a
fallback value fixed at array construction time, writing out of the
bounds of the arrays is ignored.
*)
(** The type for array containing values of type ['a]. *)
type 'a t
(** [make len v] builds an array [a] initialized [len] cells with
[v]. The value [v] is the fallback value for [a]. *)
val make : int -> 'a -> 'a t
(** [fallback a] returns the fallback value for [a]. *)
val fallback : 'a t -> 'a
(** [length a] returns the length of [a]. *)
val length : 'a t -> int
(** [get a idx] returns the contents of the cell of index [idx] in
[a]. If [idx] < 0 or [idx] >= [length a], [get a idx] =
[fallback a]. *)
val get : 'a t -> int -> 'a
(** [set a idx value] updates the cell of index [idx] with [value].
If [idx] < 0 or [idx] >= [length a], [a] is unchanged. *)
val set : 'a t -> int -> 'a -> unit
(** [iter f a] iterates [f] over the cells of [a] from the
cell indexed [0] to the cell indexed [length a - 1]. *)
val iter : ('a -> unit) -> 'a t -> unit
(** [map f a] computes a new array obtained by applying [f] to each
cell contents of [a]. Notice that the fallback value of the new
array is [f (fallback a)]. *)
val map : ('a -> 'b) -> 'a t -> 'b t
(** [fold a init f] traverses [a] from the cell indexed [0] to the
cell indexed [length a - 1] and transforms [accu] into [f accu x]
where [x] is the content of the cell under focus. [accu] is
[init] on the first iteration. *)
val fold : ('b -> 'a -> 'b) -> 'a t -> 'b -> 'b
end
# 44 "v3.in.ml"
module Error_monad : sig
# 1 "v3/error_monad.mli"
type error_category = [`Branch | `Temporary | `Permanent]
(** CORE : errors *)
type error = ..
val error_encoding : error Data_encoding.t
val pp : Format.formatter -> error -> unit
(** EXT : error registration/query *)
val register_error_kind :
error_category ->
id:string ->
title:string ->
description:string ->
?pp:(Format.formatter -> 'err -> unit) ->
'err Data_encoding.t ->
(error -> 'err option) ->
('err -> error) ->
unit
val classify_error : error -> error_category
val json_of_error : error -> Data_encoding.json
val error_of_json : Data_encoding.json -> error
type error_info = {
category : error_category;
id : string;
title : string;
description : string;
schema : Data_encoding.json_schema;
}
val pp_info : Format.formatter -> error_info -> unit
(** Retrieves information of registered errors *)
val get_registered_errors : unit -> error_info list
(** MONAD : trace, monad, etc. *)
type 'err trace
type 'a tzresult = ('a, error trace) result
val make_trace_encoding : 'error Data_encoding.t -> 'error trace Data_encoding.t
val trace_encoding : error trace Data_encoding.t
val pp_trace : Format.formatter -> error trace -> unit
val result_encoding : 'a Data_encoding.t -> 'a tzresult Data_encoding.t
val ok : 'a -> ('a, 'trace) result
val ok_unit : (unit, 'trace) result
val ok_none : ('a option, 'trace) result
val ok_some : 'a -> ('a option, 'trace) result
val ok_nil : ('a list, 'trace) result
val ok_true : (bool, 'trace) result
val ok_false : (bool, 'trace) result
val return : 'a -> ('a, 'trace) result Lwt.t
val return_unit : (unit, 'trace) result Lwt.t
val return_none : ('a option, 'trace) result Lwt.t
val return_some : 'a -> ('a option, 'trace) result Lwt.t
val return_nil : ('a list, 'trace) result Lwt.t
val return_true : (bool, 'trace) result Lwt.t
val return_false : (bool, 'trace) result Lwt.t
val error : 'err -> ('a, 'err trace) result
val trace_of_error : 'err -> 'err trace
val fail : 'err -> ('a, 'err trace) result Lwt.t
val ( >>= ) : 'a Lwt.t -> ('a -> 'b Lwt.t) -> 'b Lwt.t
val ( >|= ) : 'a Lwt.t -> ('a -> 'b) -> 'b Lwt.t
val ( >>? ) :
('a, 'trace) result -> ('a -> ('b, 'trace) result) -> ('b, 'trace) result
val ( >|? ) : ('a, 'trace) result -> ('a -> 'b) -> ('b, 'trace) result
val ( >>=? ) :
('a, 'trace) result Lwt.t ->
('a -> ('b, 'trace) result Lwt.t) ->
('b, 'trace) result Lwt.t
val ( >|=? ) :
('a, 'trace) result Lwt.t -> ('a -> 'b) -> ('b, 'trace) result Lwt.t
val ( >>?= ) :
('a, 'trace) result ->
('a -> ('b, 'trace) result Lwt.t) ->
('b, 'trace) result Lwt.t
val ( >|?= ) :
('a, 'trace) result -> ('a -> 'b Lwt.t) -> ('b, 'trace) result Lwt.t
val record_trace : 'err -> ('a, 'err trace) result -> ('a, 'err trace) result
val trace :
'err -> ('b, 'err trace) result Lwt.t -> ('b, 'err trace) result Lwt.t
val record_trace_eval :
(unit -> ('err, 'err trace) result) ->
('a, 'err trace) result ->
('a, 'err trace) result
val trace_eval :
(unit -> ('err, 'err trace) result Lwt.t) ->
('b, 'err trace) result Lwt.t ->
('b, 'err trace) result Lwt.t
val error_unless : bool -> 'err -> (unit, 'err trace) result
val error_when : bool -> 'err -> (unit, 'err trace) result
val fail_unless : bool -> 'err -> (unit, 'err trace) result Lwt.t
val fail_when : bool -> 'err -> (unit, 'err trace) result Lwt.t
val unless :
bool -> (unit -> (unit, 'trace) result Lwt.t) -> (unit, 'trace) result Lwt.t
val when_ :
bool -> (unit -> (unit, 'trace) result Lwt.t) -> (unit, 'trace) result Lwt.t
val dont_wait :
(exn -> unit) ->
('trace -> unit) ->
(unit -> (unit, 'trace) result Lwt.t) ->
unit
(** [catch f] executes [f] within a try-with block and wraps exceptions within
a [tzresult]. [catch f] is equivalent to
[try Ok (f ()) with e -> Error (error_of_exn e)].
If [catch_only] is set, then only exceptions [e] such that [catch_only e] is
[true] are caught.
Whether [catch_only] is set or not, this function never catches
non-deterministic runtime exceptions of OCaml such as {!Stack_overflow} and
{!Out_of_memory} nor system-exceptions such as {!Unix.Unix_error} and
{!Sys_error}. *)
val catch : ?catch_only:(exn -> bool) -> (unit -> 'a) -> 'a tzresult
(** [catch_f f handler] is equivalent to [map_error (catch f) handler].
In other words, it catches exceptions in [f ()] and either returns the
value in an [Ok] or passes the exception to [handler] for the [Error].
[catch_only] has the same use as with [catch]. The same restriction on
catching non-deterministic runtime exceptions applies. *)
val catch_f :
?catch_only:(exn -> bool) -> (unit -> 'a) -> (exn -> error) -> 'a tzresult
(** [catch_s] is like [catch] but when [f] returns a promise. It is equivalent
to
{[
Lwt.try_bind f
(fun v -> Lwt.return (Ok v))
(fun e -> Lwt.return (Error (error_of_exn e)))
]}
If [catch_only] is set, then only exceptions [e] such that [catch_only e] is
[true] are caught.
Whether [catch_only] is set or not, this function never catches
non-deterministic runtime exceptions of OCaml such as {!Stack_overflow} and
{!Out_of_memory} nor system-exceptions such as {!Unix.Unix_error} and
{!Sys_error}. *)
val catch_s :
?catch_only:(exn -> bool) -> (unit -> 'a Lwt.t) -> 'a tzresult Lwt.t
val join_e : (unit, 'err trace) result list -> (unit, 'err trace) result
val all_e : ('a, 'err trace) result list -> ('a list, 'err trace) result
val both_e :
('a, 'err trace) result ->
('b, 'err trace) result ->
('a * 'b, 'err trace) result
(**/**)
type shell_tztrace
type 'a shell_tzresult = ('a, shell_tztrace) result
end
# 46 "v3.in.ml"
open Error_monad
module Seq : sig
# 1 "v3/seq.mli"
type 'a t = unit -> 'a node
and +'a node = Nil | Cons of 'a * 'a t
val empty : 'a t
val return : 'a -> 'a t
val cons : 'a -> 'a t -> 'a t
val append : 'a t -> 'a t -> 'a t
val map : ('a -> 'b) -> 'a t -> 'b t
val filter : ('a -> bool) -> 'a t -> 'a t
val filter_map : ('a -> 'b option) -> 'a t -> 'b t
val flat_map : ('a -> 'b t) -> 'a t -> 'b t
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b t -> 'a
val iter : ('a -> unit) -> 'a t -> unit
val unfold : ('b -> ('a * 'b) option) -> 'b -> 'a t
(** {3 Lwtreslib-specific extensions} *)
(** [first s] is [None] if [s] is empty, it is [Some x] where [x] is the
first element of [s] otherwise.
Note that [first] forces the first element of the sequence, which can have
side-effects or be computationally expensive. Consider, e.g., the case
where [s = filter (fun …) s']: [first s] can force multiple of the values
from [s']. *)
val first : 'a t -> 'a option
(** Similar to {!fold_left} but wraps the traversal in {!result}. The
traversal is interrupted if one of the step returns an [Error _]. *)
val fold_left_e :
('a -> 'b -> ('a, 'trace) result) -> 'a -> 'b t -> ('a, 'trace) result
(** Similar to {!fold_left} but wraps the traversing in {!Lwt}. Each step of
the traversal is started after the previous one has resolved. The
traversal is interrupted if one of the promise is rejected. *)
val fold_left_s : ('a -> 'b -> 'a Lwt.t) -> 'a -> 'b t -> 'a Lwt.t
(** Similar to {!fold_left} but wraps the traversing in [result Lwt.t].
Each step of the traversal is started after the previous one resolved. The
traversal is interrupted if one of the step is rejected or is fulfilled
with [Error _]. *)
val fold_left_es :
('a -> 'b -> ('a, 'trace) result Lwt.t) ->
'a ->
'b t ->
('a, 'trace) result Lwt.t
(** Similar to {!iter} but wraps the iteration in {!result}. The iteration
is interrupted if one of the step returns an [Error _]. *)
val iter_e : ('a -> (unit, 'trace) result) -> 'a t -> (unit, 'trace) result
(** Similar to {!iter} but wraps the iteration in {!Lwt}. Each step
of the iteration is started after the previous one resolved. The iteration
is interrupted if one of the promise is rejected. *)
val iter_s : ('a -> unit Lwt.t) -> 'a t -> unit Lwt.t
(** Similar to {!iter} but wraps the iteration in [result Lwt.t]. Each step
of the iteration is started after the previous one resolved. The iteration
is interrupted if one of the promise is rejected of fulfilled with an
[Error _]. *)
val iter_es :
('a -> (unit, 'trace) result Lwt.t) -> 'a t -> (unit, 'trace) result Lwt.t
(** Similar to {!iter} but wraps the iteration in [result Lwt.t]. All the
steps of the iteration are started concurrently. The promise [iter_ep]
resolves once all the promises of the traversal resolve. At this point it
either:
- is rejected if at least one of the promises is, otherwise
- is fulfilled with [Error _] if at least one of the promises is,
otherwise
- is fulfilled with [Ok ()] if all the promises are. *)
val iter_ep :
('a -> (unit, 'error Error_monad.trace) result Lwt.t) ->
'a t ->
(unit, 'error Error_monad.trace) result Lwt.t
(** Similar to {!iter} but wraps the iteration in {!Lwt}. All the
steps of the iteration are started concurrently. The promise [iter_p f s]
is resolved only once all the promises of the iteration are. At this point
it is either fulfilled if all promises are, or rejected if at least one of
them is. *)
val iter_p : ('a -> unit Lwt.t) -> 'a t -> unit Lwt.t
end
# 50 "v3.in.ml"
module List : sig
# 1 "v3/list.mli"
(** {1 List}
A replacement for {!Stdlib.List} which:
- replaces the exception-raising functions by exception-safe variants,
- provides Lwt-, result- and Lwt-result-aware traversors.
[List] is intended to shadow both {!Stdlib.List} and {!Lwt_list}. *)
(** {2 Basics}
Checkout {!Lwtreslib} for an introduction to the naming and semantic
convention of Lwtreslib. In a nutshell:
- Stdlib functions that raise exceptions are replaced by safe variants
(typically returning [option]).
- The [_e] suffix is for result-aware traversors ("e" stands for "error"),
[_s] and [_p] are for Lwt-aware, and [_es] and [_ep] are for
Lwt-result-aware.
- [_e], [_s], and [_es] traversors are {i fail-early}: they stop traversal
as soon as a failure ([Error] or [Fail]) occurs; [_p] and [_ep]
traversors are {i best-effort}: they only resolve once all of the
intermediate promises have, even if a failure occurs. *)
(** {2 Double-traversal and combine}
Note that double-list traversors ([iter2], [map2], etc., and also [combine])
take an additional [when_different_lengths] parameter. This is to control
the error that is returned when the two lists passed as arguments have
different lengths.
This mechanism is a replacement for {!Stdlib.List.iter2} (etc.) raising
[Invalid_argument].
Note that, as per the fail-early behaviour mentioned above, [_e], [_s], and
[_es] traversors will have already processed the common-prefix before the
error is returned.
Because the best-effort behaviour of [_p] and [_ep] is unsatisfying for this
failure case, double parallel traversors are omitted from this library.
(Specifically, it is not obvious whether nor how the
[when_different_lengths] error should be composed with the other errors.)
To obtain a different behaviour for sequential traversors, or to process
two lists in parallel, you can use {!combine} or any of the alternatives
that handles the error differently: {!combine_drop},
{!combine_with_leftovers}. Finally, the {!rev_combine} is provided to allow
to avoid multiple-reversing.
{3 Special considerations}
Because they traverse the list from right-to-left, the {!fold_right2}
function and all its variants fail with [when_different_lengths] before any
of the processing starts. Whilst this is still within the fail-early
behaviour, it may be surprising enough that it requires mentioning here.
Because they may return early, {!for_all2} and {!exists2} and all their
variants may return [Ok _] even though the arguments have different lengths.
*)
(** {3 Trivial values} *)
type 'a t = 'a list = [] | ( :: ) of 'a * 'a list
(** in-monad, preallocated nil *)
(** [nil] is [[]] *)
val nil : 'a list
(** [nil_e] is [Ok []] *)
val nil_e : ('a list, 'trace) result
(** [nil_s] is [Lwt.return_nil] *)
val nil_s : 'a list Lwt.t
(** [nil_es] is [Lwt.return (Ok [])] *)
val nil_es : ('a list, 'trace) result Lwt.t
(** {3 Safe wrappers}
Shadowing unsafe functions to avoid all exceptions. *)
(** {4 Safe lookups, scans, retrievals}
Return option rather than raise [Not_found], [Failure _], or
[Invalid_argument _] *)
(** [hd xs] is the head (first element) of the list or [None] if the list is
empty. *)
val hd : 'a list -> 'a option
(** [tl xs] is the tail of the list (the whole list except the first element)
or [None] if the list is empty. *)
val tl : 'a list -> 'a list option
(** [nth xs n] is the [n]th element of the list or [None] if the list has
fewer than [n] elements.
[nth xs 0 = hd xs] *)
val nth : 'a list -> int -> 'a option
(** [nth_opt] is an alias for [nth] provided for backwards compatibility. *)
val nth_opt : 'a list -> int -> 'a option
(** [last x xs] is the last element of the list [xs] or [x] if [xs] is empty.
The primary intended use for [last] is after destructing a list:
[match l with | None -> … | Some x :: xs -> last x xs]
but it can also be used for a default value:
[last default_value_if_empty xs]. *)
val last : 'a -> 'a list -> 'a
(** [last_opt xs] is the last element of the list [xs] or [None] if the list
[xs] is empty. *)
val last_opt : 'a list -> 'a option
(** [find predicate xs] is the first element [x] of the list [xs] such that
[predicate x] is [true] or [None] if the list [xs] has no such element. *)
val find : ('a -> bool) -> 'a list -> 'a option
(** [find_opt] is an alias for [find] provided for backwards compatibility. *)
val find_opt : ('a -> bool) -> 'a list -> 'a option
(** [mem ~equal a l] is [true] iff there is an element [e] of [l] such that
[equal a e]. *)
val mem : equal:('a -> 'a -> bool) -> 'a -> 'a list -> bool
(** [assoc ~equal k kvs] is [Some v] such that [(k', v)] is the first pair in
the list such that [equal k' k] or [None] if the list contains no such
pair. *)
val assoc : equal:('a -> 'a -> bool) -> 'a -> ('a * 'b) list -> 'b option
(** [assoc_opt] is an alias for [assoc] provided for backwards compatibility. *)
val assoc_opt : equal:('a -> 'a -> bool) -> 'a -> ('a * 'b) list -> 'b option
(** [assq k kvs] is the same as [assoc ~equal:Stdlib.( == ) k kvs]: it uses
the physical equality. *)
val assq : 'a -> ('a * 'b) list -> 'b option
(** [assq_opt] is an alias for [assq] provided for backwards compatibility. *)
val assq_opt : 'a -> ('a * 'b) list -> 'b option
(** [mem_assoc ~equal k l] is equivalent to
[Option.is_some @@ assoc ~equal k l]. *)
val mem_assoc : equal:('a -> 'a -> bool) -> 'a -> ('a * 'b) list -> bool
(** [mem_assq k l] is [mem_assoc ~equal:Stdlib.( == ) k l]. *)
val mem_assq : 'a -> ('a * 'b) list -> bool
(** [remove_assoc ~equal k l] is [l] without the first element [(k', _)] such
that [equal k k']. *)
val remove_assoc :
equal:('a -> 'a -> bool) -> 'a -> ('a * 'b) list -> ('a * 'b) list
(** [remove_assoq k l] is [remove_assoc ~equal:Stdlib.( == ) k l]. *)
val remove_assq : 'a -> ('a * 'b) list -> ('a * 'b) list
(** {4 Initialisation} *)
(** [init ~when_negative_length n f] is [Error when_negative_length] if [n] is
strictly negative and [Ok (Stdlib.List.init n f)] otherwise. *)
val init :
when_negative_length:'trace ->
int ->
(int -> 'a) ->
('a list, 'trace) result
(** {4 Basic traversal} *)
val length : 'a list -> int
val rev : 'a list -> 'a list
val concat : 'a list list -> 'a list
val append : 'a list -> 'a list -> 'a list
val rev_append : 'a list -> 'a list -> 'a list
val flatten : 'a list list -> 'a list
(** {4 Double-list traversals}
These safe-wrappers take an explicit value to handle the case of lists of
unequal length.
*)
(** [combine ~when_different_lengths l1 l2] is either
- [Error when_different_lengths] if [List.length l1 <> List.length l2]
- a list of pairs of elements from [l1] and [l2]
E.g., [combine ~when_different_lengths [] [] = Ok []]
E.g., [combine ~when_different_lengths [1; 2] ['a'; 'b'] = Ok [(1,'a'); (2, 'b')]]
E.g., [combine ~when_different_lengths:() [1] [] = Error ()]
Note: [combine ~when_different_lengths l1 l2] is equivalent to
[try Ok (Stdlib.List.combine l1 l2)
with Invalid_argument _ -> when_different_lengths]
The same equivalence almost holds for the other double traversors below.
The notable difference is if the functions passed as argument to the
traversors raise the [Invalid_argument _] exception. *)
val combine :
when_different_lengths:'trace ->
'a list ->
'b list ->
(('a * 'b) list, 'trace) result
(** [rev_combine ~when_different_lengths xs ys] is
[rev (combine ~when_different_lengths xs ys)] but more efficient. *)
val rev_combine :
when_different_lengths:'trace ->
'a list ->
'b list ->
(('a * 'b) list, 'trace) result
val split : ('a * 'b) list -> 'a list * 'b list
val iter2 :
when_different_lengths:'trace ->
('a -> 'b -> unit) ->
'a list ->
'b list ->
(unit, 'trace) result
val map2 :
when_different_lengths:'trace ->
('a -> 'b -> 'c) ->
'a list ->
'b list ->
('c list, 'trace) result
val rev_map2 :
when_different_lengths:'trace ->
('a -> 'b -> 'c) ->
'a list ->
'b list ->
('c list, 'trace) result
val fold_left2 :
when_different_lengths:'trace ->
('a -> 'b -> 'c -> 'a) ->
'a ->
'b list ->
'c list ->
('a, 'trace) result
(** This function is not tail-recursive *)
val fold_right2 :
when_different_lengths:'trace ->
('a -> 'b -> 'c -> 'c) ->
'a list ->
'b list ->
'c ->
('c, 'trace) result
val for_all2 :
when_different_lengths:'trace ->
('a -> 'b -> bool) ->
'a list ->
'b list ->
(bool, 'trace) result
val exists2 :
when_different_lengths:'trace ->
('a -> 'b -> bool) ->
'a list ->
'b list ->
(bool, 'trace) result
(** {3 Monad-aware variants}
The functions below are strict extensions of the standard {!Stdlib.List}
module. It is for result-, lwt- and lwt-result-aware variants. The meaning
of the suffix is as described above, in {!Lwtreslib}, and in {!Sigs.Seq}. *)
(** {4 Initialisation variants}
Note that for asynchronous variants ([_s], [_es], [_p], and [_ep]), if the
length parameter is negative, then the promise is returned already
fulfilled with [Error when_different_lengths]. *)
val init_e :
when_negative_length:'trace ->
int ->
(int -> ('a, 'trace) result) ->
('a list, 'trace) result
val init_s :
when_negative_length:'trace ->
int ->
(int -> 'a Lwt.t) ->
('a list, 'trace) result Lwt.t
val init_es :
when_negative_length:'trace ->
int ->
(int -> ('a, 'trace) result Lwt.t) ->
('a list, 'trace) result Lwt.t
val init_p :
when_negative_length:'trace ->
int ->
(int -> 'a Lwt.t) ->
('a list, 'trace) result Lwt.t
(** {4 Query variants} *)
val find_e :
('a -> (bool, 'trace) result) -> 'a list -> ('a option, 'trace) result
val find_s : ('a -> bool Lwt.t) -> 'a list -> 'a option Lwt.t
val find_es :
('a -> (bool, 'trace) result Lwt.t) ->
'a list ->
('a option, 'trace) result Lwt.t
val filter : ('a -> bool) -> 'a list -> 'a list
(** [rev_filter f l] is [rev (filter f l)] but more efficient. *)
val rev_filter : ('a -> bool) -> 'a list -> 'a list
val rev_filter_some : 'a option list -> 'a list
val filter_some : 'a option list -> 'a list
val rev_filter_ok : ('a, 'b) result list -> 'a list
val filter_ok : ('a, 'b) result list -> 'a list
val rev_filter_error : ('a, 'b) result list -> 'b list
val filter_error : ('a, 'b) result list -> 'b list
val rev_filter_e :
('a -> (bool, 'trace) result) -> 'a list -> ('a list, 'trace) result
val filter_e :
('a -> (bool, 'trace) result) -> 'a list -> ('a list, 'trace) result
val rev_filter_s : ('a -> bool Lwt.t) -> 'a list -> 'a list Lwt.t
val filter_s : ('a -> bool Lwt.t) -> 'a list -> 'a list Lwt.t
val rev_filter_es :
('a -> (bool, 'trace) result Lwt.t) ->
'a list ->
('a list, 'trace) result Lwt.t
val filter_es :
('a -> (bool, 'trace) result Lwt.t) ->
'a list ->
('a list, 'trace) result Lwt.t
val filter_p : ('a -> bool Lwt.t) -> 'a list -> 'a list Lwt.t
val rev_partition : ('a -> bool) -> 'a list -> 'a list * 'a list
val partition : ('a -> bool) -> 'a list -> 'a list * 'a list
val rev_partition_result : ('a, 'b) result list -> 'a list * 'b list
val partition_result : ('a, 'b) result list -> 'a list * 'b list
val rev_partition_e :
('a -> (bool, 'trace) result) ->
'a list ->
('a list * 'a list, 'trace) result
val partition_e :
('a -> (bool, 'trace) result) ->
'a list ->
('a list * 'a list, 'trace) result
val rev_partition_s :
('a -> bool Lwt.t) -> 'a list -> ('a list * 'a list) Lwt.t
val partition_s : ('a -> bool Lwt.t) -> 'a list -> ('a list * 'a list) Lwt.t
val rev_partition_es :
('a -> (bool, 'trace) result Lwt.t) ->
'a list ->
('a list * 'a list, 'trace) result Lwt.t
val partition_es :
('a -> (bool, 'trace) result Lwt.t) ->
'a list ->
('a list * 'a list, 'trace) result Lwt.t
val partition_p : ('a -> bool Lwt.t) -> 'a list -> ('a list * 'a list) Lwt.t
(** {4 Traversal variants} *)
val iter : ('a -> unit) -> 'a list -> unit
val iter_e : ('a -> (unit, 'trace) result) -> 'a list -> (unit, 'trace) result
val iter_s : ('a -> unit Lwt.t) -> 'a list -> unit Lwt.t
val iter_es :
('a -> (unit, 'trace) result Lwt.t) ->
'a list ->
(unit, 'trace) result Lwt.t
val iter_p : ('a -> unit Lwt.t) -> 'a list -> unit Lwt.t
val iteri : (int -> 'a -> unit) -> 'a list -> unit
val iteri_e :
(int -> 'a -> (unit, 'trace) result) -> 'a list -> (unit, 'trace) result
val iteri_s : (int -> 'a -> unit Lwt.t) -> 'a list -> unit Lwt.t
val iteri_es :
(int -> 'a -> (unit, 'trace) result Lwt.t) ->
'a list ->
(unit, 'trace) result Lwt.t
val iteri_p : (int -> 'a -> unit Lwt.t) -> 'a list -> unit Lwt.t
val map : ('a -> 'b) -> 'a list -> 'b list
val map_e : ('a -> ('b, 'trace) result) -> 'a list -> ('b list, 'trace) result
val map_s : ('a -> 'b Lwt.t) -> 'a list -> 'b list Lwt.t
val map_es :
('a -> ('b, 'trace) result Lwt.t) ->
'a list ->
('b list, 'trace) result Lwt.t
val map_p : ('a -> 'b Lwt.t) -> 'a list -> 'b list Lwt.t
val mapi : (int -> 'a -> 'b) -> 'a list -> 'b list
val mapi_e :
(int -> 'a -> ('b, 'trace) result) -> 'a list -> ('b list, 'trace) result
val mapi_s : (int -> 'a -> 'b Lwt.t) -> 'a list -> 'b list Lwt.t
val mapi_es :
(int -> 'a -> ('b, 'trace) result Lwt.t) ->
'a list ->
('b list, 'trace) result Lwt.t
val mapi_p : (int -> 'a -> 'b Lwt.t) -> 'a list -> 'b list Lwt.t
val rev_map : ('a -> 'b) -> 'a list -> 'b list
val rev_mapi : (int -> 'a -> 'b) -> 'a list -> 'b list
val rev_map_e :
('a -> ('b, 'trace) result) -> 'a list -> ('b list, 'trace) result
val rev_map_s : ('a -> 'b Lwt.t) -> 'a list -> 'b list Lwt.t
val rev_map_es :
('a -> ('b, 'trace) result Lwt.t) ->
'a list ->
('b list, 'trace) result Lwt.t
val rev_map_p : ('a -> 'b Lwt.t) -> 'a list -> 'b list Lwt.t
val rev_mapi_e :
(int -> 'a -> ('b, 'trace) result) -> 'a list -> ('b list, 'trace) result
val rev_mapi_s : (int -> 'a -> 'b Lwt.t) -> 'a list -> 'b list Lwt.t
val rev_mapi_es :
(int -> 'a -> ('b, 'trace) result Lwt.t) ->
'a list ->
('b list, 'trace) result Lwt.t
val rev_mapi_p : (int -> 'a -> 'b Lwt.t) -> 'a list -> 'b list Lwt.t
val rev_filter_map : ('a -> 'b option) -> 'a list -> 'b list
val rev_filter_map_e :
('a -> ('b option, 'trace) result) -> 'a list -> ('b list, 'trace) result
val filter_map_e :
('a -> ('b option, 'trace) result) -> 'a list -> ('b list, 'trace) result
val rev_filter_map_s : ('a -> 'b option Lwt.t) -> 'a list -> 'b list Lwt.t
val filter_map : ('a -> 'b option) -> 'a list -> 'b list
val filter_map_s : ('a -> 'b option Lwt.t) -> 'a list -> 'b list Lwt.t
val rev_filter_map_es :
('a -> ('b option, 'trace) result Lwt.t) ->
'a list ->
('b list, 'trace) result Lwt.t
val filter_map_es :
('a -> ('b option, 'trace) result Lwt.t) ->
'a list ->
('b list, 'trace) result Lwt.t
val filter_map_p : ('a -> 'b option Lwt.t) -> 'a list -> 'b list Lwt.t
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a
val fold_left_e :
('a -> 'b -> ('a, 'trace) result) -> 'a -> 'b list -> ('a, 'trace) result
val fold_left_s : ('a -> 'b -> 'a Lwt.t) -> 'a -> 'b list -> 'a Lwt.t
val fold_left_es :
('a -> 'b -> ('a, 'trace) result Lwt.t) ->
'a ->
'b list ->
('a, 'trace) result Lwt.t
(** This function is not tail-recursive *)
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b
(** This function is not tail-recursive *)
val fold_right_e :
('a -> 'b -> ('b, 'trace) result) -> 'a list -> 'b -> ('b, 'trace) result
(** This function is not tail-recursive *)
val fold_right_s : ('a -> 'b -> 'b Lwt.t) -> 'a list -> 'b -> 'b Lwt.t
(** This function is not tail-recursive *)
val fold_right_es :
('a -> 'b -> ('b, 'trace) result Lwt.t) ->
'a list ->
'b ->
('b, 'trace) result Lwt.t
(** {4 Double-traversal variants}
As mentioned above, there are no [_p] and [_ep] double-traversors. Use
{!combine} (and variants) to circumvent this. *)
val iter2_e :
when_different_lengths:'trace ->
('a -> 'b -> (unit, 'trace) result) ->
'a list ->
'b list ->
(unit, 'trace) result
val iter2_s :
when_different_lengths:'trace ->
('a -> 'b -> unit Lwt.t) ->
'a list ->
'b list ->
(unit, 'trace) result Lwt.t
val iter2_es :
when_different_lengths:'trace ->
('a -> 'b -> (unit, 'trace) result Lwt.t) ->
'a list ->
'b list ->
(unit, 'trace) result Lwt.t
val map2_e :
when_different_lengths:'trace ->
('a -> 'b -> ('c, 'trace) result) ->
'a list ->
'b list ->
('c list, 'trace) result
val map2_s :
when_different_lengths:'trace ->
('a -> 'b -> 'c Lwt.t) ->
'a list ->
'b list ->
('c list, 'trace) result Lwt.t
val map2_es :
when_different_lengths:'trace ->
('a -> 'b -> ('c, 'trace) result Lwt.t) ->
'a list ->
'b list ->
('c list, 'trace) result Lwt.t
val rev_map2_e :
when_different_lengths:'trace ->
('a -> 'b -> ('c, 'trace) result) ->
'a list ->
'b list ->
('c list, 'trace) result
val rev_map2_s :
when_different_lengths:'trace ->
('a -> 'b -> 'c Lwt.t) ->
'a list ->
'b list ->
('c list, 'trace) result Lwt.t
val rev_map2_es :
when_different_lengths:'trace ->
('a -> 'b -> ('c, 'trace) result Lwt.t) ->
'a list ->
'b list ->
('c list, 'trace) result Lwt.t
val fold_left2_e :
when_different_lengths:'trace ->
('a -> 'b -> 'c -> ('a, 'trace) result) ->
'a ->
'b list ->
'c list ->
('a, 'trace) result
val fold_left2_s :
when_different_lengths:'trace ->
('a -> 'b -> 'c -> 'a Lwt.t) ->
'a ->
'b list ->
'c list ->
('a, 'trace) result Lwt.t
val fold_left2_es :
when_different_lengths:'trace ->
('a -> 'b -> 'c -> ('a, 'trace) result Lwt.t) ->
'a ->
'b list ->
'c list ->
('a, 'trace) result Lwt.t
(** This function is not tail-recursive *)
val fold_right2_e :
when_different_lengths:'trace ->
('a -> 'b -> 'c -> ('c, 'trace) result) ->
'a list ->
'b list ->
'c ->
('c, 'trace) result
(** This function is not tail-recursive *)
val fold_right2_s :
when_different_lengths:'trace ->
('a -> 'b -> 'c -> 'c Lwt.t) ->
'a list ->
'b list ->
'c ->
('c, 'trace) result Lwt.t
(** This function is not tail-recursive *)
val fold_right2_es :
when_different_lengths:'trace ->
('a -> 'b -> 'c -> ('c, 'trace) result Lwt.t) ->
'a list ->
'b list ->
'c ->
('c, 'trace) result Lwt.t
(** {4 Scanning variants} *)
val for_all : ('a -> bool) -> 'a list -> bool
val for_all_e :
('a -> (bool, 'trace) result) -> 'a list -> (bool, 'trace) result
val for_all_s : ('a -> bool Lwt.t) -> 'a list -> bool Lwt.t
val for_all_es :
('a -> (bool, 'trace) result Lwt.t) ->
'a list ->
(bool, 'trace) result Lwt.t
val for_all_p : ('a -> bool Lwt.t) -> 'a list -> bool Lwt.t
val exists : ('a -> bool) -> 'a list -> bool
val exists_e :
('a -> (bool, 'trace) result) -> 'a list -> (bool, 'trace) result
val exists_s : ('a -> bool Lwt.t) -> 'a list -> bool Lwt.t
val exists_es :
('a -> (bool, 'trace) result Lwt.t) ->
'a list ->
(bool, 'trace) result Lwt.t
val exists_p : ('a -> bool Lwt.t) -> 'a list -> bool Lwt.t
(** {4 Double-scanning variants}
As mentioned above, there are no [_p] and [_ep] double-scanners. Use
{!combine} (and variants) to circumvent this. *)
val for_all2_e :
when_different_lengths:'trace ->
('a -> 'b -> (bool, 'trace) result) ->
'a list ->
'b list ->
(bool, 'trace) result
val for_all2_s :
when_different_lengths:'trace ->
('a -> 'b -> bool Lwt.t) ->
'a list ->
'b list ->
(bool, 'trace) result Lwt.t
val for_all2_es :
when_different_lengths:'trace ->
('a -> 'b -> (bool, 'trace) result Lwt.t) ->
'a list ->
'b list ->
(bool, 'trace) result Lwt.t
val exists2_e :
when_different_lengths:'trace ->
('a -> 'b -> (bool, 'trace) result) ->
'a list ->
'b list ->
(bool, 'trace) result
val exists2_s :
when_different_lengths:'trace ->
('a -> 'b -> bool Lwt.t) ->
'a list ->
'b list ->
(bool, 'trace) result Lwt.t
val exists2_es :
when_different_lengths:'trace ->
('a -> 'b -> (bool, 'trace) result Lwt.t) ->
'a list ->
'b list ->
(bool, 'trace) result Lwt.t
(** {3 Combine variants}
These are primarily intended to be used for preprocessing before applying
a traversor to the resulting list of pairs. They give alternatives to the
[when_different_lengths] mechanism of the immediate double-traversors
above.
In case the semantic of, say, [map2_es] was unsatisfying, one can use
[map_es] on a [combine]-preprocessed pair of lists. The different variants
of [combine] give different approaches to different-length handling. *)
(** [combine_drop ll lr] is a list [l] of pairs of elements taken from the
common-length prefix of [ll] and [lr]. The suffix of whichever list is
longer (if any) is dropped.
More formally [nth l n] is:
- [None] if [n >= min (length ll) (length lr)]
- [Some (Option.get @@ nth ll n, Option.get @@ nth lr n)] otherwise
*)
val combine_drop : 'a list -> 'b list -> ('a * 'b) list
(** A type like [result] but which is symmetric *)
type ('a, 'b) left_or_right_list = [`Left of 'a list | `Right of 'b list]
(** [combine_with_leftovers ll lr] is a tuple [(combined, leftover)]
where [combined] is [combine_drop ll lr]
and [leftover] is either [`Left lsuffix] or [`Right rsuffix] depending on
which of [ll] or [lr] is longer. [leftover] is [None] if the two lists
have the same length. *)
val combine_with_leftovers :
'a list ->
'b list ->
('a * 'b) list * ('a, 'b) left_or_right_list option
(** {3 compare / equal} *)
val compare : ('a -> 'a -> int) -> 'a list -> 'a list -> int
val compare_lengths : 'a list -> 'a list -> int
val compare_length_with : 'a list -> int -> int
val equal : ('a -> 'a -> bool) -> 'a list -> 'a list -> bool
(** {3 Sorting} *)
val sort : ('a -> 'a -> int) -> 'a list -> 'a list
val stable_sort : ('a -> 'a -> int) -> 'a list -> 'a list
val fast_sort : ('a -> 'a -> int) -> 'a list -> 'a list
val sort_uniq : ('a -> 'a -> int) -> 'a list -> 'a list
(** {3 conversion} *)
val to_seq : 'a t -> 'a Seq.t
val of_seq : 'a Seq.t -> 'a list
val init_ep :
when_negative_length:'error ->
int ->
(int -> ('a, 'error Error_monad.trace) result Lwt.t) ->
('a list, 'error Error_monad.trace) result Lwt.t
val filter_ep :
('a -> (bool, 'error Error_monad.trace) result Lwt.t) ->
'a list ->
('a list, 'error Error_monad.trace) result Lwt.t
val partition_ep :
('a -> (bool, 'error Error_monad.trace) result Lwt.t) ->
'a list ->
('a list * 'a list, 'error Error_monad.trace) result Lwt.t
val iter_ep :
('a -> (unit, 'error Error_monad.trace) result Lwt.t) ->
'a list ->
(unit, 'error Error_monad.trace) result Lwt.t
val iteri_ep :
(int -> 'a -> (unit, 'error Error_monad.trace) result Lwt.t) ->
'a list ->
(unit, 'error Error_monad.trace) result Lwt.t
val map_ep :
('a -> ('b, 'error Error_monad.trace) result Lwt.t) ->
'a list ->
('b list, 'error Error_monad.trace) result Lwt.t
val mapi_ep :
(int -> 'a -> ('b, 'error Error_monad.trace) result Lwt.t) ->
'a list ->
('b list, 'error Error_monad.trace) result Lwt.t
val rev_map_ep :
('a -> ('b, 'error Error_monad.trace) result Lwt.t) ->
'a list ->
('b list, 'error Error_monad.trace) result Lwt.t
val rev_mapi_ep :
(int -> 'a -> ('b, 'error Error_monad.trace) result Lwt.t) ->
'a list ->
('b list, 'error Error_monad.trace) result Lwt.t
val filter_map_ep :
('a -> ('b option, 'error Error_monad.trace) result Lwt.t) ->
'a list ->
('b list, 'error Error_monad.trace) result Lwt.t
val for_all_ep :
('a -> (bool, 'error Error_monad.trace) result Lwt.t) ->
'a list ->
(bool, 'error Error_monad.trace) result Lwt.t
val exists_ep :
('a -> (bool, 'error Error_monad.trace) result Lwt.t) ->
'a list ->
(bool, 'error Error_monad.trace) result Lwt.t
end
# 52 "v3.in.ml"
module Set : sig
# 1 "v3/set.mli"
module type S = sig
type elt
type t
val empty : t
val is_empty : t -> bool
val mem : elt -> t -> bool
val add : elt -> t -> t
val singleton : elt -> t
val remove : elt -> t -> t
val union : t -> t -> t
val inter : t -> t -> t
val disjoint : t -> t -> bool
val diff : t -> t -> t
val compare : t -> t -> int
val equal : t -> t -> bool
val subset : t -> t -> bool
val iter : (elt -> unit) -> t -> unit
val iter_e : (elt -> (unit, 'trace) result) -> t -> (unit, 'trace) result
val iter_s : (elt -> unit Lwt.t) -> t -> unit Lwt.t
val iter_p : (elt -> unit Lwt.t) -> t -> unit Lwt.t
val iter_es :
(elt -> (unit, 'trace) result Lwt.t) -> t -> (unit, 'trace) result Lwt.t
val map : (elt -> elt) -> t -> t
val fold : (elt -> 'a -> 'a) -> t -> 'a -> 'a
val fold_e :
(elt -> 'a -> ('a, 'trace) result) -> t -> 'a -> ('a, 'trace) result
val fold_s : (elt -> 'a -> 'a Lwt.t) -> t -> 'a -> 'a Lwt.t
val fold_es :
(elt -> 'a -> ('a, 'trace) result Lwt.t) ->
t ->
'a ->
('a, 'trace) result Lwt.t
val for_all : (elt -> bool) -> t -> bool
val exists : (elt -> bool) -> t -> bool
val filter : (elt -> bool) -> t -> t
val partition : (elt -> bool) -> t -> t * t
val cardinal : t -> int
val elements : t -> elt list
val min_elt : t -> elt option
val max_elt : t -> elt option
val choose : t -> elt option
val split : elt -> t -> t * bool * t
val find : elt -> t -> elt option
val find_first : (elt -> bool) -> t -> elt option
val find_last : (elt -> bool) -> t -> elt option
val of_list : elt list -> t
val to_seq_from : elt -> t -> elt Seq.t
val to_seq : t -> elt Seq.t
val add_seq : elt Seq.t -> t -> t
val of_seq : elt Seq.t -> t
val iter_ep :
(elt -> (unit, 'error Error_monad.trace) result Lwt.t) ->
t ->
(unit, 'error Error_monad.trace) result Lwt.t
end
module Make (Ord : Compare.COMPARABLE) : S with type elt = Ord.t
end
# 54 "v3.in.ml"
module Map : sig
# 1 "v3/map.mli"
module type S = sig
type key
type +!'a t
val empty : 'a t
val is_empty : 'a t -> bool
val mem : key -> 'a t -> bool
val add : key -> 'a -> 'a t -> 'a t
val update : key -> ('a option -> 'a option) -> 'a t -> 'a t
val singleton : key -> 'a -> 'a t
val remove : key -> 'a t -> 'a t
val merge :
(key -> 'a option -> 'b option -> 'c option) -> 'a t -> 'b t -> 'c t
val union : (key -> 'a -> 'a -> 'a option) -> 'a t -> 'a t -> 'a t
val compare : ('a -> 'a -> int) -> 'a t -> 'a t -> int
val equal : ('a -> 'a -> bool) -> 'a t -> 'a t -> bool
val iter : (key -> 'a -> unit) -> 'a t -> unit
(** [iter_e f m] applies [f] to the bindings of [m] one by one in an
unspecified order. If all the applications result in [Ok ()], then the
result of the iteration is [Ok ()]. If any of the applications results in
[Error e] then the iteration stops and the result of the iteration is
[Error e]. *)
val iter_e :
(key -> 'a -> (unit, 'trace) result) -> 'a t -> (unit, 'trace) result
val iter_s : (key -> 'a -> unit Lwt.t) -> 'a t -> unit Lwt.t
val iter_p : (key -> 'a -> unit Lwt.t) -> 'a t -> unit Lwt.t
(** [iter_es f m] applies [f] to the bindings of [m] in an unspecified order,
one after the other as the promises resolve. If all the applications
result in [Ok ()], then the result of the iteration is [Ok ()]. If any of
the applications results in [Error e] then the iteration stops and the
result of the iteration is [Error e]. *)
val iter_es :
(key -> 'a -> (unit, 'trace) result Lwt.t) ->
'a t ->
(unit, 'trace) result Lwt.t
val fold : (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b
(** [fold_e f m init] is
[f k1 d1 init >>? fun acc -> f k2 d2 acc >>? fun acc -> …] where [kN] is
the key bound to [dN] in [m]. *)
val fold_e :
(key -> 'a -> 'b -> ('b, 'trace) result) ->
'a t ->
'b ->
('b, 'trace) result
val fold_s : (key -> 'a -> 'b -> 'b Lwt.t) -> 'a t -> 'b -> 'b Lwt.t
(** [fold_es f m init] is
[f k1 d1 init >>=? fun acc -> f k2 d2 acc >>=? fun acc -> …] where [kN] is
the key bound to [dN] in [m]. *)
val fold_es :
(key -> 'a -> 'b -> ('b, 'trace) result Lwt.t) ->
'a t ->
'b ->
('b, 'trace) result Lwt.t
val for_all : (key -> 'a -> bool) -> 'a t -> bool
val exists : (key -> 'a -> bool) -> 'a t -> bool
val filter : (key -> 'a -> bool) -> 'a t -> 'a t
val partition : (key -> 'a -> bool) -> 'a t -> 'a t * 'a t
val cardinal : 'a t -> int
val bindings : 'a t -> (key * 'a) list
val min_binding : 'a t -> (key * 'a) option
val max_binding : 'a t -> (key * 'a) option
val choose : 'a t -> (key * 'a) option
val split : key -> 'a t -> 'a t * 'a option * 'a t
val find : key -> 'a t -> 'a option
val find_first : (key -> bool) -> 'a t -> (key * 'a) option
val find_last : (key -> bool) -> 'a t -> (key * 'a) option
val map : ('a -> 'b) -> 'a t -> 'b t
val mapi : (key -> 'a -> 'b) -> 'a t -> 'b t
val to_seq : 'a t -> (key * 'a) Seq.t
val to_seq_from : key -> 'a t -> (key * 'a) Seq.t
val add_seq : (key * 'a) Seq.t -> 'a t -> 'a t
val of_seq : (key * 'a) Seq.t -> 'a t
val iter_ep :
(key -> 'a -> (unit, 'error Error_monad.trace) result Lwt.t) ->
'a t ->
(unit, 'error Error_monad.trace) result Lwt.t
end
module Make (Ord : Compare.COMPARABLE) : S with type key = Ord.t
end
# 56 "v3.in.ml"
module Option : sig
# 1 "v3/option.mli"
(** Signature from Lwtreslib's option module *)
type 'a t = 'a option = None | Some of 'a
val none : 'a option
val none_e : ('a option, 'trace) result
val none_s : 'a option Lwt.t
val none_es : ('a option, 'trace) result Lwt.t
val some : 'a -> 'a option
val some_unit : unit option
val some_nil : 'a list option
val some_e : 'a -> ('a option, 'trace) result
val some_s : 'a -> 'a option Lwt.t
val some_es : 'a -> ('a option, 'trace) result Lwt.t
val value : 'a option -> default:'a -> 'a
val value_e : 'a option -> error:'trace -> ('a, 'trace) result
val value_f : 'a option -> default:(unit -> 'a) -> 'a
val value_fe : 'a option -> error:(unit -> 'trace) -> ('a, 'trace) result
val bind : 'a option -> ('a -> 'b option) -> 'b option
val join : 'a option option -> 'a option
val either : 'a option -> 'a option -> 'a option
val map : ('a -> 'b) -> 'a option -> 'b option
val map_s : ('a -> 'b Lwt.t) -> 'a option -> 'b option Lwt.t
val map_e :
('a -> ('b, 'trace) result) -> 'a option -> ('b option, 'trace) result
val map_es :
('a -> ('b, 'trace) result Lwt.t) ->
'a option ->
('b option, 'trace) result Lwt.t
val fold : none:'a -> some:('b -> 'a) -> 'b option -> 'a
val fold_s : none:'a -> some:('b -> 'a Lwt.t) -> 'b option -> 'a Lwt.t
val fold_f : none:(unit -> 'a) -> some:('b -> 'a) -> 'b option -> 'a
val iter : ('a -> unit) -> 'a option -> unit
val iter_s : ('a -> unit Lwt.t) -> 'a option -> unit Lwt.t
val iter_e :
('a -> (unit, 'trace) result) -> 'a option -> (unit, 'trace) result
val iter_es :
('a -> (unit, 'trace) result Lwt.t) ->
'a option ->
(unit, 'trace) result Lwt.t
val is_none : 'a option -> bool
val is_some : 'a option -> bool
val equal : ('a -> 'a -> bool) -> 'a option -> 'a option -> bool
val compare : ('a -> 'a -> int) -> 'a option -> 'a option -> int
val to_result : none:'trace -> 'a option -> ('a, 'trace) result
val of_result : ('a, 'e) result -> 'a option
val to_list : 'a option -> 'a list
val to_seq : 'a option -> 'a Seq.t
(** [catch f] is [Some (f ())] if [f] does not raise an exception, it is
[None] otherwise.
You should only use [catch] when you truly do not care about
what exception may be raised during the evaluation of [f ()]. If you need
to inspect the raised exception, or if you need to pass it along, consider
{!Result.catch} instead.
If [catch_only] is set, then only exceptions [e] such that [catch_only e]
is [true] are caught.
Whether [catch_only] is set or not, you cannot catch non-deterministic
runtime exceptions of OCaml such as {!Stack_overflow} and
{!Out_of_memory} nor system exceptions such as {!Unix.Unix_error}. *)
val catch : ?catch_only:(exn -> bool) -> (unit -> 'a) -> 'a option
(** [catch_s f] is a promise that resolves to [Some x] if and when [f ()]
resolves to [x]. Alternatively, it resolves to [None] if and when [f ()]
is rejected.
You should only use [catch_s] when you truly do not care about
what exception may be raised during the evaluation of [f ()]. If you need
to inspect the raised exception, or if you need to pass it along, consider
{!Result.catch_s} instead.
If [catch_only] is set, then only exceptions [e] such that [catch_only e]
is [true] are caught.
Whether [catch_only] is set or not, you cannot catch non-deterministic
runtime exceptions of OCaml such as {!Stack_overflow} and
{!Out_of_memory} nor system exceptions such as {!Unix.Unix_error}. *)
val catch_s :
?catch_only:(exn -> bool) -> (unit -> 'a Lwt.t) -> 'a option Lwt.t
end
# 58 "v3.in.ml"
module Result : sig
# 1 "v3/result.mli"
type ('a, 'e) t = ('a, 'e) result = Ok of 'a | Error of 'e
val ok : 'a -> ('a, 'e) result
val ok_s : 'a -> ('a, 'e) result Lwt.t
val error : 'e -> ('a, 'e) result
val error_s : 'e -> ('a, 'e) result Lwt.t
val value : ('a, 'e) result -> default:'a -> 'a
val value_f : ('a, 'e) result -> default:(unit -> 'a) -> 'a
val bind : ('a, 'e) result -> ('a -> ('b, 'e) result) -> ('b, 'e) result
val bind_s :
('a, 'e) result -> ('a -> ('b, 'e) result Lwt.t) -> ('b, 'e) result Lwt.t
val bind_error : ('a, 'e) result -> ('e -> ('a, 'f) result) -> ('a, 'f) result
val bind_error_s :
('a, 'e) result -> ('e -> ('a, 'f) result Lwt.t) -> ('a, 'f) result Lwt.t
val join : (('a, 'e) result, 'e) result -> ('a, 'e) result
val map : ('a -> 'b) -> ('a, 'e) result -> ('b, 'e) result
val map_e : ('a -> ('b, 'e) result) -> ('a, 'e) result -> ('b, 'e) result
val map_s : ('a -> 'b Lwt.t) -> ('a, 'e) result -> ('b, 'e) result Lwt.t
val map_es :
('a -> ('b, 'e) result Lwt.t) -> ('a, 'e) result -> ('b, 'e) result Lwt.t
val map_error : ('e -> 'f) -> ('a, 'e) result -> ('a, 'f) result
val map_error_e : ('e -> ('a, 'f) result) -> ('a, 'e) result -> ('a, 'f) result
val map_error_s : ('e -> 'f Lwt.t) -> ('a, 'e) result -> ('a, 'f) result Lwt.t
val map_error_es :
('e -> ('a, 'f) result Lwt.t) -> ('a, 'e) result -> ('a, 'f) result Lwt.t
val fold : ok:('a -> 'c) -> error:('e -> 'c) -> ('a, 'e) result -> 'c
val iter : ('a -> unit) -> ('a, 'e) result -> unit
val iter_s : ('a -> unit Lwt.t) -> ('a, 'e) result -> unit Lwt.t
val iter_error : ('e -> unit) -> ('a, 'e) result -> unit
val iter_error_s : ('e -> unit Lwt.t) -> ('a, 'e) result -> unit Lwt.t
val is_ok : ('a, 'e) result -> bool
val is_error : ('a, 'e) result -> bool
val equal :
ok:('a -> 'a -> bool) ->
error:('e -> 'e -> bool) ->
('a, 'e) result ->
('a, 'e) result ->
bool
val compare :
ok:('a -> 'a -> int) ->
error:('e -> 'e -> int) ->
('a, 'e) result ->
('a, 'e) result ->
int
val to_option : ('a, 'e) result -> 'a option
val of_option : error:'e -> 'a option -> ('a, 'e) result
val to_list : ('a, 'e) result -> 'a list
val to_seq : ('a, 'e) result -> 'a Seq.t
(** [catch f] is [try Ok (f ()) with e -> Error e]: it is [Ok x] if [f ()]
evaluates to [x], and it is [Error e] if [f ()] raises [e].
See {!WithExceptions.S.Result.to_exn} for a converse function.
If [catch_only] is set, then only exceptions [e] such that [catch_only e]
is [true] are caught.
Whether [catch_only] is set or not, you cannot catch non-deterministic
runtime exceptions of OCaml such as {!Stack_overflow} and
{!Out_of_memory} nor system exceptions such as {!Unix.Unix_error}. *)
val catch : ?catch_only:(exn -> bool) -> (unit -> 'a) -> ('a, exn) result
(** [catch_f f handler] is equivalent to [map_error (catch f) handler].
In other words, it catches exceptions in [f ()] and either returns the
value in an [Ok] or passes the exception to [handler] for the [Error].
[catch_only] has the same use as with [catch]. The same restriction on
catching non-deterministic runtime exceptions applies. *)
val catch_f :
?catch_only:(exn -> bool) ->
(unit -> 'a) ->
(exn -> 'error) ->
('a, 'error) result
(** [catch_s] is [catch] but for Lwt promises. Specifically, [catch_s f]
returns a promise that resolves to [Ok x] if and when [f ()] resolves to
[x], or to [Error exc] if and when [f ()] is rejected with [exc].
If [catch_only] is set, then only exceptions [e] such that [catch_only e]
is [true] are caught.
Whether [catch_only] is set or not, you cannot catch non-deterministic
runtime exceptions of OCaml such as {!Stack_overflow} and
{!Out_of_memory} nor system exceptions such as {!Unix.Unix_error}. *)
val catch_s :
?catch_only:(exn -> bool) -> (unit -> 'a Lwt.t) -> ('a, exn) result Lwt.t
end
# 60 "v3.in.ml"
module RPC_arg : sig
# 1 "v3/RPC_arg.mli"
type 'a t
type 'a arg = 'a t
val make :
?descr:string ->
name:string ->
destruct:(string -> ('a, string) result) ->
construct:('a -> string) ->
unit ->
'a arg
type descr = {name : string; descr : string option}
val descr : 'a arg -> descr
val bool : bool arg
val int : int arg
val int32 : int32 arg
val int64 : int64 arg
val string : string arg
val like : 'a arg -> ?descr:string -> string -> 'a arg
type ('a, 'b) eq = Eq : ('a, 'a) eq
val eq : 'a arg -> 'b arg -> ('a, 'b) eq option
end
# 62 "v3.in.ml"
module RPC_path : sig
# 1 "v3/RPC_path.mli"
type ('prefix, 'params) t
type ('prefix, 'params) path = ('prefix, 'params) t
type 'prefix context = ('prefix, 'prefix) path
val root : unit context
val open_root : 'a context
val add_suffix : ('prefix, 'params) path -> string -> ('prefix, 'params) path
val ( / ) : ('prefix, 'params) path -> string -> ('prefix, 'params) path
val add_arg :
('prefix, 'params) path -> 'a RPC_arg.t -> ('prefix, 'params * 'a) path
val ( /: ) :
('prefix, 'params) path -> 'a RPC_arg.t -> ('prefix, 'params * 'a) path
val add_final_args :
('prefix, 'params) path -> 'a RPC_arg.t -> ('prefix, 'params * 'a list) path
val ( /:* ) :
('prefix, 'params) path -> 'a RPC_arg.t -> ('prefix, 'params * 'a list) path
end
# 64 "v3.in.ml"
module RPC_query : sig
# 1 "v3/RPC_query.mli"
type 'a t
type 'a query = 'a t
val empty : unit query
type ('a, 'b) field
val field :
?descr:string -> string -> 'a RPC_arg.t -> 'a -> ('b -> 'a) -> ('b, 'a) field
val opt_field :
?descr:string ->
string ->
'a RPC_arg.t ->
('b -> 'a option) ->
('b, 'a option) field
val flag : ?descr:string -> string -> ('b -> bool) -> ('b, bool) field
val multi_field :
?descr:string ->
string ->
'a RPC_arg.t ->
('b -> 'a list) ->
('b, 'a list) field
type ('a, 'b, 'c) open_query
val query : 'b -> ('a, 'b, 'b) open_query
val ( |+ ) :
('a, 'b, 'c -> 'd) open_query -> ('a, 'c) field -> ('a, 'b, 'd) open_query
val seal : ('a, 'b, 'a) open_query -> 'a t
type untyped = (string * string) list
exception Invalid of string
val parse : 'a query -> untyped -> 'a
end
# 66 "v3.in.ml"
module RPC_service : sig
# 1 "v3/RPC_service.mli"
(** HTTP methods. *)
type meth = [`GET | `POST | `DELETE | `PUT | `PATCH]
type (+'meth, 'prefix, 'params, 'query, 'input, 'output) t
constraint 'meth = [< meth]
type (+'meth, 'prefix, 'params, 'query, 'input, 'output) service =
('meth, 'prefix, 'params, 'query, 'input, 'output) t
val get_service :
?description:string ->
query:'query RPC_query.t ->
output:'output Data_encoding.t ->
('prefix, 'params) RPC_path.t ->
([`GET], 'prefix, 'params, 'query, unit, 'output) service
val post_service :
?description:string ->
query:'query RPC_query.t ->
input:'input Data_encoding.t ->
output:'output Data_encoding.t ->
('prefix, 'params) RPC_path.t ->
([`POST], 'prefix, 'params, 'query, 'input, 'output) service
val delete_service :
?description:string ->
query:'query RPC_query.t ->
output:'output Data_encoding.t ->
('prefix, 'params) RPC_path.t ->
([`DELETE], 'prefix, 'params, 'query, unit, 'output) service
val patch_service :
?description:string ->
query:'query RPC_query.t ->
input:'input Data_encoding.t ->
output:'output Data_encoding.t ->
('prefix, 'params) RPC_path.t ->
([`PATCH], 'prefix, 'params, 'query, 'input, 'output) service
val put_service :
?description:string ->
query:'query RPC_query.t ->
input:'input Data_encoding.t ->
output:'output Data_encoding.t ->
('prefix, 'params) RPC_path.t ->
([`PUT], 'prefix, 'params, 'query, 'input, 'output) service
end
# 68 "v3.in.ml"
module RPC_answer : sig
# 1 "v3/RPC_answer.mli"
(** Return type for service handler *)
type 'o t =
[ `Ok of 'o
| `OkChunk of 'o
| `OkStream of 'o stream
| `Created of string option
| `No_content
| `Unauthorized of error list option
| `Forbidden of error list option
| `Not_found of error list option
| `Conflict of error list option
| `Error of error list option ]
and 'a stream = {next : unit -> 'a option Lwt.t; shutdown : unit -> unit}
val return : 'o -> 'o t Lwt.t
(** [return_chunked] is identical to [return] but it indicates to the server
that the result might be long and that the serialisation should be done in
mutliple chunks.
You should use [return_chunked] when returning an (unbounded or potentially
large) list, array, map, or other such set. *)
val return_chunked : 'o -> 'o t Lwt.t
val return_stream : 'o stream -> 'o t Lwt.t
val not_found : 'o t Lwt.t
val fail : error list -> 'a t Lwt.t
end
# 70 "v3.in.ml"
module RPC_directory : sig
# 1 "v3/RPC_directory.mli"
(** Dispatch tree *)
type 'prefix t
type 'prefix directory = 'prefix t
(** Empty list of dispatch trees *)
val empty : 'prefix directory
val map : ('a -> 'b Lwt.t) -> 'b directory -> 'a directory
val prefix : ('pr, 'p) RPC_path.path -> 'p directory -> 'pr directory
val merge : 'a directory -> 'a directory -> 'a directory
(** Possible error while registering services. *)
type step =
| Static of string
| Dynamic of RPC_arg.descr
| DynamicTail of RPC_arg.descr
type conflict =
| CService of RPC_service.meth
| CDir
| CBuilder
| CTail
| CTypes of RPC_arg.descr * RPC_arg.descr
| CType of RPC_arg.descr * string list
exception Conflict of step list * conflict
(** Registering handler in service tree.
The [chunked] parameter controls whether the answer to the RPC is chunk
encoded (i.e., the serialisation is split and the caller receives the answer
in multiple chunks) or not. Defaults to [false]. Set to [true] for RPCs that
return potentially large collections (e.g., unbounded lists). *)
val register :
chunked:bool ->
'prefix directory ->
('meth, 'prefix, 'params, 'query, 'input, 'output) RPC_service.t ->
('params -> 'query -> 'input -> 'output tzresult Lwt.t) ->
'prefix directory
val opt_register :
chunked:bool ->
'prefix directory ->
('meth, 'prefix, 'params, 'query, 'input, 'output) RPC_service.t ->
('params -> 'query -> 'input -> 'output option tzresult Lwt.t) ->
'prefix directory
val gen_register :
'prefix directory ->
('meth, 'prefix, 'params, 'query, 'input, 'output) RPC_service.t ->
('params -> 'query -> 'input -> [< 'output RPC_answer.t] Lwt.t) ->
'prefix directory
val lwt_register :
chunked:bool ->
'prefix directory ->
('meth, 'prefix, 'params, 'query, 'input, 'output) RPC_service.t ->
('params -> 'query -> 'input -> 'output Lwt.t) ->
'prefix directory
(** Registering handler in service tree. Curryfied variant. *)
val register0 :
chunked:bool ->
unit directory ->
('m, unit, unit, 'q, 'i, 'o) RPC_service.t ->
('q -> 'i -> 'o tzresult Lwt.t) ->
unit directory
val register1 :
chunked:bool ->
'prefix directory ->
('m, 'prefix, unit * 'a, 'q, 'i, 'o) RPC_service.t ->
('a -> 'q -> 'i -> 'o tzresult Lwt.t) ->
'prefix directory
val register2 :
chunked:bool ->
'prefix directory ->
('m, 'prefix, (unit * 'a) * 'b, 'q, 'i, 'o) RPC_service.t ->
('a -> 'b -> 'q -> 'i -> 'o tzresult Lwt.t) ->
'prefix directory
val register3 :
chunked:bool ->
'prefix directory ->
('m, 'prefix, ((unit * 'a) * 'b) * 'c, 'q, 'i, 'o) RPC_service.t ->
('a -> 'b -> 'c -> 'q -> 'i -> 'o tzresult Lwt.t) ->
'prefix directory
val register4 :
chunked:bool ->
'prefix directory ->
('m, 'prefix, (((unit * 'a) * 'b) * 'c) * 'd, 'q, 'i, 'o) RPC_service.t ->
('a -> 'b -> 'c -> 'd -> 'q -> 'i -> 'o tzresult Lwt.t) ->
'prefix directory
val register5 :
chunked:bool ->
'prefix directory ->
('m, 'prefix, ((((unit * 'a) * 'b) * 'c) * 'd) * 'e, 'q, 'i, 'o) RPC_service.t ->
('a -> 'b -> 'c -> 'd -> 'e -> 'q -> 'i -> 'o tzresult Lwt.t) ->
'prefix directory
val opt_register0 :
chunked:bool ->
unit directory ->
('m, unit, unit, 'q, 'i, 'o) RPC_service.t ->
('q -> 'i -> 'o option tzresult Lwt.t) ->
unit directory
val opt_register1 :
chunked:bool ->
'prefix directory ->
('m, 'prefix, unit * 'a, 'q, 'i, 'o) RPC_service.t ->
('a -> 'q -> 'i -> 'o option tzresult Lwt.t) ->
'prefix directory
val opt_register2 :
chunked:bool ->
'prefix directory ->
('m, 'prefix, (unit * 'a) * 'b, 'q, 'i, 'o) RPC_service.t ->
('a -> 'b -> 'q -> 'i -> 'o option tzresult Lwt.t) ->
'prefix directory
val opt_register3 :
chunked:bool ->
'prefix directory ->
('m, 'prefix, ((unit * 'a) * 'b) * 'c, 'q, 'i, 'o) RPC_service.t ->
('a -> 'b -> 'c -> 'q -> 'i -> 'o option tzresult Lwt.t) ->
'prefix directory
val opt_register4 :
chunked:bool ->
'prefix directory ->
('m, 'prefix, (((unit * 'a) * 'b) * 'c) * 'd, 'q, 'i, 'o) RPC_service.t ->
('a -> 'b -> 'c -> 'd -> 'q -> 'i -> 'o option tzresult Lwt.t) ->
'prefix directory
val opt_register5 :
chunked:bool ->
'prefix directory ->
('m, 'prefix, ((((unit * 'a) * 'b) * 'c) * 'd) * 'e, 'q, 'i, 'o) RPC_service.t ->
('a -> 'b -> 'c -> 'd -> 'e -> 'q -> 'i -> 'o option tzresult Lwt.t) ->
'prefix directory
val gen_register0 :
unit directory ->
('m, unit, unit, 'q, 'i, 'o) RPC_service.t ->
('q -> 'i -> [< 'o RPC_answer.t] Lwt.t) ->
unit directory
val gen_register1 :
'prefix directory ->
('m, 'prefix, unit * 'a, 'q, 'i, 'o) RPC_service.t ->
('a -> 'q -> 'i -> [< 'o RPC_answer.t] Lwt.t) ->
'prefix directory
val gen_register2 :
'prefix directory ->
('m, 'prefix, (unit * 'a) * 'b, 'q, 'i, 'o) RPC_service.t ->
('a -> 'b -> 'q -> 'i -> [< 'o RPC_answer.t] Lwt.t) ->
'prefix directory
val gen_register3 :
'prefix directory ->
('m, 'prefix, ((unit * 'a) * 'b) * 'c, 'q, 'i, 'o) RPC_service.t ->
('a -> 'b -> 'c -> 'q -> 'i -> [< 'o RPC_answer.t] Lwt.t) ->
'prefix directory
val gen_register4 :
'prefix directory ->
('m, 'prefix, (((unit * 'a) * 'b) * 'c) * 'd, 'q, 'i, 'o) RPC_service.t ->
('a -> 'b -> 'c -> 'd -> 'q -> 'i -> [< 'o RPC_answer.t] Lwt.t) ->
'prefix directory
val gen_register5 :
'prefix directory ->
('m, 'prefix, ((((unit * 'a) * 'b) * 'c) * 'd) * 'e, 'q, 'i, 'o) RPC_service.t ->
('a -> 'b -> 'c -> 'd -> 'e -> 'q -> 'i -> [< 'o RPC_answer.t] Lwt.t) ->
'prefix directory
val lwt_register0 :
chunked:bool ->
unit directory ->
('m, unit, unit, 'q, 'i, 'o) RPC_service.t ->
('q -> 'i -> 'o Lwt.t) ->
unit directory
val lwt_register1 :
chunked:bool ->
'prefix directory ->
('m, 'prefix, unit * 'a, 'q, 'i, 'o) RPC_service.t ->
('a -> 'q -> 'i -> 'o Lwt.t) ->
'prefix directory
val lwt_register2 :
chunked:bool ->
'prefix directory ->
('m, 'prefix, (unit * 'a) * 'b, 'q, 'i, 'o) RPC_service.t ->
('a -> 'b -> 'q -> 'i -> 'o Lwt.t) ->
'prefix directory
val lwt_register3 :
chunked:bool ->
'prefix directory ->
('m, 'prefix, ((unit * 'a) * 'b) * 'c, 'q, 'i, 'o) RPC_service.t ->
('a -> 'b -> 'c -> 'q -> 'i -> 'o Lwt.t) ->
'prefix directory
val lwt_register4 :
chunked:bool ->
'prefix directory ->
('m, 'prefix, (((unit * 'a) * 'b) * 'c) * 'd, 'q, 'i, 'o) RPC_service.t ->
('a -> 'b -> 'c -> 'd -> 'q -> 'i -> 'o Lwt.t) ->
'prefix directory
val lwt_register5 :
chunked:bool ->
'prefix directory ->
('m, 'prefix, ((((unit * 'a) * 'b) * 'c) * 'd) * 'e, 'q, 'i, 'o) RPC_service.t ->
('a -> 'b -> 'c -> 'd -> 'e -> 'q -> 'i -> 'o Lwt.t) ->
'prefix directory
(** Registering dynamic subtree. *)
val register_dynamic_directory :
?descr:string ->
'prefix directory ->
('prefix, 'a) RPC_path.t ->
('a -> 'a directory Lwt.t) ->
'prefix directory
end
# 72 "v3.in.ml"
module Base58 : sig
# 1 "v3/base58.mli"
type 'a encoding
val simple_decode : 'a encoding -> string -> 'a option
val simple_encode : 'a encoding -> 'a -> string
type data = ..
val register_encoding :
prefix:string ->
length:int ->
to_raw:('a -> string) ->
of_raw:(string -> 'a option) ->
wrap:('a -> data) ->
'a encoding
val check_encoded_prefix : 'a encoding -> string -> int -> unit
val decode : string -> data option
end
# 74 "v3.in.ml"
module S : sig
# 1 "v3/s.mli"
(** Generic interface for a datatype with comparison, pretty-printer
and serialization functions. *)
module type T = sig
type t
include Compare.S with type t := t
val pp : Format.formatter -> t -> unit
val encoding : t Data_encoding.t
val to_bytes : t -> bytes
val of_bytes : bytes -> t option
end
(** Generic interface for a datatype with comparison, pretty-printer,
serialization functions and a hashing function. *)
module type HASHABLE = sig
include T
type hash
val hash : t -> hash
val hash_raw : bytes -> hash
end
(** {2 Hash Types} *)
(** The signature of an abstract hash type, as produced by functor
{!Make_SHA256}. The {!t} type is abstracted for separating the
various kinds of hashes in the system at typing time. Each type is
equipped with functions to use it as is of as keys in the database
or in memory sets and maps. *)
module type MINIMAL_HASH = sig
type t
val name : string
val title : string
val pp : Format.formatter -> t -> unit
val pp_short : Format.formatter -> t -> unit
include Compare.S with type t := t
val hash_bytes : ?key:bytes -> bytes list -> t
val hash_string : ?key:string -> string list -> t
val zero : t
end
module type RAW_DATA = sig
type t
val size : int
val to_bytes : t -> bytes
val of_bytes_opt : bytes -> t option
val of_bytes_exn : bytes -> t
end
module type B58_DATA = sig
type t
val to_b58check : t -> string
val to_short_b58check : t -> string
val of_b58check_exn : string -> t
val of_b58check_opt : string -> t option
type Base58.data += Data of t
val b58check_encoding : t Base58.encoding
end
module type ENCODER = sig
type t
val encoding : t Data_encoding.t
val rpc_arg : t RPC_arg.t
end
module type INDEXES_SET = sig
include Set.S
val random_elt : t -> elt
val encoding : t Data_encoding.t
end
module type INDEXES_MAP = sig
include Map.S
val encoding : 'a Data_encoding.t -> 'a t Data_encoding.t
end
module type INDEXES = sig
type t
module Set : INDEXES_SET with type elt = t
module Map : INDEXES_MAP with type key = t
end
module type HASH = sig
include MINIMAL_HASH
include RAW_DATA with type t := t
include B58_DATA with type t := t
include ENCODER with type t := t
include INDEXES with type t := t
end
module type MERKLE_TREE = sig
type elt
include HASH
val compute : elt list -> t
val empty : t
type path = Left of path * t | Right of t * path | Op
val compute_path : elt list -> int -> path
val check_path : path -> elt -> t * int
val path_encoding : path Data_encoding.t
end
module type SIGNATURE_PUBLIC_KEY_HASH = sig
type t
val pp : Format.formatter -> t -> unit
val pp_short : Format.formatter -> t -> unit
include Compare.S with type t := t
include RAW_DATA with type t := t
include B58_DATA with type t := t
include ENCODER with type t := t
include INDEXES with type t := t
val zero : t
end
module type SIGNATURE_PUBLIC_KEY = sig
type t
val pp : Format.formatter -> t -> unit
include Compare.S with type t := t
include B58_DATA with type t := t
include ENCODER with type t := t
type public_key_hash_t
val hash : t -> public_key_hash_t
val size : t -> int
val of_bytes_without_validation : bytes -> t option
end
module type SIGNATURE = sig
module Public_key_hash : SIGNATURE_PUBLIC_KEY_HASH
module Public_key :
SIGNATURE_PUBLIC_KEY with type public_key_hash_t := Public_key_hash.t
type t
val pp : Format.formatter -> t -> unit
include RAW_DATA with type t := t
include Compare.S with type t := t
include B58_DATA with type t := t
include ENCODER with type t := t
val zero : t
type watermark
(** Check a signature *)
val check : ?watermark:watermark -> Public_key.t -> t -> bytes -> bool
end
module type FIELD = sig
type t
(** The order of the finite field *)
val order : Z.t
(** minimal number of bytes required to encode a value of the field. *)
val size_in_bytes : int
(** [check_bytes bs] returns [true] if [bs] is a correct byte
representation of a field element *)
val check_bytes : Bytes.t -> bool
(** The neutral element for the addition *)
val zero : t
(** The neutral element for the multiplication *)
val one : t
(** [add a b] returns [a + b mod order] *)
val add : t -> t -> t
(** [mul a b] returns [a * b mod order] *)
val mul : t -> t -> t
(** [eq a b] returns [true] if [a = b mod order], else [false] *)
val eq : t -> t -> bool
(** [negate x] returns [-x mod order]. Equivalently, [negate x] returns the
unique [y] such that [x + y mod order = 0]
*)
val negate : t -> t
(** [inverse_opt x] returns [x^-1] if [x] is not [0] as an option, else [None] *)
val inverse_opt : t -> t option
(** [pow x n] returns [x^n] *)
val pow : t -> Z.t -> t
(** From a predefined bytes representation, construct a value t. It is not
required that to_bytes [(Option.get (of_bytes_opt t)) = t]. By default,
little endian encoding is used and the given element is modulo the prime
order *)
val of_bytes_opt : Bytes.t -> t option
(** Convert the value t to a bytes representation which can be used for
hashing for instance. It is not required that [to_bytes (Option.get
(of_bytes_opt t)) = t]. By default, little endian encoding is used, and
length of the resulting bytes may vary depending on the order.
*)
val to_bytes : t -> Bytes.t
end
(** Module type for the prime fields GF(p) *)
module type PRIME_FIELD = sig
include FIELD
(** [of_z x] builds an element t from the Zarith element [x]. [mod order] is
applied if [x >= order] or [x < 0]. *)
val of_z : Z.t -> t
(** [to_z x] builds a Zarith element, using the decimal representation.
Arithmetic on the result can be done using the modular functions on
integers *)
val to_z : t -> Z.t
end
module type CURVE = sig
(** The type of the element in the elliptic curve *)
type t
(** The size of a point representation, in bytes *)
val size_in_bytes : int
module Scalar : FIELD
(** Check if a point, represented as a byte array, is on the curve **)
val check_bytes : Bytes.t -> bool
(** Attempt to construct a point from a byte array *)
val of_bytes_opt : Bytes.t -> t option
(** Return a representation in bytes *)
val to_bytes : t -> Bytes.t
(** Zero of the elliptic curve *)
val zero : t
(** A fixed generator of the elliptic curve *)
val one : t
(** Return the addition of two element *)
val add : t -> t -> t
(** Double the element *)
val double : t -> t
(** Return the opposite of the element *)
val negate : t -> t
(** Return [true] if the two elements are algebraically the same *)
val eq : t -> t -> bool
(** Multiply an element by a scalar *)
val mul : t -> Scalar.t -> t
end
module type PAIRING = sig
module Gt : FIELD
module G1 : CURVE
module G2 : CURVE
val miller_loop : (G1.t * G2.t) list -> Gt.t
val final_exponentiation_opt : Gt.t -> Gt.t option
val pairing : G1.t -> G2.t -> Gt.t
end
end
# 76 "v3.in.ml"
module Blake2B : sig
# 1 "v3/blake2B.mli"
(** Builds a new Hash type using Blake2B. *)
(** The parameters for creating a new Hash type using
{!Make_Blake2B}. Both {!name} and {!title} are only informative,
used in error messages and serializers. *)
module type Name = sig
val name : string
val title : string
val size : int option
end
module type PrefixedName = sig
include Name
val b58check_prefix : string
end
module Make_minimal (Name : Name) : S.MINIMAL_HASH
module type Register = sig
val register_encoding :
prefix:string ->
length:int ->
to_raw:('a -> string) ->
of_raw:(string -> 'a option) ->
wrap:('a -> Base58.data) ->
'a Base58.encoding
end
module Make (Register : Register) (Name : PrefixedName) : S.HASH
end
# 78 "v3.in.ml"
module Bls12_381 : sig
# 1 "v3/bls12_381.mli"
module Fr : S.PRIME_FIELD
module Fq12 : S.FIELD
include
S.PAIRING
with type Gt.t = Fq12.t
and type G1.Scalar.t = Fr.t
and type G2.Scalar.t = Fr.t
end
# 80 "v3.in.ml"
module Ed25519 : sig
# 1 "v3/ed25519.mli"
(** Tezos - Ed25519 cryptography *)
include S.SIGNATURE with type watermark := bytes
end
# 82 "v3.in.ml"
module Secp256k1 : sig
# 1 "v3/secp256k1.mli"
(** Tezos - Secp256k1 cryptography *)
include S.SIGNATURE with type watermark := bytes
end
# 84 "v3.in.ml"
module P256 : sig
# 1 "v3/p256.mli"
(** Tezos - P256 cryptography *)
include S.SIGNATURE with type watermark := bytes
end
# 86 "v3.in.ml"
module Chain_id : sig
# 1 "v3/chain_id.mli"
include S.HASH
end
# 88 "v3.in.ml"
module Signature : sig
# 1 "v3/signature.mli"
type public_key_hash =
| Ed25519 of Ed25519.Public_key_hash.t
| Secp256k1 of Secp256k1.Public_key_hash.t
| P256 of P256.Public_key_hash.t
type public_key =
| Ed25519 of Ed25519.Public_key.t
| Secp256k1 of Secp256k1.Public_key.t
| P256 of P256.Public_key.t
type watermark =
| Endorsement of Chain_id.t
| Generic_operation
| Custom of bytes
include
S.SIGNATURE
with type Public_key_hash.t = public_key_hash
and type Public_key.t = public_key
and type watermark := watermark
end
# 90 "v3.in.ml"
module Block_hash : sig
# 1 "v3/block_hash.mli"
(** Blocks hashes / IDs. *)
include S.HASH
end
# 92 "v3.in.ml"
module Operation_hash : sig
# 1 "v3/operation_hash.mli"
(** Operations hashes / IDs. *)
include S.HASH
end
# 94 "v3.in.ml"
module Operation_list_hash : sig
# 1 "v3/operation_list_hash.mli"
(** Blocks hashes / IDs. *)
include S.MERKLE_TREE with type elt = Operation_hash.t
end
# 96 "v3.in.ml"
module Operation_list_list_hash : sig
# 1 "v3/operation_list_list_hash.mli"
(** Blocks hashes / IDs. *)
include S.MERKLE_TREE with type elt = Operation_list_hash.t
end
# 98 "v3.in.ml"
module Protocol_hash : sig
# 1 "v3/protocol_hash.mli"
(** Protocol hashes / IDs. *)
include S.HASH
end
# 100 "v3.in.ml"
module Context_hash : sig
# 1 "v3/context_hash.mli"
(** Committed context hashes / IDs. *)
include S.HASH
(** The module for representing the hash version of a context *)
module Version : sig
(** The type for hash versions. *)
type t = private int
include Compare.S with type t := t
(** [pp] is the pretty-printer for hash versions. *)
val pp : Format.formatter -> t -> unit
(** [encoding] is the data encoding for hash versions. *)
val encoding : t Data_encoding.t
(** [of_int i] is the hash version equivalent to [i].
This function raises [Invalid_argument] if [i] is not an unsigned 16-bit integer. *)
val of_int : int -> t
end
type version = Version.t
end
# 102 "v3.in.ml"
module Sapling : sig
# 1 "v3/sapling.mli"
module Ciphertext : sig
type t
val encoding : t Data_encoding.t
val get_memo_size : t -> int
end
module Commitment : sig
type t
val encoding : t Data_encoding.t
val valid_position : int64 -> bool
end
module CV : sig
type t
val encoding : t Data_encoding.t
end
module Hash : sig
type t
val compare : t -> t -> int
val encoding : t Data_encoding.t
val to_bytes : t -> Bytes.t
val of_bytes_exn : Bytes.t -> t
val uncommitted : height:int -> t
val merkle_hash : height:int -> t -> t -> t
val of_commitment : Commitment.t -> t
val to_commitment : t -> Commitment.t
end
module Nullifier : sig
type t
val encoding : t Data_encoding.t
val compare : t -> t -> int
end
module UTXO : sig
type rk
type spend_proof
type spend_sig
type output_proof
type input = {
cv : CV.t;
nf : Nullifier.t;
rk : rk;
proof_i : spend_proof;
signature : spend_sig;
}
val input_encoding : input Data_encoding.t
type output = {
cm : Commitment.t;
proof_o : output_proof;
ciphertext : Ciphertext.t;
}
val output_encoding : output Data_encoding.t
type binding_sig
type transaction = {
inputs : input list;
outputs : output list;
binding_sig : binding_sig;
balance : Int64.t;
root : Hash.t;
}
val transaction_encoding : transaction Data_encoding.t
val binding_sig_encoding : binding_sig Data_encoding.t
end
module Verification : sig
type t
val with_verification_ctx : (t -> 'a) -> 'a
val check_spend : t -> UTXO.input -> Hash.t -> string -> bool
val check_output : t -> UTXO.output -> bool
val final_check : t -> UTXO.transaction -> string -> bool
end
end
# 104 "v3.in.ml"
module Timelock : sig
# 1 "v3/timelock.mli"
(** Contains a value (the decryption of the ciphertext) that can be provably
recovered in [time] sequential operation or with the rsa secret. *)
type chest
val chest_encoding : chest Data_encoding.t
(** Provably opens a chest in a short time. *)
type chest_key
val chest_key_encoding : chest_key Data_encoding.t
(** Result of the opening of a chest.
The opening can fail in two way which we distinguish to blame the right person.
One can provide a false unlocked_value or unlocked_proof, in which case
we return [Bogus_opening] and the provider of the chest key is at fault.
Otherwise, one can lock the wrong key or put garbage in the ciphertext in which case
we return [Bogus_cipher] and the provider of the chest is at fault.
Otherwise we return [Correct payload] where payload was what had
originally been put in the chest. *)
type opening_result = Correct of Bytes.t | Bogus_cipher | Bogus_opening
(** Takes a chest, chest key and time and tries to recover the underlying
plaintext. See the documentation of opening_result. *)
val open_chest : chest -> chest_key -> time:int -> opening_result
(** Gives the size of the underlying plaintext in a chest in bytes.
Used for gas accounting*)
val get_plaintext_size : chest -> int
end
# 106 "v3.in.ml"
module Micheline : sig
# 1 "v3/micheline.mli"
type annot = string list
type ('l, 'p) node =
| Int of 'l * Z.t
| String of 'l * string
| Bytes of 'l * bytes
| Prim of 'l * 'p * ('l, 'p) node list * annot
| Seq of 'l * ('l, 'p) node list
type 'p canonical
type canonical_location = int
val root : 'p canonical -> (canonical_location, 'p) node
val canonical_location_encoding : canonical_location Data_encoding.encoding
val canonical_encoding :
variant:string ->
'l Data_encoding.encoding ->
'l canonical Data_encoding.encoding
val canonical_encoding_v1 :
variant:string ->
'l Data_encoding.encoding ->
'l canonical Data_encoding.encoding
val location : ('l, 'p) node -> 'l
val annotations : ('l, 'p) node -> string list
val strip_locations : (_, 'p) node -> 'p canonical
val inject_locations :
(canonical_location -> 'l) -> 'p canonical -> ('l, 'p) node
end
# 108 "v3.in.ml"
# 110 "v3.in.ml"
module Fitness : sig
# 1 "v3/fitness.mli"
(** The fitness of a block is defined as a list of bytes,
compared in a lexicographical order (longer list are greater). *)
include S.T with type t = bytes list
end
# 112 "v3.in.ml"
module Operation : sig
# 1 "v3/operation.mli"
(** Tezos operations. *)
type t = {shell : shell_header; proto : bytes}
include S.HASHABLE with type t := t and type hash := Operation_hash.t
end
# 114 "v3.in.ml"
module Context : sig
# 1 "v3/context.mli"
(** View over the context store, restricted to types, access and
functional manipulation of an existing context. *)
(** The tree depth of a fold. See the [fold] function for more information. *)
type depth = [`Eq of int | `Le of int | `Lt of int | `Ge of int | `Gt of int]
module type VIEW = sig
(** The type for context views. *)
type t
(** The type for context keys. *)
type key
(** The type for context values. *)
type value
(** The type for context trees. *)
type tree
(** {2 Getters} *)
(** [mem t k] is an Lwt promise that resolves to [true] iff [k] is bound
to a value in [t]. *)
val mem : t -> key -> bool Lwt.t
(** [mem_tree t k] is like {!mem} but for trees. *)
val mem_tree : t -> key -> bool Lwt.t
(** [find t k] is an Lwt promise that resolves to [Some v] if [k] is
bound to the value [v] in [t] and [None] otherwise. *)
val find : t -> key -> value option Lwt.t
(** [find_tree t k] is like {!find} but for trees. *)
val find_tree : t -> key -> tree option Lwt.t
(** [list t key] is the list of files and sub-nodes stored under [k] in [t].
The result order is not specified but is stable.
[offset] and [length] are used for pagination. *)
val list :
t -> ?offset:int -> ?length:int -> key -> (string * tree) list Lwt.t
(** {2 Setters} *)
(** [add t k v] is an Lwt promise that resolves to [c] such that:
- [k] is bound to [v] in [c];
- and [c] is similar to [t] otherwise.
If [k] was already bound in [t] to a value that is physically equal
to [v], the result of the function is a promise that resolves to
[t]. Otherwise, the previous binding of [k] in [t] disappears. *)
val add : t -> key -> value -> t Lwt.t
(** [add_tree] is like {!add} but for trees. *)
val add_tree : t -> key -> tree -> t Lwt.t
(** [remove t k v] is an Lwt promise that resolves to [c] such that:
- [k] is unbound in [c];
- and [c] is similar to [t] otherwise. *)
val remove : t -> key -> t Lwt.t
(** {2 Folding} *)
(** [fold ?depth t root ~init ~f] recursively folds over the trees
and values of [t]. The [f] callbacks are called with a key relative
to [root]. [f] is never called with an empty key for values; i.e.,
folding over a value is a no-op.
Elements are traversed in lexical order of keys.
The depth is 0-indexed. If [depth] is set (by default it is not), then [f]
is only called when the conditions described by the parameter is true:
- [Eq d] folds over nodes and contents of depth exactly [d].
- [Lt d] folds over nodes and contents of depth strictly less than [d].
- [Le d] folds over nodes and contents of depth less than or equal to [d].
- [Gt d] folds over nodes and contents of depth strictly more than [d].
- [Ge d] folds over nodes and contents of depth more than or equal to [d]. *)
val fold :
?depth:depth ->
t ->
key ->
init:'a ->
f:(key -> tree -> 'a -> 'a Lwt.t) ->
'a Lwt.t
end
module Kind : sig
type t = [`Value | `Tree]
end
module type TREE = sig
(** [Tree] provides immutable, in-memory partial mirror of the
context, with lazy reads and delayed writes.
Trees are immutable and non-persistent (they disappear if the
host crash), held in memory for efficiency, where reads are done
lazily and writes are done only when needed, e.g. on
[Context.commit]. If a key is modified twice, only the last
value will be written to disk on commit. *)
(** The type for context views. *)
type t
(** The type for context trees. *)
type tree
include VIEW with type t := tree and type tree := tree
(** [empty _] is the empty tree. *)
val empty : t -> tree
(** [is_empty t] is true iff [t] is [empty _]. *)
val is_empty : tree -> bool
(** [kind t] is [t]'s kind. It's either a tree node or a leaf
value. *)
val kind : tree -> Kind.t
(** [to_value t] is an Lwt promise that resolves to [Some v] if [t]
is a leaf tree and [None] otherwise. It is equivalent to [find t
[]]. *)
val to_value : tree -> value option Lwt.t
(** [of_value _ v] is an Lwt promise that resolves to the leaf tree
[v]. Is is equivalent to [add (empty _) [] v]. *)
val of_value : t -> value -> tree Lwt.t
(** [hash t] is [t]'s Merkle hash. *)
val hash : tree -> Context_hash.t
(** [equal x y] is true iff [x] and [y] have the same Merkle hash. *)
val equal : tree -> tree -> bool
(** {2 Caches} *)
(** [clear ?depth t] clears all caches in the tree [t] for subtrees with a
depth higher than [depth]. If [depth] is not set, all of the subtrees are
cleared. *)
val clear : ?depth:int -> tree -> unit
end
include VIEW with type key = string list and type value = bytes
module Tree :
TREE
with type t := t
and type key := key
and type value := value
and type tree := tree
val register_resolver :
'a Base58.encoding -> (t -> string -> 'a list Lwt.t) -> unit
val complete : t -> string -> string list Lwt.t
(** Get the hash version used for the context *)
val get_hash_version : t -> Context_hash.Version.t
(** Set the hash version used for the context. It may recalculate the hashes
of the whole context, which can be a long process.
Returns an Error if the hash version is unsupported. *)
val set_hash_version :
t -> Context_hash.Version.t -> t Error_monad.shell_tzresult Lwt.t
type cache_key
type cache_value = ..
module type CACHE = sig
(** Type for context view. A context contains a cache. A cache is
made of subcaches. Each subcache has its own size limit. The
limit of its subcache is called a layout and can be initialized
via the [set_cache_layout] function. *)
type t
(** Size for subcaches and values of the cache. Units are not
specified and left to the economic protocol. *)
type size
(** Index type to index caches. *)
type index
(** Identifier type for keys. *)
type identifier
(** A key uniquely identifies a cached [value] in some subcache. *)
type key
(** Cached values inhabit an extensible type. *)
type value = ..
(** [key_of_identifier ~cache_index identifier] builds a key from the
[cache_index] and the [identifier].
No check are made to ensure the validity of the index. *)
val key_of_identifier : cache_index:index -> identifier -> key
(** [identifier_of_key key] returns the identifier associated to the
[key]. *)
val identifier_of_key : key -> identifier
(** [pp fmt cache] is a pretty printter for a [cache]. *)
val pp : Format.formatter -> t -> unit
(** [find ctxt k = Some v] if [v] is the value associated to [k] in
in the cache where [k] is. Returns [None] if there is no such
value in the cache of [k]. This function is in the Lwt monad
because if the value has not been constructed, it is constructed
on the fly. *)
val find : t -> key -> value option Lwt.t
(** [set_cache_layout ctxt layout] sets the caches of [ctxt] to
comply with given [layout]. If there was already a cache in
[ctxt], it is erased by the new layout.
Otherwise, a fresh collection of empty caches is reconstructed
from the new [layout]. Notice that cache [key]s are invalidated
in that case, i.e., [get t k] will return [None]. *)
val set_cache_layout : t -> size list -> t Lwt.t
(** [update ctxt k (Some (e, size))] returns a cache where the value
[e] of [size] is associated to key [k]. If [k] is already in the
cache, the cache entry is updated.
[update ctxt k None] removes [k] from the cache. *)
val update : t -> key -> (value * size) option -> t
(** [sync ctxt ~cache_nonce] updates the context with the domain of
the cache computed so far. Such function is expected to be called
at the end of the validation of a block, when there is no more
accesses to the cache.
[cache_nonce] identifies the block that introduced new cache
entries. The nonce should identify uniquely the block which
modifies this value. It cannot be the block hash for circularity
reasons: The value of the nonce is stored onto the context and
consequently influences the context hash of the very same
block. Such nonce cannot be determined by the shell and its
computation is delegated to the economic protocol.
*)
val sync : t -> cache_nonce:Bytes.t -> t Lwt.t
(** [clear ctxt] removes all cache entries. *)
val clear : t -> t
(** {3 Cache introspection} *)
(** [list_keys ctxt ~cache_index] returns the list of cached keys in
cache numbered [cache_index] along with their respective
[size]. The returned list is sorted in terms of their age in the
cache, the oldest coming first. If [cache_index] is invalid,
then this function returns [None]. *)
val list_keys : t -> cache_index:index -> (key * size) list option
(** [key_rank index ctxt key] returns the number of cached value older
than the given [key]; or, [None] if the [key] is not a cache key. *)
val key_rank : t -> key -> int option
(** {3 Cache helpers for RPCs} *)
(** [future_cache_expectation ctxt ~time_in_blocks] returns [ctxt] except
that the entries of the caches that are presumably too old to
still be in the caches in [n_blocks] are removed.
This function is based on a heuristic. The context maintains
the median of the number of removed entries: this number is
multipled by `n_blocks` to determine the entries that are
likely to be removed in `n_blocks`. *)
val future_cache_expectation : t -> time_in_blocks:int -> t
(** [cache_size ctxt ~cache_index] returns an overapproximation of
the size of the cache. Returns [None] if [cache_index] is not a
valid cache index. *)
val cache_size : t -> cache_index:index -> size option
(** [cache_size_limit ctxt ~cache_index] returns the maximal size of
the cache indexed by [cache_index]. Returns [None] if
[cache_index] is not a valid cache index. *)
val cache_size_limit : t -> cache_index:index -> size option
end
module Cache :
CACHE
with type t := t
and type size := int
and type index := int
and type identifier := string
and type key = cache_key
and type value = cache_value
end
# 116 "v3.in.ml"
module Updater : sig
# 1 "v3/updater.mli"
(** Tezos Protocol Environment - Protocol updater. *)
(** Validation result: the record returned by the protocol
on the successful validation of a block. *)
type validation_result = {
context : Context.t;
(** The resulting context, it will be used for the next block. *)
fitness : Fitness.t;
(** The effective fitness of the block (to be compared with the one
'announced' in the block header). *)
message : string option;
(** An optional informative message, akin to a 'git commit' message,
which can be attached to the [context] when it's being commited. *)
max_operations_ttl : int;
(** The "time-to-live" of operations for the next block: any
operation whose 'branch' is older than 'ttl' blocks in the past
cannot be included in the next block. *)
last_allowed_fork_level : Int32.t;
(** The level of the last block for which the node might consider an
alternate branch. The shell should consider as invalid any branch
whose fork point is older (has a lower level) than the
given value. *)
}
type quota = {
max_size : int;
(** The maximum size (in bytes) of the serialized list of
operations. *)
max_op : int option;
(** The maximum number of operations in a block.
[None] means no limit. *)
}
type rpc_context = {
block_hash : Block_hash.t;
block_header : Block_header.shell_header;
context : Context.t;
}
(** This is the signature of a Tezos protocol implementation. It has
access to the standard library and the Environment module. *)
module type PROTOCOL = sig
(** The maximum size of a block header in bytes. *)
val max_block_length : int
(** The maximum size of an operation in bytes. *)
val max_operation_data_length : int
(** Operations quota for each validation pass. The length of the
list denotes the number of validation passes. *)
val validation_passes : quota list
(** The economic protocol-specific type of blocks. *)
(** Encoding for economic protocol-specific part of block headers. *)
(** A fully parsed block header. *)
(** Economic protocol-specific side information computed by the
protocol during the validation of a block. Should not include
information about the evaluation of operations which is handled
separately by {!operation_metadata}. To be used as an execution
trace by tools (client, indexer). Not necessary for
validation. *)
(** Encoding for economic protocol-specific block metadata. *)
(** The economic protocol-specific type of operations. *)
type operation_data
(** Economic protocol-specific side information computed by the
protocol during the validation of each operation, to be used
conjointly with {!block_header_metadata}. *)
type operation_receipt
(** A fully parsed operation. *)
type operation = {
shell : Operation.shell_header;
protocol_data : operation_data;
}
(** Encoding for economoic protocol-specific operation data. *)
val operation_data_encoding : operation_data Data_encoding.t
(** Encoding for eonomic protocol-specific operation receipts. *)
val operation_receipt_encoding : operation_receipt Data_encoding.t
(** Encoding that mixes an operation data and its receipt. *)
val operation_data_and_receipt_encoding :
(operation_data * operation_receipt) Data_encoding.t
(** [acceptable_passes op] lists the validation passes in which the
input operation [op] can appear. For instance, it results in
[[0]] if [op] only belongs to the first pass. An answer of [[]]
means that the [op] is ill-formed and cannot be included at
all in a block. *)
val acceptable_passes : operation -> int list
(** [relative_position_within_block op1 op2] provides a partial and
strict order of operations within a block. It is intended to be
used as an argument to {!List.sort} (and other sorting/ordering
functions) to arrange a set of operations into a sequence, the
order of which is valid for the protocol.
A negative (respectively, positive) results means that [op1]
should appear before (and, respectively, after) [op2] in a
block. This function does not provide a total ordering on the
operations: a result of [0] entails that the protocol does not
impose any preferences to the order in which [op1] and [op2]
should be included in a block.
{b Caveat Emptor!} [relative_position_within_block o1 o2 = 0]
does NOT imply that [o1] is equal to [o2] in any way.
Consequently, it {e MUST NOT} be used as a [compare] component of
an {!Stdlib.Map.OrderedType}, or any such collection which relies
on a total comparison function. *)
val relative_position_within_block : operation -> operation -> int
(** A functional state that is transmitted through the steps of a
block validation sequence: it can be created by any of the
[begin_x] functions below, and its final value is produced by
{!finalize_block}. It must retain the current state of the store,
and it can also contain additional information that must be
remembered during the validation process. Said extra content must
however be immutable: validator or baker implementations are
allowed to pause, replay or backtrack throughout validation
steps. *)
type validation_state
(** [begin_partial_application cid ctxt] checks that a block is
well-formed in a given context. This function should run quickly,
as its main use is to reject bad blocks from the chain as early
as possible. The input [ancestor_context] is expected to result
from the application of an ancestor block of the current head
with the same economic protocol. Said ancestor block is also
required to be more recent (i.e., it has a greater level), than
the current head's "last_allowed_fork_level".
The resulting `validation_state` will be used for multi-pass
validation. *)
val begin_partial_application :
chain_id:Chain_id.t ->
ancestor_context:Context.t ->
predecessor_timestamp:Time.t ->
predecessor_fitness:Fitness.t ->
block_header ->
validation_state tzresult Lwt.t
(** [begin_application chain_id ... bh] defines the first step in a
block validation sequence. It initializes a validation context
for validating a block, whose header is [bh]. *)
val begin_application :
chain_id:Chain_id.t ->
predecessor_context:Context.t ->
predecessor_timestamp:Time.t ->
predecessor_fitness:Fitness.t ->
block_header ->
validation_state tzresult Lwt.t
(** [begin_construction] initializes a validation context for
constructing a new block, as opposed to validating an existing
block.
This function can be used in two modes: with and without the
optional [protocol_data] argument. With the latter, it is used by
bakers to start the process for baking a new block. Without it,
is used by the Shell's prevalidator to construct a virtual block,
which carries the contents of the pre-applied operations of the
mempool.
When [protocol_data] is provided, it is not expected to be the
final value of the field of the same name in the {!type-block_header}
of the block eventually being baked. Instead, it is expected to
construct a protocol-specific, good enough, "prototype" of its
final value. For instance, if the economic protocol specifies
that its block headers include a signature, [protocol_data] must
include a (faked) signature.
Moreover, these prototypes should not be distinguishable after
the application of [begin_construction]: the function must
produce the exact same context regardless of being passed a
prototype, or an "equivalent-but-complete" header. *)
val begin_construction :
chain_id:Chain_id.t ->
predecessor_context:Context.t ->
predecessor_timestamp:Time.t ->
predecessor_level:Int32.t ->
predecessor_fitness:Fitness.t ->
predecessor:Block_hash.t ->
timestamp:Time.t ->
?protocol_data:block_header_data ->
unit ->
validation_state tzresult Lwt.t
(** [apply_operation vs op] applies the input operation [op] on top
of the given {!validation_state} [vs]. It must be called after
{!begin_application} or {!begin_construction}, and before
{!finalize_block}, for each operation in a block. On a successful
application, it returns a pair consisting of the resulting
[validation_state], and the corresponding [operation_receipt]. *)
val apply_operation :
validation_state ->
operation ->
(validation_state * operation_receipt) tzresult Lwt.t
(** [finalize_block vs] finalizes the context resulting from the
application of the contents of the block being validated.
If there is no protocol migration, i.e., if the block being
applied is not the last block of the current economic protocol, the
resulting context can be used in the future as input for the
validation of its successor blocks. *)
val finalize_block :
validation_state ->
Block_header.shell_header option ->
(validation_result * block_header_metadata) tzresult Lwt.t
(** [rpc_services] provides the list of remote procedures exported
by this protocol implementation. *)
val rpc_services : rpc_context RPC_directory.t
(** [init ctxt hd] initializes the context, or upgrades the context
after a protocol amendment. This function receives as arguments
the context [ctxt] resulting from the application of the block
that triggered the amendment, as well as its header [hd]. This
function should fail if the "protocol stitching", i.e., the
transition from a valid previous protocol to the one being
activated, has not been implemented. *)
val init :
Context.t -> Block_header.shell_header -> validation_result tzresult Lwt.t
(** [value_of_key chain_id predecessor_context
predecessor_timestamp predecessor_level predecessor_fitness
predecessor timestamp] returns a function to build one value of
the cache from its key.
This function is used to restore all or part of the cache, for
instance when booting a validator to preheat the cache, or when a
reorganization happens. This function should never fail, returned
errors are fatal.
The generated function is passed to [Context.Cache.load_caches]
which will use it either immediately a cache-loading time or
on-demand, when a given cached value is accessed. *)
val value_of_key :
chain_id:Chain_id.t ->
predecessor_context:Context.t ->
predecessor_timestamp:Time.t ->
predecessor_level:Int32.t ->
predecessor_fitness:Fitness.t ->
predecessor:Block_hash.t ->
timestamp:Time.t ->
(Context.Cache.key -> Context.Cache.value tzresult Lwt.t) tzresult Lwt.t
end
(** [activate ctxt ph] activates an economic protocol (given by its
hash [ph]) from the context [ctxt]. The resulting context is still
a context for the current economic protocol, and the migration is
not complete until [init] in invoked. *)
val activate : Context.t -> Protocol_hash.t -> Context.t Lwt.t
end
# 118 "v3.in.ml"
module RPC_context : sig
# 1 "v3/RPC_context.mli"
type t = Updater.rpc_context
class type ['pr] simple =
object
method call_proto_service0 :
'm 'q 'i 'o.
(([< RPC_service.meth] as 'm), t, t, 'q, 'i, 'o) RPC_service.t ->
'pr ->
'q ->
'i ->
'o Error_monad.shell_tzresult Lwt.t
method call_proto_service1 :
'm 'a 'q 'i 'o.
(([< RPC_service.meth] as 'm), t, t * 'a, 'q, 'i, 'o) RPC_service.t ->
'pr ->
'a ->
'q ->
'i ->
'o Error_monad.shell_tzresult Lwt.t
method call_proto_service2 :
'm 'a 'b 'q 'i 'o.
(([< RPC_service.meth] as 'm), t, (t * 'a) * 'b, 'q, 'i, 'o) RPC_service.t ->
'pr ->
'a ->
'b ->
'q ->
'i ->
'o Error_monad.shell_tzresult Lwt.t
method call_proto_service3 :
'm 'a 'b 'c 'q 'i 'o.
( ([< RPC_service.meth] as 'm),
t,
((t * 'a) * 'b) * 'c,
'q,
'i,
'o )
RPC_service.t ->
'pr ->
'a ->
'b ->
'c ->
'q ->
'i ->
'o Error_monad.shell_tzresult Lwt.t
end
val make_call0 :
([< RPC_service.meth], t, t, 'q, 'i, 'o) RPC_service.t ->
'pr #simple ->
'pr ->
'q ->
'i ->
'o shell_tzresult Lwt.t
val make_call1 :
([< RPC_service.meth], t, t * 'a, 'q, 'i, 'o) RPC_service.t ->
'pr #simple ->
'pr ->
'a ->
'q ->
'i ->
'o shell_tzresult Lwt.t
val make_call2 :
([< RPC_service.meth], t, (t * 'a) * 'b, 'q, 'i, 'o) RPC_service.t ->
'pr #simple ->
'pr ->
'a ->
'b ->
'q ->
'i ->
'o shell_tzresult Lwt.t
val make_call3 :
([< RPC_service.meth], t, ((t * 'a) * 'b) * 'c, 'q, 'i, 'o) RPC_service.t ->
'pr #simple ->
'pr ->
'a ->
'b ->
'c ->
'q ->
'i ->
'o shell_tzresult Lwt.t
val make_opt_call0 :
([< RPC_service.meth], t, t, 'q, 'i, 'o) RPC_service.t ->
'pr #simple ->
'pr ->
'q ->
'i ->
'o option shell_tzresult Lwt.t
val make_opt_call1 :
([< RPC_service.meth], t, t * 'a, 'q, 'i, 'o) RPC_service.t ->
'pr #simple ->
'pr ->
'a ->
'q ->
'i ->
'o option shell_tzresult Lwt.t
val make_opt_call2 :
([< RPC_service.meth], t, (t * 'a) * 'b, 'q, 'i, 'o) RPC_service.t ->
'pr #simple ->
'pr ->
'a ->
'b ->
'q ->
'i ->
'o option shell_tzresult Lwt.t
val make_opt_call3 :
([< RPC_service.meth], t, ((t * 'a) * 'b) * 'c, 'q, 'i, 'o) RPC_service.t ->
'pr #simple ->
'pr ->
'a ->
'b ->
'c ->
'q ->
'i ->
'o option shell_tzresult Lwt.t
end
# 120 "v3.in.ml"
end