package core

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Module Core.Int64Source

This module extends Base.Int64.

Interface from Base

Sourceval globalize : int64 -> int64
include Sexplib0.Sexpable.S with type t := int64
Sourceval t_sexp_grammar : int64 Sexplib0.Sexp_grammar.t
include Base.Floatable.S with type t := int64
Sourceval of_float : float -> int64
Sourceval to_float : int64 -> float
include Base.Intable.S with type t := int64
Sourceval of_int_exn : int -> int64
Sourceval to_int_exn : int64 -> int
include Base.Identifiable.S with type t := int64
include Sexplib0.Sexpable.S with type t := int64
include Base.Stringable.S with type t := int64
include Base.Comparable.S with type t := int64
include Base.Comparisons.S with type t := int64
include Base.Comparisons.Infix with type t := int64
include Base.Comparator.S with type t := int64
Sourcetype comparator_witness = Base.Int64.comparator_witness
include Base.Pretty_printer.S with type t := int64
include Base.Comparable.With_zero with type t := int64
Sourceval is_positive : int64 -> bool
Sourceval is_non_negative : int64 -> bool
Sourceval is_negative : int64 -> bool
Sourceval is_non_positive : int64 -> bool
Sourceval sign : int64 -> Base.Sign.t

Returns Neg, Zero, or Pos in a way consistent with the above functions.

Sourceval compare__local : int64 -> int64 -> int
Sourceval equal__local : int64 -> int64 -> bool
include Base.Invariant.S with type t := int64
Sourceval invariant : int64 -> unit
Sourceval of_string_opt : string -> int64 option
Sourceval to_string_hum : ?delimiter:char -> int64 -> string

delimiter is an underscore by default.

Infix operators and constants
Sourceval one : int64
Sourceval minus_one : int64

Negation

There are two pairs of integer division and remainder functions, /% and %, and / and rem. They both satisfy the same equation relating the quotient and the remainder:

  x = (x /% y) * y + (x % y);
  x = (x /  y) * y + (rem x y);

The functions return the same values if x and y are positive. They all raise if y = 0.

The functions differ if x < 0 or y < 0.

If y < 0, then % and /% raise, whereas / and rem do not.

x % y always returns a value between 0 and y - 1, even when x < 0. On the other hand, rem x y returns a negative value if and only if x < 0; that value satisfies abs (rem x y) <= abs y - 1.

Sourceval rem : int64 -> int64 -> int64
Other common functions

round rounds an int to a multiple of a given to_multiple_of argument, according to a direction dir, with default dir being `Nearest. round will raise if to_multiple_of <= 0. If the result overflows (too far positive or too far negative), round returns an incorrect result.

 | `Down    | rounds toward Int.neg_infinity                          |
 | `Up      | rounds toward Int.infinity                              |
 | `Nearest | rounds to the nearest multiple, or `Up in case of a tie |
 | `Zero    | rounds toward zero                                      |

Here are some examples for round ~to_multiple_of:10 for each direction:

 | `Down    | {10 .. 19} --> 10 | { 0 ... 9} --> 0 | {-10 ... -1} --> -10 |
 | `Up      | { 1 .. 10} --> 10 | {-9 ... 0} --> 0 | {-19 .. -10} --> -10 |
 | `Zero    | {10 .. 19} --> 10 | {-9 ... 9} --> 0 | {-19 .. -10} --> -10 |
 | `Nearest | { 5 .. 14} --> 10 | {-5 ... 4} --> 0 | {-15 ... -6} --> -10 |

For convenience and performance, there are variants of round with dir hard-coded. If you are writing performance-critical code you should use these.

Sourceval round : ?dir:[ `Zero | `Nearest | `Up | `Down ] -> int64 -> to_multiple_of:int64 -> int64
Sourceval round_towards_zero : int64 -> to_multiple_of:int64 -> int64
Sourceval round_down : int64 -> to_multiple_of:int64 -> int64
Sourceval round_up : int64 -> to_multiple_of:int64 -> int64
Sourceval round_nearest : int64 -> to_multiple_of:int64 -> int64
Successor and predecessor functions
Sourceval succ : int64 -> int64
Sourceval pred : int64 -> int64
Exponentiation
Sourceval pow : int64 -> int64 -> int64

pow base exponent returns base raised to the power of exponent. It is OK if base <= 0. pow raises if exponent < 0, or an integer overflow would occur.

Bit-wise logical operations
Sourceval bit_and : int64 -> int64 -> int64

These are identical to land, lor, etc. except they're not infix and have different names.

Sourceval bit_or : int64 -> int64 -> int64
Sourceval bit_xor : int64 -> int64 -> int64
Sourceval bit_not : int64 -> int64
Sourceval popcount : int64 -> int

Returns the number of 1 bits in the binary representation of the input.

Bit-shifting operations

The results are unspecified for negative shifts and shifts >= num_bits.

Sourceval shift_left : int64 -> int -> int64

Shifts left, filling in with zeroes.

Sourceval shift_right : int64 -> int -> int64

Shifts right, preserving the sign of the input.

Increment and decrement functions for integer references
Sourceval decr : int64 ref -> unit
Sourceval incr : int64 ref -> unit
Sourceval of_int32_exn : int32 -> int64
Sourceval to_int32_exn : int64 -> int32
Sourceval of_int64_exn : int64 -> int64
Sourceval to_int64 : int64 -> int64
Sourceval of_nativeint_exn : nativeint -> int64
Sourceval to_nativeint_exn : int64 -> nativeint
Sourceval of_float_unchecked : float -> int64

of_float_unchecked truncates the given floating point number to an integer, rounding towards zero. The result is unspecified if the argument is nan or falls outside the range of representable integers.

Sourceval num_bits : int

The number of bits available in this integer type. Note that the integer representations are signed.

Sourceval max_value : int64

The largest representable integer.

Sourceval min_value : int64

The smallest representable integer.

Sourceval shift_right_logical : int64 -> int -> int64

Shifts right, filling in with zeroes, which will not preserve the sign of the input.

Sourceval ceil_pow2 : int64 -> int64

ceil_pow2 x returns the smallest power of 2 that is greater than or equal to x. The implementation may only be called for x > 0. Example: ceil_pow2 17 = 32

Sourceval floor_pow2 : int64 -> int64

floor_pow2 x returns the largest power of 2 that is less than or equal to x. The implementation may only be called for x > 0. Example: floor_pow2 17 = 16

Sourceval ceil_log2 : int64 -> int

ceil_log2 x returns the ceiling of log-base-2 of x, and raises if x <= 0.

Sourceval floor_log2 : int64 -> int

floor_log2 x returns the floor of log-base-2 of x, and raises if x <= 0.

Sourceval is_pow2 : int64 -> bool

is_pow2 x returns true iff x is a power of 2. is_pow2 raises if x <= 0.

Sourceval clz : int64 -> int

Returns the number of leading zeros in the binary representation of the input, as an integer between 0 and one less than num_bits.

The results are unspecified for t = 0.

Sourceval ctz : int64 -> int

Returns the number of trailing zeros in the binary representation of the input, as an integer between 0 and one less than num_bits.

The results are unspecified for t = 0.

Conversion functions
Sourceval of_int : int -> int64
Sourceval of_int32 : int32 -> int64
Sourceval of_int64 : int64 -> int64
Sourceval to_int : int64 -> int option
Sourceval to_int32 : int64 -> int32 option
Sourceval of_nativeint : nativeint -> int64
Sourceval to_nativeint : int64 -> nativeint option
Truncating conversions

These functions return the least-significant bits of the input. In cases where optional conversions return Some x, truncating conversions return x.

Sourceval to_int_trunc : int64 -> int
Sourceval to_int32_trunc : int64 -> int32
Sourceval to_nativeint_trunc : int64 -> nativeint
Low-level float conversions
Sourceval bits_of_float : float -> int64

bits_of_float will always allocate its result on the heap unless the _unboxed C function call is chosen by the compiler.

Sourceval float_of_bits : int64 -> float

float_of_bits will always allocate its result on the heap unless the _unboxed C function call is chosen by the compiler.

Byte swap operations

See Int's byte swap section for a description of Base's approach to exposing byte swap primitives.

As of writing, these operations do not sign extend unnecessarily on 64 bit machines, unlike their int32 counterparts, and hence, are more performant. See the Int32 module for more details of the overhead entailed by the int32 byteswap functions.

Sourceval bswap16 : int64 -> int64
Sourceval bswap32 : int64 -> int64
Sourceval bswap48 : int64 -> int64
Sourceval bswap64 : int64 -> int64

Extensions

include Bin_prot.Binable.S with type t := int64
include Bin_prot.Binable.S_only_functions with type t := int64
include Typerep_lib.Typerepable.S with type t := int64
Sourceval typename_of_t : int64 Typerep_lib.Typename.t
include Int_intf.Binaryable with type t := int64
Sourcemodule Binary : sig ... end
include Base.Int.Binaryable with type t := int64 and module Binary := Binary
include Int_intf.Hexable with type t := int64
Sourcemodule Hex : sig ... end
include Base.Int.Hexable with type t := int64 and module Hex := Hex
include Identifiable.S with type t := int64 with type comparator_witness := comparator_witness
include Bin_prot.Binable.S with type t := int64
include Bin_prot.Binable.S_only_functions with type t := int64
include Ppx_hash_lib.Hashable.S with type t := int64
include Sexplib0.Sexpable.S with type t := int64
Sourceval t_of_sexp : Sexplib0.Sexp.t -> int64
include Ppx_compare_lib.Comparable.S with type t := int64
include Ppx_hash_lib.Hashable.S with type t := int64
Sourceval sexp_of_t : int64 -> Sexplib0.Sexp.t
include Base.Stringable.S with type t := int64
Sourceval of_string : string -> int64
Sourceval to_string : int64 -> string
include Base.Pretty_printer.S with type t := int64
Sourceval pp : Base.Formatter.t -> int64 -> unit
include Comparable.S_binable with type t := int64 with type comparator_witness := comparator_witness
include Base.Comparable.S with type t := int64 with type comparator_witness := comparator_witness
include Base.Comparisons.S with type t := int64
include Base.Comparisons.Infix with type t := int64
Sourceval (>=) : int64 -> int64 -> bool
Sourceval (<=) : int64 -> int64 -> bool
Sourceval (=) : int64 -> int64 -> bool
Sourceval (>) : int64 -> int64 -> bool
Sourceval (<) : int64 -> int64 -> bool
Sourceval (<>) : int64 -> int64 -> bool
Sourceval equal : int64 -> int64 -> bool
Sourceval compare : int64 -> int64 -> int

compare t1 t2 returns 0 if t1 is equal to t2, a negative integer if t1 is less than t2, and a positive integer if t1 is greater than t2.

Sourceval min : int64 -> int64 -> int64
Sourceval max : int64 -> int64 -> int64
Sourceval ascending : int64 -> int64 -> int

ascending is identical to compare. descending x y = ascending y x. These are intended to be mnemonic when used like List.sort ~compare:ascending and List.sort ~cmp:descending, since they cause the list to be sorted in ascending or descending order, respectively.

Sourceval descending : int64 -> int64 -> int
Sourceval between : int64 -> low:int64 -> high:int64 -> bool

between t ~low ~high means low <= t <= high

Sourceval clamp_exn : int64 -> min:int64 -> max:int64 -> int64

clamp_exn t ~min ~max returns t', the closest value to t such that between t' ~low:min ~high:max is true.

Raises if not (min <= max).

Sourceval clamp : int64 -> min:int64 -> max:int64 -> int64 Base.Or_error.t
include Base.Comparator.S with type t := int64 with type comparator_witness := comparator_witness
include Comparator.S with type t := int64 with type comparator_witness := comparator_witness
include Hashable.S_binable with type t := int64
include Ppx_hash_lib.Hashable.S with type t := int64
Sourceval hash_fold_t : Base.Hash.state -> int64 -> Base.Hash.state
Sourceval hash : int64 -> Base.Hash.hash_value
Sourceval hashable : int64 Base.Hashable.t
Sourcemodule Table : Hashtbl.S_binable with type key = int64
Sourcemodule Hash_set : Hash_set.S_binable with type elt = int64
Sourcemodule Hash_queue : Hash_queue.S with type key = int64
include Comparable.Validate_with_zero with type t := int64
Sourceval validate_lbound : min:int64 Maybe_bound.t -> int64 Validate.check
Sourceval validate_ubound : max:int64 Maybe_bound.t -> int64 Validate.check
Sourceval validate_bound : min:int64 Maybe_bound.t -> max:int64 Maybe_bound.t -> int64 Validate.check
Sourceval validate_positive : int64 Validate.check
Sourceval validate_non_negative : int64 Validate.check
Sourceval validate_negative : int64 Validate.check
Sourceval validate_non_positive : int64 Validate.check
include Quickcheckable.S_int with type t := int64
include Quickcheck_intf.S_range with type t := int64
include Quickcheck_intf.S with type t := int64
Sourceval quickcheck_generator : int64 Base_quickcheck.Generator.t
Sourceval quickcheck_observer : int64 Base_quickcheck.Observer.t
Sourceval quickcheck_shrinker : int64 Base_quickcheck.Shrinker.t
Sourceval gen_incl : int64 -> int64 -> int64 Base_quickcheck.Generator.t

gen_incl lower_bound upper_bound produces values between lower_bound and upper_bound, inclusive. It uses an ad hoc distribution that stresses boundary conditions more often than a uniform distribution, while still able to produce any value in the range. Raises if lower_bound > upper_bound.

Sourceval gen_uniform_incl : int64 -> int64 -> int64 Base_quickcheck.Generator.t

gen_uniform_incl lower_bound upper_bound produces a generator for values uniformly distributed between lower_bound and upper_bound, inclusive. Raises if lower_bound > upper_bound.

Sourceval gen_log_uniform_incl : int64 -> int64 -> int64 Base_quickcheck.Generator.t

gen_log_uniform_incl lower_bound upper_bound produces a generator for values between lower_bound and upper_bound, inclusive, where the number of bits used to represent the value is uniformly distributed. Raises if (lower_bound < 0) || (lower_bound > upper_bound).

Sourceval gen_log_incl : int64 -> int64 -> int64 Base_quickcheck.Generator.t

gen_log_incl lower_bound upper_bound is like gen_log_uniform_incl, but weighted slightly more in favor of generating lower_bound and upper_bound specifically.

include sig ... end
Sourcetype nonrec t = int64
include Bin_prot.Binable.S_local with type t := t
include Bin_prot.Binable.S_local_only_functions with type t := t
include Bin_prot.Binable.S_only_functions with type t := t
Sourceval bin_size_t : t Bin_prot.Size.sizer
Sourceval bin_write_t : t Bin_prot.Write.writer
Sourceval bin_read_t : t Bin_prot.Read.reader
Sourceval __bin_read_t__ : (int -> t) Bin_prot.Read.reader

This function only needs implementation if t exposed to be a polymorphic variant. Despite what the type reads, this does *not* produce a function after reading; instead it takes the constructor tag (int) before reading and reads the rest of the variant t afterwards.

Sourceval bin_size_t__local : t Bin_prot.Size.sizer_local
Sourceval bin_write_t__local : t Bin_prot.Write.writer_local
Sourceval bin_shape_t : Bin_prot.Shape.t
OCaml

Innovation. Community. Security.