package tezt

  1. Overview
  2. Docs

Source file scheduler.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
(*****************************************************************************)
(*                                                                           *)
(* SPDX-License-Identifier: MIT                                              *)
(* SPDX-FileCopyrightText: 2024 Nomadic Labs <contact@nomadic-labs.com>      *)
(*                                                                           *)
(*****************************************************************************)

module Float_map = Map.Make (Float)

let show_signal n =
  if n = Sys.sigabrt then "SIGABRT"
  else if n = Sys.sigalrm then "SIGALRM"
  else if n = Sys.sigfpe then "SIGFPE"
  else if n = Sys.sighup then "SIGHUP"
  else if n = Sys.sigill then "SIGILL"
  else if n = Sys.sigint then "SIGINT"
  else if n = Sys.sigkill then "SIGKILL"
  else if n = Sys.sigpipe then "SIGPIPE"
  else if n = Sys.sigquit then "SIGQUIT"
  else if n = Sys.sigsegv then "SIGSEGV"
  else if n = Sys.sigterm then "SIGTERM"
  else if n = Sys.sigusr1 then "SIGUSR1"
  else if n = Sys.sigusr2 then "SIGUSR2"
  else if n = Sys.sigchld then "SIGCHLD"
  else if n = Sys.sigcont then "SIGCONT"
  else if n = Sys.sigstop then "SIGSTOP"
  else if n = Sys.sigtstp then "SIGTSTP"
  else if n = Sys.sigttin then "SIGTTIN"
  else if n = Sys.sigttou then "SIGTTOU"
  else if n = Sys.sigvtalrm then "SIGVTALRM"
  else if n = Sys.sigprof then "SIGPROF"
  else if n = Sys.sigbus then "SIGBUS"
  else if n = Sys.sigpoll then "SIGPOLL"
  else if n = Sys.sigsys then "SIGSYS"
  else if n = Sys.sigtrap then "SIGTRAP"
  else if n = Sys.sigurg then "SIGURG"
  else if n = Sys.sigxcpu then "SIGXCPU"
  else if n = Sys.sigxfsz then "SIGXFSZ"
  else "unknown signal (" ^ string_of_int n ^ ")"

let show_process_status (status : Unix.process_status) =
  match status with
  | WEXITED n -> Printf.sprintf "exited with code %d" n
  | WSIGNALED n -> Printf.sprintf "was killed by %s" (show_signal n)
  | WSTOPPED n -> Printf.sprintf "was stopped by %s" (show_signal n)

(* Set to [true] by [stop], to [false] by [run], and used to decide
   whether to start new tasks and to send SIGTERM to current workers. *)
let stopped = ref false

(* We use file descriptor maps when looking at the result of [Unix.select].
   We don't strictly need maps ([Unix.select] usually only returns one file descriptor)
   but we can't avoid comparing file descriptors. It happens that [Stdlib.compare]
   works on file descriptors. *)
module FD = struct
  type t = Unix.file_descr

  let compare = (Stdlib.compare : t -> t -> int)
end

module FD_map = struct
  include Map.Make (FD)

  let of_list l = List.fold_left (fun acc (k, v) -> add k v acc) empty l
end

(* [Unix.close] usually does not fail except with EBADF if called on a file descriptor
   that was already closed. But other than that there is not much we can do and it
   is often better to prioritize other errors from other functions. *)
let try_close file_descriptor =
  try Unix.close file_descriptor with Unix.Unix_error _ -> ()

(* Part of the [Message] module that does not depend on types defined in [Worker].
   The [Worker] module itself depends on [Message] so we have to split it. *)
module Message_not_depending_on_worker = struct
  type value =
    | Unit
    | Bool of bool
    | Char of char
    | Int of int
    | Int32 of int32
    | Int64 of int64
    | Float of float
    | String of string
    | Block of value array
    | Closure of (unit -> unit)

  let rec output_value out = function
    | Unit -> out "()"
    | Bool b -> out (string_of_bool b)
    | Char c -> out (Printf.sprintf "%C" c)
    | Int i -> out (string_of_int i)
    | Int32 i -> out (Int32.to_string i)
    | Int64 i -> out (Int64.to_string i)
    | Float f -> out (string_of_float f)
    | String s -> out (Printf.sprintf "%S" s)
    | Block [||] -> out "[]"
    | Block a ->
        out "[ " ;
        output_value out a.(0) ;
        for i = 1 to Array.length a - 1 do
          out "; " ;
          output_value out a.(i)
        done ;
        out " ]"
    | Closure _ -> out "<fun>"

  let show_value value =
    let buffer = Buffer.create 128 in
    output_value (Buffer.add_string buffer) value ;
    Buffer.contents buffer

  type 'a typ = {encode : 'a -> value; decode : value -> 'a}

  let encode x = x.encode

  let decode x = x.decode

  exception Failed_to_decode of value * string

  let () =
    Printexc.register_printer @@ function
    | Failed_to_decode (value, type_name) ->
        Some ("failed to decode " ^ show_value value ^ " as " ^ type_name)
    | _ -> None

  let typ ~encode ~decode = {encode; decode}

  let unit =
    {
      encode = (fun () -> Unit);
      decode =
        (function Unit -> () | v -> raise (Failed_to_decode (v, "unit")));
    }

  let bool =
    {
      encode = (fun x -> Bool x);
      decode =
        (function Bool x -> x | v -> raise (Failed_to_decode (v, "bool")));
    }

  let char =
    {
      encode = (fun x -> Char x);
      decode =
        (function Char x -> x | v -> raise (Failed_to_decode (v, "char")));
    }

  let int =
    {
      encode = (fun x -> Int x);
      decode =
        (function Int x -> x | v -> raise (Failed_to_decode (v, "int")));
    }

  let int32 =
    {
      encode = (fun x -> Int32 x);
      decode =
        (function Int32 x -> x | v -> raise (Failed_to_decode (v, "int32")));
    }

  let int64 =
    {
      encode = (fun x -> Int64 x);
      decode =
        (function Int64 x -> x | v -> raise (Failed_to_decode (v, "int64")));
    }

  let float =
    {
      encode = (fun x -> Float x);
      decode =
        (function Float x -> x | v -> raise (Failed_to_decode (v, "float")));
    }

  let string =
    {
      encode = (fun x -> String x);
      decode =
        (function String x -> x | v -> raise (Failed_to_decode (v, "string")));
    }

  let closure =
    {
      encode = (fun x -> Closure x);
      decode =
        (function
        | Closure x -> x | v -> raise (Failed_to_decode (v, "closure")));
    }

  type 'a tag = {id : int; typ : 'a typ}

  let next_tag_id = ref 0

  let tag_names : (int, string) Hashtbl.t = Hashtbl.create 16

  let register typ name =
    let id = !next_tag_id in
    incr next_tag_id ;
    let tag = {id; typ} in
    Hashtbl.replace tag_names id name ;
    tag

  type t = {tag_id : int; value : value}

  let make tag value = {tag_id = tag.id; value = tag.typ.encode value}

  let output out {tag_id; value} =
    (match Hashtbl.find_opt tag_names tag_id with
    | None ->
        out "#" ;
        out (string_of_int tag_id)
    | Some name -> out name) ;
    match value with
    | Unit -> ()
    | _ ->
        out " " ;
        output_value out value

  let show message =
    let buffer = Buffer.create 128 in
    output (Buffer.add_string buffer) message ;
    Buffer.contents buffer

  let match_with {tag_id; value} tag handler ~default =
    if tag_id = tag.id then handler (tag.typ.decode value) else default ()

  type _ case = Case : 'a tag * ('a -> 'b) -> 'b case

  let case tag handler = Case (tag, handler)

  (* We could have a two-step function with a first step that builds a table from tag id
     to handler, and a second step that uses it. The result of the first step could then
     be used to match multiple messages in O(log n) instead of O(n).
     But this is a bit cumbersome and probably overkill. *)
  let match_with_list {tag_id; value} (type a) (cases : a case list)
      ~(default : unit -> a) =
    let rec find_case = function
      | [] -> default ()
      | Case (tag, handler) :: tail ->
          if tag.id = tag_id then handler (tag.typ.decode value)
          else find_case tail
    in
    find_case cases

  (* Alias to be able to refer to the message type in [Reader] and [Writer],
     which define their own [t] type. *)
  type message = t

  (* Reading messages serialized using [Marshal] from a file descriptor. *)
  module Reader = struct
    (* [bytes] is a buffer. It is mutable so that it can grow if needed.
       [position] is the position in [bytes] of the next unused byte.
       It is between 0 and [Bytes.length bytes].
       [expected] is the expected number of [bytes] for the message currently
       being read. It is [None] until the marshal header has been read. *)
    type t = {
      file_descriptor : Unix.file_descr;
      mutable end_of_file : bool;
      mutable bytes : bytes;
      mutable position : int;
      mutable expected : int option;
      messages : message Queue.t;
    }

    let create file_descriptor =
      {
        file_descriptor;
        end_of_file = false;
        bytes = Bytes.create (max 512 Marshal.header_size);
        position = 0;
        expected = None;
        messages = Queue.create ();
      }

    (* Grow [reader.bytes] so that its size is at least [target_length]. *)
    let grow reader target_length =
      let current_length = Bytes.length reader.bytes in
      if current_length < target_length then (
        let new_bytes = Bytes.create (max target_length (current_length * 2)) in
        Bytes.blit reader.bytes 0 new_bytes 0 current_length ;
        reader.bytes <- new_bytes)

    exception Partial_message

    (* Read once from the file descriptor and update the current state accordingly.
       To be called when the file descriptor is ready for reading.
       Can raise [Unix.Unix_error], or [Failure] if unmarshaling fails. *)
    let read_non_blocking ~raise_partial_message reader =
      if not reader.end_of_file then (
        (* [reader.bytes] must have room for at least one byte.
           Otherwise [Unix.read] could return 0 without meaning end of file. *)
        grow reader (reader.position + 1) ;
        (* Read at least one byte into [reader.bytes] (or detect end of file). *)
        match
          Unix.read
            reader.file_descriptor
            reader.bytes
            reader.position
            (Bytes.length reader.bytes - reader.position)
        with
        | exception Unix.Unix_error ((EAGAIN | EWOULDBLOCK | EINTR), _, _) -> ()
        | read_length ->
            if read_length = 0 then (
              reader.end_of_file <- true ;
              if raise_partial_message && reader.position > 0 then
                raise Partial_message)
            else (
              reader.position <- reader.position + read_length ;
              let rec decode_messages () =
                (* Check if we have a full marshal header already. *)
                (match reader.expected with
                | None ->
                    if reader.position >= Marshal.header_size then (
                      let total_size = Marshal.total_size reader.bytes 0 in
                      reader.expected <- Some total_size ;
                      grow reader total_size)
                | Some _ -> ()) ;
                match reader.expected with
                | None -> ()
                | Some expected ->
                    (* Check if we have the full marshaled value already. *)
                    if reader.position >= expected then (
                      (* Decode the message and add it to the queue. *)
                      let message : message =
                        Marshal.from_bytes reader.bytes 0
                      in
                      Queue.add message reader.messages ;
                      (* Remove the message bytes. *)
                      let remainder_length = reader.position - expected in
                      Bytes.blit
                        reader.bytes
                        expected
                        reader.bytes
                        0
                        remainder_length ;
                      reader.position <- remainder_length ;
                      reader.expected <- None ;
                      (* Maybe we received several messages at once. *)
                      decode_messages ())
              in
              decode_messages ()))

    (* Read at least one message and return it.
       Can raise [Unix.Unix_error]. *)
    let read_blocking ?timeout reader =
      let deadline =
        match timeout with
        | None -> None
        | Some timeout -> Some (Unix.gettimeofday () +. timeout)
      in
      let rec loop () =
        match Queue.take_opt reader.messages with
        | Some message -> Some message
        | None -> (
            if reader.end_of_file then None
            else
              let timeout =
                match deadline with
                | None -> -1.
                | Some deadline -> max 0. (deadline -. Unix.gettimeofday ())
              in
              match Unix.select [reader.file_descriptor] [] [] timeout with
              | exception Unix.Unix_error (EINTR, _, _) ->
                  (* Interrupted by a signal, try again. *)
                  loop ()
              | [], _, _ -> None
              | _ :: _, _, _ ->
                  read_non_blocking ~raise_partial_message:true reader ;
                  loop ())
      in
      loop ()

    let iter_and_clear reader f =
      Queue.iter f reader.messages ;
      Queue.clear reader.messages
  end

  (* Writing messages serialized using [Marshal] to a file descriptor. *)
  module Writer = struct
    (* [broken] is [true] if the other side closed the pipe.
       [message] is the current message being written.
       [position] is the position of the next byte to write in [message].
       [messages] are the next messages to write. They are never empty. *)
    type t = {
      file_descriptor : Unix.file_descr;
      mutable broken : bool;
      mutable message : bytes;
      mutable position : int;
      messages : bytes Queue.t;
    }

    let create file_descriptor =
      {
        file_descriptor;
        broken = false;
        message = Bytes.empty;
        position = 0;
        messages = Queue.create ();
      }

    (* Perform a single write.
       To be called when the file descriptor is ready for writing.
       Can raise [Unix.Unix_error], or [Failure] if unmarshaling fails. *)
    let write_non_blocking writer =
      if not writer.broken then (
        (* If we already wrote [writer.message], pop a new message. *)
        (if writer.position >= Bytes.length writer.message then
           match Queue.take_opt writer.messages with
           | None -> ()
           | Some message ->
               writer.message <- message ;
               writer.position <- 0) ;
        (* If there is something to write, write it. *)
        if writer.position < Bytes.length writer.message then (
          let write_length =
            try
              (* Use [single_write] instead of [write] because we don't want to block,
                 and [Unix.select] only guarantees that a file descriptor is ready
                 for one write. *)
              Unix.single_write
                writer.file_descriptor
                writer.message
                writer.position
                (Bytes.length writer.message - writer.position)
            with
            | Unix.Unix_error ((EAGAIN | EWOULDBLOCK | EINTR), _, _) -> 0
            | Unix.Unix_error (EPIPE, _, _) ->
                (* Broken pipe: the other side closed the pipe exit.
                   We won't be able to send anything. *)
                writer.broken <- true ;
                writer.message <- Bytes.empty ;
                writer.position <- 0 ;
                Queue.clear writer.messages ;
                0
          in
          writer.position <- writer.position + write_length ;
          (* If the current message was fully wrote, remove it to avoid using memory. *)
          if writer.position >= Bytes.length writer.message then (
            writer.message <- Bytes.empty ;
            writer.position <- 0)))

    let is_empty writer =
      writer.position >= Bytes.length writer.message
      && Queue.is_empty writer.messages

    let write_blocking writer =
      while not (is_empty writer) do
        (* [write_non_blocking] will actually block because we didn't set the
           file descriptor as non-blocking and we didn't wait for it to be ready
           with [Unix.select]. But we want it to block here. *)
        write_non_blocking writer
      done

    let push writer tag value =
      if not writer.broken then
        Queue.add
          (Marshal.to_bytes (make tag value : message) [Closures])
          writer.messages

    let push_and_write_blocking writer tag value =
      push writer tag value ;
      write_blocking writer
  end
end

(* [task_queue] depends on type [task], which depends on type [scheduler_context],
   which is defined in the [Worker] module, which wants to be able to clear [task_queue].
   To fix this cyclic dependency problem we define [clear_task_queue] and will
   set it later to [Queue.clear task_queue]. *)
let clear_task_queue = ref (fun () -> ())

module Timer = struct
  type t = {deadline : float; handler : unit -> unit; mutable canceled : bool}

  (* We use a map to store active timers.
     The keys of this map are the [deadline]s.
     This allows to easily pick the next timer to wait for.
     There may be multiple timers associated to the same time. *)
  let map : t list Float_map.t ref = ref Float_map.empty

  let on_delay delay handler =
    let deadline = Unix.gettimeofday () +. delay in
    let timer = {deadline; handler; canceled = false} in
    let previous_timers =
      Float_map.find_opt deadline !map |> Option.value ~default:[]
    in
    map := Float_map.add deadline (timer :: previous_timers) !map ;
    timer

  let cancel timer =
    (* The timer will be removed from the [map] by [next]. *)
    timer.canceled <- true

  let cancel_all () = map := Float_map.empty

  let trigger timer =
    if not timer.canceled then (
      timer.canceled <- true ;
      timer.handler ())

  let rec next () =
    match Float_map.min_binding_opt !map with
    | None -> None
    | Some (deadline, timers) -> (
        let existed_canceled = ref false in
        let timers =
          Fun.flip List.filter timers @@ fun timer ->
          if timer.canceled then (
            existed_canceled := true ;
            false)
          else true
        in
        match timers with
        | [] ->
            map := Float_map.remove deadline !map ;
            next ()
        | timer :: _ ->
            if !existed_canceled then map := Float_map.add deadline timers !map ;
            Some timer)
end

(* The [Worker] module is responsible for spawning workers, running workers,
   and defining the state of a worker from the point of view of the worker itself
   and from the scheduler. *)
module Worker = struct
  module Message = Message_not_depending_on_worker

  type current_task = {
    started_at : float;
    sigterm : int;
    term_timeout : float option;
    kill_timeout : float option;
    on_term_timeout : unit -> unit;
    on_kill_timeout : unit -> unit;
    on_message : Message.t -> unit;
  }

  (* State of a live worker from the point of view of the scheduler.
     [sent_sigterm] contains the time when SIGTERM was sent, if it was sent.
     [sent_msg_stop] contains the time when [msg_stop] was sent, if it was sent. *)
  type parent_state_alive = {
    pid : int;
    pipe_to_worker_entrance : Message.Writer.t;
    pipe_from_worker_exit : Message.Reader.t;
    mutable sent_sigterm : float option;
    mutable sent_sigkill : bool;
    mutable sent_msg_stop : float option;
    mutable current_task : current_task option;
  }

  (* State of a dead worker from the point of view of the scheduler.
     There may be some last words to read from the worker. *)
  type parent_state_dead = {pipe_from_worker_exit : Message.Reader.t}

  (* [Burried] is [Dead] + we closed [pipe_from_worker_exit]: there is nothing left. *)
  type status =
    | Alive of parent_state_alive
    | Dead of parent_state_dead
    | Burried

  (* State of a worker, alive or dead, from the point of view of the scheduler. *)
  type parent_state = {mutable status : status}

  (* State of a worker from the point of view of the worker itself. *)
  type child_state = {
    pipe_to_worker_exit : Message.Reader.t;
    pipe_from_worker_entrance : Message.Writer.t;
  }

  let msg_execute : (unit -> unit) Message.tag =
    Message.(register closure) "Execute"

  let msg_raised : string Message.tag = Message.(register string) "Raised"

  let msg_stop : unit Message.tag = Message.(register unit) "Stop"

  (* [current_child_state] stores the state of the current child,
     if the current process is a child (i.e. a worker).
     It is set by [main_loop] before a task is run.

     There are two motivations for this:
     - (1) make it easier to define the [execute] wrapper in [add_task];
     - (2) make it easier for users to define functions that send messages
       from workers without having to pass a worker context around.

     To expand on (1), the [execute] wrapper needs the [child_state]
     to send the task result message in particular. But the [child_state]
     is only defined once the pipes are open, i.e. after the worker is created.
     The [execute] wrapper is defined before that.

     To expand on (2), an example is log functions.
     If log functions want to send the log message to the scheduler,
     they need a worker context (i.e. a [child_state]).
     Passing a worker context to all log functions can be inconvenient.
     With the global reference, the log function can call
     [get_current_worker_context] instead.

     Global references are usually frown upon, but here it feels like
     the pragmatic choice. *)
  let current_child_state : child_state option ref = ref None

  (* Run the main loop of the child process:
     receive tasks, execute them, send the result, repeat. *)
  let rec main_loop ~idle_timeout (state : child_state) =
    match
      Message.Reader.read_blocking
        ?timeout:idle_timeout
        state.pipe_to_worker_exit
    with
    | (exception Message.Reader.Partial_message) | None ->
        (* This means the scheduler closed the pipe.
           This only happens on purpose in [check_whether_workers_exited],
           if the worker exited (in which case this line of code cannot be reached
           this the worker is no longer running).
           Otherwise, it can happen if the system closed the pipe
           or killed the scheduler without killing the worker.
           In that case there isn't much we can do besides print an error and exit
           with a non-zero exit code, which is what [failwith] does.
           The exception is not handled by the worker, but if the scheduler is alive,
           it will detect the non-zero exit code. *)
        failwith
          "internal worker error: end of file or timeout while reading next \
           task"
    | Some message ->
        Message.match_with_list
          message
          [
            ( Message.case msg_execute @@ fun task_function ->
              current_child_state := Some state ;
              match task_function () with
              | exception exn ->
                  Message.Writer.push_and_write_blocking
                    state.pipe_from_worker_entrance
                    msg_raised
                    (Printexc.to_string exn)
              | () -> main_loop ~idle_timeout state );
            Message.case msg_stop Fun.id;
          ]
          ~default:(fun () ->
            (* Maybe a message intended for a previous task? *)
            (main_loop [@tailcall]) ~idle_timeout state)

  (* Fork a new worker.
     Return the worker state to the parent, and start the worker in the child.
     Can raise [Unix.Unix_error]. *)
  let spawn ~idle_timeout fork =
    let pipe_to_worker_exit, pipe_to_worker_entrance =
      Unix.pipe ~cloexec:true ()
    in
    let pipe_from_worker_exit, pipe_from_worker_entrance =
      Unix.pipe ~cloexec:true ()
    in
    let pid = fork () in
    if pid <> 0 then (
      (* This is the parent process. *)
      try_close pipe_to_worker_exit ;
      try_close pipe_from_worker_entrance ;
      {
        status =
          Alive
            {
              pid;
              pipe_to_worker_entrance =
                Message.Writer.create pipe_to_worker_entrance;
              pipe_from_worker_exit =
                Message.Reader.create pipe_from_worker_exit;
              sent_sigterm = None;
              sent_sigkill = false;
              sent_msg_stop = None;
              current_task = None;
            };
      })
    else (
      (* This is the child process. *)
      try_close pipe_to_worker_entrance ;
      try_close pipe_from_worker_exit ;
      Fun.protect ~finally:(fun () ->
          try_close pipe_to_worker_exit ;
          try_close pipe_to_worker_entrance)
      @@ fun () ->
      (* Clear global state in case the worker wants to run a scheduler too.
         And also to free memory maybe. *)
      !clear_task_queue () ;
      Timer.cancel_all () ;
      main_loop
        ~idle_timeout
        {
          pipe_to_worker_exit = Message.Reader.create pipe_to_worker_exit;
          pipe_from_worker_entrance =
            Message.Writer.create pipe_from_worker_entrance;
        } ;
      exit 0)

  let set_as_idle (worker : parent_state) =
    match worker.status with
    | Dead _ | Burried ->
        (* Already quite idle. *)
        ()
    | Alive alive_worker -> alive_worker.current_task <- None
end

type worker_context = Worker.child_state

type scheduler_context = Worker.parent_state

(* Now we can add the functions that depend on the [Worker] module to obtain
   the final [Message] module, visible in the [.mli]. *)
module Message = struct
  include Message_not_depending_on_worker

  let send_to_worker (worker : scheduler_context) tag value =
    match worker.status with
    | Dead _ | Burried ->
        (* Act as if we sent the message, but it will never be received. *)
        ()
    | Alive {pipe_to_worker_entrance; _} ->
        Writer.push pipe_to_worker_entrance tag value

  let send_to_scheduler (worker_context : worker_context) message =
    Writer.push_and_write_blocking
      worker_context.pipe_from_worker_entrance
      message

  let receive_from_scheduler (worker_context : worker_context) =
    try Reader.read_blocking worker_context.pipe_to_worker_exit
    with Reader.Partial_message ->
      failwith
        "Scheduler.Message.receive_from_scheduler: end of file after partial \
         message"

  let receive_from_scheduler_with_timeout (worker_context : worker_context)
      timeout =
    try Reader.read_blocking ~timeout worker_context.pipe_to_worker_exit
    with Reader.Partial_message ->
      failwith
        "Scheduler.Message.receive_from_scheduler_with_timeout: end of file \
         after partial message"
end

type task = {
  sigterm : int;
  term_timeout : float option;
  kill_timeout : float option;
  on_term_timeout : unit -> unit;
  on_kill_timeout : unit -> unit;
  on_start : scheduler_context -> unit;
  on_message : scheduler_context -> Message.t -> unit;
  execute : unit -> unit;
}

let task_queue : task Queue.t = Queue.create ()

let () = clear_task_queue := fun () -> Queue.clear task_queue

let add_task (type a) ?(sigterm = Sys.sigterm) ?term_timeout ?kill_timeout
    ?(on_term_timeout = fun () -> ()) ?(on_kill_timeout = fun () -> ())
    ?(on_start = fun _ -> ()) ?(on_message = fun _ _ -> ())
    ?(on_finish = fun (_ : (a, string) result) -> ()) (typ : a Message.typ)
    (execute : worker_context -> a) =
  (* Generate a new message tag for the particular result type of this task. *)
  let msg_completed = Message.register typ "Completed" in
  (* Modify [execute] to send a message with this tag in case of success. *)
  let execute () =
    match !Worker.current_child_state with
    | None -> failwith "internal worker error: no current child state"
    | Some worker_context ->
        let result = execute worker_context in
        Message.send_to_scheduler worker_context msg_completed result
  in
  (* Modify [on_message] to trigger [on_finish] when receiving the [Completed]
     or [Raised] messages. *)
  let on_message (worker : scheduler_context) (message : Message.t) =
    Message.match_with_list
      message
      [
        ( Message.case msg_completed @@ fun result ->
          Worker.set_as_idle worker ;
          on_finish (Ok result) );
        ( Message.case Worker.msg_raised @@ fun error_message ->
          Worker.set_as_idle worker ;
          on_finish (Error error_message) );
      ]
      ~default:(fun () -> on_message worker message)
  in
  let task =
    {
      sigterm;
      term_timeout;
      kill_timeout;
      on_term_timeout;
      on_kill_timeout;
      on_start;
      on_message;
      execute;
    }
  in
  Queue.add task task_queue

(* Information used by the main loop of the scheduler.

   [sigchld_pipe_exit] is a file descriptor that we set up to become readable after
   a child process exits. We cannot rely on [Unix.select] raising [EINTR] when
   a child exits because the child could exit just before the call to [Unix.select],
   at which point [Unix.select] could wait until its timeout, which could be forever.
   So we have [Unix.select] wait for [sigchld_pipe_exit] to become readable as well. *)
type t = {
  fork : unit -> int;
  worker_idle_timeout : float option;
  worker_kill_timeout : float option;
  on_worker_kill_timeout : unit -> unit;
  on_empty_queue : unit -> unit;
  on_message : Message.t -> unit;
  on_unexpected_worker_exit : Unix.process_status -> unit;
  sigchld_pipe_exit : Unix.file_descr;
  mutable workers : Worker.parent_state option array;
}

(* Buffer used to write to and read from the SIGCHLD pipe (see comment of type [t] above).
   We don't really care what we write to this pipe, we just need [Unix.select]
   to detect that something has been written. *)
let dummy_bytes = Bytes.make 64 'a'

(* [Term] and [Kill] take the following arguments:
   - the time when the signal should be sent;
   - an event handler ([on_term_timeout] or [on_kill_timeout])
     to trigger when the signal is sent.
   [Term] takes an additional argument:
   - the signal itself, since users can configure different signals. *)
type deadline =
  | No_deadline
  | Term of float * (unit -> unit) * int
  | Kill of float * (unit -> unit)

(* Compute the next deadline for a given worker.

   A deadline is a date after which an action must be performed.
   This action can be: send SIGTERM, or send SIGTERM;
   and usually there is a corresponding event to trigger
   ([on_term_timeout] or [on_kill_timeout]).

   Depending on whether we already sent SIGTERM and/or SIGKILL and/or [msg_stop],
   and depending on whether the worker is currently running a task,
   the deadline is different. This function makes this decision.

   This function is used in two places:
   - to decide which timeout to pass to [Unix.select] (in [prepare_select]);
   - to check whether some workers are passed their deadline (in [check_timeouts]). *)
let get_next_deadline scheduler now (worker : Worker.parent_state_alive) =
  match worker with
  | {current_task = None; sent_msg_stop = None; _} ->
      (* Worker is waiting for more tasks. *)
      No_deadline
  | {current_task = None; sent_msg_stop = Some msg_stop_sent_at; _} -> (
      (* We told the worker to stop using [msg_stop] in [maybe_tell_workers_to_stop].
         In particular it means the worker is not running a task:
         it is waiting for its next task in its [main_loop].
         This [main_loop] is supposed to stop on its own when it receives [msg_stop].
         There is thus no point in sending SIGTERM.
         We still want to send SIGKILL if the worker is stuck though. *)
      match scheduler.worker_kill_timeout with
      | None -> No_deadline
      | Some worker_kill_timeout ->
          Kill
            ( msg_stop_sent_at +. worker_kill_timeout,
              scheduler.on_worker_kill_timeout ))
  | {sent_sigkill = true; _} ->
      (* No timeout to act on if we already sent SIGKILL. *)
      No_deadline
  | {
   sent_sigterm = None;
   sent_sigkill = false;
   current_task = Some {sigterm; _};
   _;
  }
    when !stopped ->
      (* When stopped, we consider that all tasks have reached their SIGTERM timeout.
         Except that we don't trigger [on_term_timeout]. *)
      Term (now, (fun () -> ()), sigterm)
  | {current_task = Some {term_timeout = None; kill_timeout = None; _}; _} ->
      (* No timeout for this task. *)
      No_deadline
  | {sent_sigterm = Some _; current_task = Some {kill_timeout = None; _}; _} ->
      (* Sent SIGTERM already and the current task does not want to be SIGKILLed. *)
      No_deadline
  | {
   sent_sigterm = Some sigterm_sent_at;
   sent_sigkill = false;
   current_task = Some {kill_timeout = Some kill_timeout; on_kill_timeout; _};
   _;
  } ->
      (* Sent SIGTERM already, now wait for the time to send SIGKILL. *)
      Kill (sigterm_sent_at +. kill_timeout, on_kill_timeout)
  | {
   sent_sigterm = None;
   sent_sigkill = false;
   current_task =
     Some
       {
         started_at;
         sigterm;
         term_timeout = Some term_timeout;
         on_term_timeout;
         _;
       };
   _;
  } ->
      (* Waiting for the time to send SIGTERM. *)
      Term (started_at +. term_timeout, on_term_timeout, sigterm)
  | {
   sent_sigterm = None;
   sent_sigkill = false;
   current_task =
     Some
       {
         started_at;
         term_timeout = None;
         kill_timeout = Some kill_timeout;
         on_kill_timeout;
         _;
       };
   _;
  } ->
      (* No SIGTERM timeout for this task, waiting for the time to send SIGKILL. *)
      Kill (started_at +. kill_timeout, on_kill_timeout)

let give_task_to_worker task (worker : Worker.parent_state) =
  match worker.status with
  | Dead _ | Burried ->
      failwith
        "internal scheduler error: tried to make a dead worker do something"
  | Alive alive ->
      Message.Writer.push
        alive.pipe_to_worker_entrance
        Worker.msg_execute
        task.execute ;
      alive.current_task <-
        Some
          {
            started_at = Unix.gettimeofday ();
            sigterm = task.sigterm;
            term_timeout = task.term_timeout;
            kill_timeout = task.kill_timeout;
            on_term_timeout = task.on_term_timeout;
            on_kill_timeout = task.on_kill_timeout;
            on_message = (fun message -> task.on_message worker message);
          } ;
      task.on_start worker

exception Empty_queue

let next_task scheduler =
  if !stopped then raise Empty_queue ;
  match Queue.take_opt task_queue with
  | Some task -> task
  | None -> (
      scheduler.on_empty_queue () ;
      (* [on_empty_queue] could have pushed some tasks: check again. *)
      match Queue.take_opt task_queue with
      | Some task -> task
      | None -> raise Empty_queue)

(* Start tasks until we cannot anymore, i.e. until the queue becomes empty
   or we reach the maximum worker count and no worker is idle. *)
let start_some_tasks scheduler =
  try
    (* Try to reuse idle workers first. *)
    for i = 0 to Array.length scheduler.workers - 1 do
      match scheduler.workers.(i) with
      | Some
          ({
             status =
               Alive
                 {
                   current_task = None;
                   sent_sigterm = None;
                   sent_sigkill = false;
                   _;
                 };
           } as worker) ->
          let task = next_task scheduler in
          give_task_to_worker task worker
      | _ -> ()
    done ;
    (* Spawn new workers if needed and if possible. *)
    for i = 0 to Array.length scheduler.workers - 1 do
      match scheduler.workers.(i) with
      | None ->
          let task = next_task scheduler in
          let worker =
            Worker.spawn
              ~idle_timeout:scheduler.worker_idle_timeout
              scheduler.fork
          in
          scheduler.workers.(i) <- Some worker ;
          give_task_to_worker task worker
      | _ -> ()
    done
  with Empty_queue -> ()

(* This is supposed to be called after [start_some_tasks].
   If no worker is running a task, it means [start_some_tasks] had no task to start.
   So we can assume the queue is empty and we tell workers to stop.
   It is possible that a worker has an [at_exit] handler that causes a message
   to be sent to the scheduler that itself causes some tasks to be added to the queue,
   in that case we'll just start new workers. *)
let maybe_tell_workers_to_stop (workers : Worker.parent_state option array) =
  let not_running_a_task (worker : Worker.parent_state option) =
    match worker with
    | None -> true
    | Some worker -> (
        match worker.status with
        | Alive {current_task = Some _; _} -> false
        | Alive {current_task = None; _} | Dead _ | Burried -> true)
  in
  let tell_worker_to_stop (worker : Worker.parent_state option) =
    match worker with
    | Some {status = Alive alive} ->
        if alive.sent_msg_stop = None then (
          alive.sent_msg_stop <- Some (Unix.gettimeofday ()) ;
          Message.Writer.push alive.pipe_to_worker_entrance Worker.msg_stop ())
    | None | Some {status = Dead _ | Burried} -> ()
  in
  if Array.for_all not_running_a_task workers then
    Array.iter tell_worker_to_stop workers

type select_parameters = {
  read : (Unix.file_descr * Worker.parent_state option) list;
  write : (Unix.file_descr * Worker.parent_state) list;
  timeout : float;
}

let prepare_select scheduler =
  let read = ref [] in
  let write = ref [] in
  let deadlines = ref [] in
  let now = Unix.gettimeofday () in
  (* List worker pipes and deadlines corresponding to their timeouts. *)
  let add_worker (worker : Worker.parent_state) =
    match worker.status with
    | Burried -> ()
    | Dead {pipe_from_worker_exit} ->
        if not pipe_from_worker_exit.end_of_file then
          read := (pipe_from_worker_exit.file_descriptor, Some worker) :: !read
    | Alive alive -> (
        if not alive.pipe_from_worker_exit.end_of_file then
          read :=
            (alive.pipe_from_worker_exit.file_descriptor, Some worker) :: !read ;
        if not (Message.Writer.is_empty alive.pipe_to_worker_entrance) then
          write :=
            (alive.pipe_to_worker_entrance.file_descriptor, worker) :: !write ;
        match get_next_deadline scheduler now alive with
        | No_deadline -> ()
        | Term (deadline, _, _) | Kill (deadline, _) ->
            deadlines := deadline :: !deadlines)
  in
  Array.iter (Option.iter add_worker) scheduler.workers ;
  (* Read from [sigchld_pipe_exit] only if there are workers thought to be alive. *)
  if
    scheduler.workers
    |> Array.exists @@ fun worker ->
       match worker with
       | None | Some {Worker.status = Dead _ | Burried} -> false
       | Some {status = Alive _} -> true
  then read := (scheduler.sigchld_pipe_exit, None) :: !read ;
  (* Add a deadline for the next timer. *)
  (match Timer.next () with
  | None -> ()
  | Some timer -> deadlines := timer.deadline :: !deadlines) ;
  (* Deduce the timeout from the various deadlines. *)
  let timeout =
    match !deadlines with
    | [] -> -1.
    | _ :: _ as deadlines ->
        let min_deadline = List.fold_left min max_float deadlines in
        max 0. (min_deadline -. now)
  in
  (* Check if there actually is something to wait for. *)
  if !read = [] && !write = [] && timeout < 0. then None
  else Some {read = !read; write = !write; timeout}

type select_result = {
  readable_workers : Worker.parent_state list;
  writeable_workers : Worker.parent_state list;
  readable_sigchld_pipe_exit : bool;
}

let select {read; write; timeout} ~sigchld_pipe_exit =
  let readable, writeable =
    match Unix.select (List.map fst read) (List.map fst write) [] timeout with
    | exception Unix.Unix_error (EINTR, _, _) -> ([], [])
    | r, w, _ -> (r, w)
  in
  let read_map = FD_map.of_list read in
  let readable_sigchld_pipe_exit = ref false in
  let readable_workers =
    Fun.flip List.filter_map readable @@ fun file_descriptor ->
    match FD_map.find_opt file_descriptor read_map with
    | None | Some None ->
        if file_descriptor = sigchld_pipe_exit then
          readable_sigchld_pipe_exit := true ;
        None
    | Some x -> x
  in
  let write_map = FD_map.of_list write in
  let writeable_workers =
    Fun.flip List.filter_map writeable @@ fun file_descriptor ->
    FD_map.find_opt file_descriptor write_map
  in
  {
    readable_workers;
    writeable_workers;
    readable_sigchld_pipe_exit = !readable_sigchld_pipe_exit;
  }

let read_from_readable_worker scheduler (worker : Worker.parent_state) =
  match worker.status with
  | Burried ->
      (* Not actually readable, that's weird. *)
      ()
  | Dead {pipe_from_worker_exit} ->
      (* Don't fail if end of file with partial message, this would crash the scheduler.
         This probably means the worker crashed anyway so we'll see it from the exit code. *)
      Message.Reader.read_non_blocking
        ~raise_partial_message:false
        pipe_from_worker_exit ;
      Message.Reader.iter_and_clear pipe_from_worker_exit scheduler.on_message ;
      if pipe_from_worker_exit.end_of_file then (
        try_close pipe_from_worker_exit.file_descriptor ;
        worker.status <- Burried)
  | Alive {pipe_from_worker_exit; current_task = None; _} ->
      Message.Reader.read_non_blocking
        ~raise_partial_message:false
        pipe_from_worker_exit ;
      Message.Reader.iter_and_clear pipe_from_worker_exit scheduler.on_message
  | Alive {pipe_from_worker_exit; current_task = Some {on_message; _}; _} ->
      Message.Reader.read_non_blocking
        ~raise_partial_message:false
        pipe_from_worker_exit ;
      Message.Reader.iter_and_clear pipe_from_worker_exit on_message

let write_to_writeable_worker (worker : Worker.parent_state) =
  match worker.status with
  | Burried | Dead _ ->
      (* Not actually writeable, that's weird. *)
      ()
  | Alive {pipe_to_worker_entrance; _} ->
      Message.Writer.write_non_blocking pipe_to_worker_entrance

let read_from_sigchld_pipe_exit sigchld_pipe_exit =
  let (_ : int) =
    Unix.read sigchld_pipe_exit dummy_bytes 0 (Bytes.length dummy_bytes)
  in
  ()

let check_whether_workers_exited scheduler =
  Fun.flip Array.iter scheduler.workers @@ fun worker_opt ->
  Fun.flip Option.iter worker_opt @@ fun worker ->
  match worker.status with
  | Dead _ | Burried ->
      (* Yes, it exited. But we already know. *)
      ()
  | Alive alive -> (
      match Unix.waitpid [WNOHANG] alive.pid with
      | exception Unix.Unix_error ((EINTR | EAGAIN), _, _) ->
          (* Not supposed to happen with [WNOHANG]
             and a PID that is not a file descriptor but you never know. *)
          ()
      | 0, _ ->
          (* No, it did not exit. *)
          ()
      | _, exit_status -> (
          (* Yes, it exited. Update the worker. *)
          try_close alive.pipe_to_worker_entrance.file_descriptor ;
          worker.status <-
            Dead {pipe_from_worker_exit = alive.pipe_from_worker_exit} ;
          (* Fail current task, if any. *)
          match alive.current_task with
          | None ->
              if exit_status <> WEXITED 0 || alive.sent_msg_stop = None then
                scheduler.on_unexpected_worker_exit exit_status
          | Some current_task ->
              current_task.on_message
                (Message.make
                   Worker.msg_raised
                   ("worker " ^ show_process_status exit_status))))

let bury_workers (workers : Worker.parent_state option array) =
  for i = 0 to Array.length workers - 1 do
    match workers.(i) with
    | None -> ()
    | Some worker -> (
        match worker.status with
        | Alive _ -> ()
        | Burried -> workers.(i) <- None
        | Dead {pipe_from_worker_exit} ->
            if pipe_from_worker_exit.end_of_file then (
              try_close pipe_from_worker_exit.file_descriptor ;
              worker.status <- Burried ;
              workers.(i) <- None))
  done

let check_timeouts now scheduler =
  Fun.flip Array.iter scheduler.workers @@ fun worker_opt ->
  Fun.flip Option.iter worker_opt @@ fun worker ->
  match worker.status with
  | Dead _ | Burried -> ()
  | Alive alive -> (
      match get_next_deadline scheduler now alive with
      | No_deadline -> ()
      | Term (deadline, on_term_timeout, signal) ->
          if now >= deadline && alive.sent_sigterm = None then (
            alive.sent_sigterm <- Some now ;
            on_term_timeout () ;
            Unix.kill alive.pid signal)
      | Kill (deadline, on_kill_timeout) ->
          if now >= deadline && not alive.sent_sigkill then (
            alive.sent_sigkill <- true ;
            on_kill_timeout () ;
            Unix.kill alive.pid Sys.sigkill))

let rec check_timers now =
  match Timer.next () with
  | None -> ()
  | Some timer ->
      if now >= timer.deadline then (
        Timer.trigger timer ;
        check_timers now)

let rec main_loop scheduler =
  start_some_tasks scheduler ;
  maybe_tell_workers_to_stop scheduler.workers ;
  match prepare_select scheduler with
  | None ->
      (* Nothing can happen:
         - no pipe to read from;
         - no pipe to write to;
         - no live worker to wait to exit;
         - no timer.
         So we're done. *)
      ()
  | Some select_parameters ->
      let sigchld_pipe_exit = scheduler.sigchld_pipe_exit in
      let {readable_workers; writeable_workers; readable_sigchld_pipe_exit} =
        select select_parameters ~sigchld_pipe_exit
      in
      List.iter (read_from_readable_worker scheduler) readable_workers ;
      List.iter write_to_writeable_worker writeable_workers ;
      if readable_sigchld_pipe_exit then
        read_from_sigchld_pipe_exit sigchld_pipe_exit ;
      check_whether_workers_exited scheduler ;
      bury_workers scheduler.workers ;
      let now = Unix.gettimeofday () in
      check_timeouts now scheduler ;
      check_timers now ;
      main_loop scheduler

let run ?worker_idle_timeout ?worker_kill_timeout
    ?(on_worker_kill_timeout = fun () -> ()) ?(on_empty_queue = fun () -> ())
    ?(on_message = fun _ -> ()) ?(on_unexpected_worker_exit = fun _ -> ()) ~fork
    max_worker_count =
  (* Set up a pipe that will become readable when a worker terminates. *)
  let sigchld_pipe_exit, sigchld_pipe_entrance = Unix.pipe () in
  Fun.protect ~finally:(fun () ->
      try_close sigchld_pipe_exit ;
      try_close sigchld_pipe_entrance)
  @@ fun () ->
  let handle_sigchld (_ : int) =
    (* This could in theory block.
       But writing 1 byte, that will likely be consumed quickly, should be fine. *)
    let (_ : int) = Unix.write sigchld_pipe_entrance dummy_bytes 0 1 in
    ()
  in
  let old_sigchld_behavior =
    Sys.(signal sigchld) (Signal_handle handle_sigchld)
  in
  Fun.protect ~finally:(fun () -> Sys.(set_signal sigchld) old_sigchld_behavior)
  @@ fun () ->
  stopped := false ;
  main_loop
    {
      fork;
      worker_idle_timeout;
      worker_kill_timeout;
      on_worker_kill_timeout;
      on_empty_queue;
      on_message;
      on_unexpected_worker_exit;
      sigchld_pipe_exit;
      workers = Array.make (max 1 max_worker_count) None;
    }

let stop () = stopped := true

let clear () = Queue.clear task_queue

let get_current_worker_context () = !Worker.current_child_state
OCaml

Innovation. Community. Security.