package tezos-protocol-017-PtNairob

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file michelson_v1_gas.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
(*****************************************************************************)
(*                                                                           *)
(* Open Source License                                                       *)
(* Copyright (c) 2018 Dynamic Ledger Solutions, Inc. <contact@tezos.com>     *)
(* Copyright (c) 2019-2022 Nomadic Labs <contact@nomadic-labs.com>           *)
(* Copyright (c) 2020 Metastate AG <hello@metastate.dev>                     *)
(* Copyright (c) 2022 DaiLambda, Inc. <contact@dailambda,jp>                 *)
(*                                                                           *)
(* Permission is hereby granted, free of charge, to any person obtaining a   *)
(* copy of this software and associated documentation files (the "Software"),*)
(* to deal in the Software without restriction, including without limitation *)
(* the rights to use, copy, modify, merge, publish, distribute, sublicense,  *)
(* and/or sell copies of the Software, and to permit persons to whom the     *)
(* Software is furnished to do so, subject to the following conditions:      *)
(*                                                                           *)
(* The above copyright notice and this permission notice shall be included   *)
(* in all copies or substantial portions of the Software.                    *)
(*                                                                           *)
(* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*)
(* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,  *)
(* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL   *)
(* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*)
(* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING   *)
(* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER       *)
(* DEALINGS IN THE SOFTWARE.                                                 *)
(*                                                                           *)
(*****************************************************************************)

open Alpha_context
open Gas
module S = Saturation_repr
module Size = Gas_input_size

module Cost_of = struct
  let z_bytes (z : Z.t) =
    let bits = Z.numbits z in
    (7 + bits) / 8

  let int_size_in_bytes (z : 'a Script_int.num) = z_bytes (Script_int.to_zint z)

  let manager_operation_int = 100

  let manager_operation = step_cost @@ S.safe_int manager_operation_int

  module Interpreter = struct
    open Michelson_v1_gas_costs

    let drop = atomic_step_cost cost_N_IDrop

    let dup = atomic_step_cost cost_N_IDup

    let swap = atomic_step_cost cost_N_ISwap

    let cons_some = atomic_step_cost cost_N_ICons_some

    let cons_none = atomic_step_cost cost_N_ICons_none

    let if_none = atomic_step_cost cost_N_IIf_none

    let opt_map = atomic_step_cost cost_N_IOpt_map

    let cons_pair = atomic_step_cost cost_N_ICons_pair

    let unpair = atomic_step_cost cost_N_IUnpair

    let car = atomic_step_cost cost_N_ICar

    let cdr = atomic_step_cost cost_N_ICdr

    let cons_left = atomic_step_cost cost_N_ILeft

    let cons_right = atomic_step_cost cost_N_IRight

    let if_left = atomic_step_cost cost_N_IIf_left

    let cons_list = atomic_step_cost cost_N_ICons_list

    let nil = atomic_step_cost cost_N_INil

    let if_cons = atomic_step_cost cost_N_IIf_cons

    let list_map : 'a Script_list.t -> Gas.cost =
     fun _ -> atomic_step_cost cost_N_IList_map

    let list_size = atomic_step_cost cost_N_IList_size

    let list_iter : 'a Script_list.t -> Gas.cost =
     fun _ -> atomic_step_cost cost_N_IList_iter

    let empty_set = atomic_step_cost cost_N_IEmpty_set

    let set_iter (type a) (set : a Script_typed_ir.set) =
      let (module Box) = Script_set.get set in
      atomic_step_cost (cost_N_ISet_iter Box.size)

    let set_size = atomic_step_cost cost_N_ISet_size

    let empty_map = atomic_step_cost cost_N_IEmpty_map

    let map_map (type k v) (map : (k, v) Script_typed_ir.map) =
      let (module Box) = Script_map.get_module map in
      atomic_step_cost (cost_N_IMap_map Box.size)

    let map_iter (type k v) (map : (k, v) Script_typed_ir.map) =
      let (module Box) = Script_map.get_module map in
      atomic_step_cost (cost_N_IMap_iter Box.size)

    let map_size = atomic_step_cost cost_N_IMap_size

    let big_map_elt_size = Script_expr_hash.size

    let big_map_mem ({size; _} : _ Script_typed_ir.big_map_overlay) =
      atomic_step_cost (cost_N_IMap_mem big_map_elt_size size)

    let big_map_get ({size; _} : _ Script_typed_ir.big_map_overlay) =
      atomic_step_cost (cost_N_IMap_get big_map_elt_size size)

    let big_map_update ({size; _} : _ Script_typed_ir.big_map_overlay) =
      atomic_step_cost (cost_N_IMap_update big_map_elt_size size)

    let big_map_get_and_update ({size; _} : _ Script_typed_ir.big_map_overlay) =
      atomic_step_cost (cost_N_IMap_get_and_update big_map_elt_size size)

    let add_seconds_timestamp :
        'a Script_int.num -> Script_timestamp.t -> Gas.cost =
     fun seconds timestamp ->
      let seconds_bytes = int_size_in_bytes seconds in
      let timestamp_bytes = z_bytes (Script_timestamp.to_zint timestamp) in
      atomic_step_cost
        (cost_N_IAdd_seconds_to_timestamp seconds_bytes timestamp_bytes)

    let add_timestamp_seconds :
        Script_timestamp.t -> 'a Script_int.num -> Gas.cost =
     fun timestamp seconds ->
      let seconds_bytes = int_size_in_bytes seconds in
      let timestamp_bytes = z_bytes (Script_timestamp.to_zint timestamp) in
      atomic_step_cost
        (cost_N_IAdd_timestamp_to_seconds timestamp_bytes seconds_bytes)

    let sub_timestamp_seconds :
        Script_timestamp.t -> 'a Script_int.num -> Gas.cost =
     fun timestamp seconds ->
      let seconds_bytes = int_size_in_bytes seconds in
      let timestamp_bytes = z_bytes (Script_timestamp.to_zint timestamp) in
      atomic_step_cost
        (cost_N_ISub_timestamp_seconds timestamp_bytes seconds_bytes)

    let diff_timestamps t1 t2 =
      let t1_bytes = z_bytes (Script_timestamp.to_zint t1) in
      let t2_bytes = z_bytes (Script_timestamp.to_zint t2) in
      atomic_step_cost (cost_N_IDiff_timestamps t1_bytes t2_bytes)

    let concat_string_pair s1 s2 =
      atomic_step_cost
        (cost_N_IConcat_string_pair
           (Script_string.length s1)
           (Script_string.length s2))

    let slice_string s =
      atomic_step_cost (cost_N_ISlice_string (Script_string.length s))

    let string_size = atomic_step_cost cost_N_IString_size

    let concat_bytes_pair b1 b2 =
      atomic_step_cost
        (cost_N_IConcat_bytes_pair (Bytes.length b1) (Bytes.length b2))

    let slice_bytes b = atomic_step_cost (cost_N_ISlice_bytes (Bytes.length b))

    let bytes_size = atomic_step_cost cost_N_IBytes_size

    let lsl_bytes input nbits =
      match Script_int.to_int nbits with
      | None -> Saturation_repr.saturated
      | Some nbits ->
          atomic_step_cost (cost_N_ILsl_bytes (Bytes.length input) nbits)

    let lsr_bytes input nbits =
      let input_nbytes = Bytes.length input in
      let nbits =
        Option.value (Script_int.to_int nbits) ~default:(input_nbytes * 8)
      in
      atomic_step_cost (cost_N_ILsr_bytes input_nbytes nbits)

    let or_bytes b1 b2 =
      atomic_step_cost (cost_N_IOr_bytes (Bytes.length b1) (Bytes.length b2))

    let and_bytes b1 b2 =
      atomic_step_cost (cost_N_IAnd_bytes (Bytes.length b1) (Bytes.length b2))

    let xor_bytes b1 b2 =
      atomic_step_cost (cost_N_IXor_bytes (Bytes.length b1) (Bytes.length b2))

    let not_bytes b = atomic_step_cost (cost_N_INot_bytes (Bytes.length b))

    let bytes_nat n = atomic_step_cost (cost_N_IBytes_nat (int_size_in_bytes n))

    let nat_bytes b = atomic_step_cost (cost_N_INat_bytes (Bytes.length b))

    let bytes_int n = atomic_step_cost (cost_N_IBytes_int (int_size_in_bytes n))

    let int_bytes b = atomic_step_cost (cost_N_IInt_bytes (Bytes.length b))

    let add_tez = atomic_step_cost cost_N_IAdd_tez

    let sub_tez = atomic_step_cost cost_N_ISub_tez

    let sub_tez_legacy = atomic_step_cost cost_N_ISub_tez_legacy

    let mul_teznat = atomic_step_cost cost_N_IMul_teznat

    let mul_nattez = atomic_step_cost cost_N_IMul_nattez

    let bool_or = atomic_step_cost cost_N_IOr

    let bool_and = atomic_step_cost cost_N_IAnd

    let bool_xor = atomic_step_cost cost_N_IXor

    let bool_not = atomic_step_cost cost_N_INot

    let is_nat = atomic_step_cost cost_N_IIs_nat

    let abs_int i = atomic_step_cost (cost_N_IAbs_int (int_size_in_bytes i))

    let int_nat = atomic_step_cost cost_N_IInt_nat

    let neg i = atomic_step_cost (cost_N_INeg (int_size_in_bytes i))

    let add_int i1 i2 =
      atomic_step_cost
        (cost_N_IAdd_int (int_size_in_bytes i1) (int_size_in_bytes i2))

    let add_nat i1 i2 =
      atomic_step_cost
        (cost_N_IAdd_nat (int_size_in_bytes i1) (int_size_in_bytes i2))

    let sub_int i1 i2 =
      atomic_step_cost
        (cost_N_ISub_int (int_size_in_bytes i1) (int_size_in_bytes i2))

    let mul_int i1 i2 =
      atomic_step_cost
        (cost_N_IMul_int (int_size_in_bytes i1) (int_size_in_bytes i2))

    let mul_nat i1 i2 =
      atomic_step_cost
        (cost_N_IMul_nat (int_size_in_bytes i1) (int_size_in_bytes i2))

    let ediv_teznat _tez _n = atomic_step_cost cost_N_IEdiv_teznat

    let ediv_tez = atomic_step_cost cost_N_IEdiv_tez

    let ediv_int i1 i2 =
      atomic_step_cost
        (cost_N_IEdiv_int (int_size_in_bytes i1) (int_size_in_bytes i2))

    let ediv_nat i1 i2 =
      atomic_step_cost
        (cost_N_IEdiv_nat (int_size_in_bytes i1) (int_size_in_bytes i2))

    let eq = atomic_step_cost cost_N_IEq

    let lsl_nat shifted =
      atomic_step_cost (cost_N_ILsl_nat (int_size_in_bytes shifted))

    let lsr_nat shifted =
      atomic_step_cost (cost_N_ILsr_nat (int_size_in_bytes shifted))

    let or_nat n1 n2 =
      atomic_step_cost
        (cost_N_IOr_nat (int_size_in_bytes n1) (int_size_in_bytes n2))

    let and_nat n1 n2 =
      atomic_step_cost
        (cost_N_IAnd_nat (int_size_in_bytes n1) (int_size_in_bytes n2))

    let and_int_nat n1 n2 =
      atomic_step_cost
        (cost_N_IAnd_int_nat (int_size_in_bytes n1) (int_size_in_bytes n2))

    let xor_nat n1 n2 =
      atomic_step_cost
        (cost_N_IXor_nat (int_size_in_bytes n1) (int_size_in_bytes n2))

    let not_int i = atomic_step_cost (cost_N_INot_int (int_size_in_bytes i))

    let if_ = atomic_step_cost cost_N_IIf

    let loop = atomic_step_cost cost_N_ILoop

    let loop_left = atomic_step_cost cost_N_ILoop_left

    let dip = atomic_step_cost cost_N_IDip

    let view = atomic_step_cost cost_N_IView

    type algo = Ed25519 | Secp256k1 | P256 | Bls

    let algo_of_public_key (pkey : Signature.public_key) =
      match pkey with
      | Ed25519 _ -> Ed25519
      | Secp256k1 _ -> Secp256k1
      | P256 _ -> P256
      | Bls _ -> Bls

    let algo_of_public_key_hash (pkh : Signature.public_key_hash) =
      match pkh with
      | Ed25519 _ -> Ed25519
      | Secp256k1 _ -> Secp256k1
      | P256 _ -> P256
      | Bls _ -> Bls

    let check_signature_on_algo algo length =
      match algo with
      | Ed25519 -> cost_N_ICheck_signature_ed25519 length
      | Secp256k1 -> cost_N_ICheck_signature_secp256k1 length
      | P256 -> cost_N_ICheck_signature_p256 length
      | Bls -> cost_N_ICheck_signature_bls length

    let check_signature pkey b =
      check_signature_on_algo (algo_of_public_key pkey) (Bytes.length b)

    let blake2b b = atomic_step_cost (cost_N_IBlake2b (Bytes.length b))

    let sha256 b = atomic_step_cost (cost_N_ISha256 (Bytes.length b))

    let sha512 b = atomic_step_cost (cost_N_ISha512 (Bytes.length b))

    let dign n = atomic_step_cost (cost_N_IDig n)

    let dugn n = atomic_step_cost (cost_N_IDug n)

    let dipn n = atomic_step_cost (cost_N_IDipN n)

    let dropn n = atomic_step_cost (cost_N_IDropN n)

    let voting_power = atomic_step_cost cost_N_IVoting_power

    let total_voting_power = atomic_step_cost cost_N_ITotal_voting_power

    let keccak b = atomic_step_cost (cost_N_IKeccak (Bytes.length b))

    let sha3 b = atomic_step_cost (cost_N_ISha3 (Bytes.length b))

    let add_bls12_381_g1 = atomic_step_cost cost_N_IAdd_bls12_381_g1

    let add_bls12_381_g2 = atomic_step_cost cost_N_IAdd_bls12_381_g2

    let add_bls12_381_fr = atomic_step_cost cost_N_IAdd_bls12_381_fr

    let mul_bls12_381_g1 = atomic_step_cost cost_N_IMul_bls12_381_g1

    let mul_bls12_381_g2 = atomic_step_cost cost_N_IMul_bls12_381_g2

    let mul_bls12_381_fr = atomic_step_cost cost_N_IMul_bls12_381_fr

    let mul_bls12_381_fr_z z =
      atomic_step_cost (cost_N_IMul_bls12_381_fr_z (int_size_in_bytes z))

    let mul_bls12_381_z_fr z =
      atomic_step_cost (cost_N_IMul_bls12_381_z_fr (int_size_in_bytes z))

    let int_bls12_381_fr = atomic_step_cost cost_N_IInt_bls12_381_z_fr

    let neg_bls12_381_g1 = atomic_step_cost cost_N_INeg_bls12_381_g1

    let neg_bls12_381_g2 = atomic_step_cost cost_N_INeg_bls12_381_g2

    let neg_bls12_381_fr = atomic_step_cost cost_N_INeg_bls12_381_fr

    let neq = atomic_step_cost cost_N_INeq

    let pairing_check_bls12_381 (l : 'a Script_list.t) =
      atomic_step_cost (cost_N_IPairing_check_bls12_381 l.length)

    let comb n = atomic_step_cost (cost_N_IComb n)

    let uncomb n = atomic_step_cost (cost_N_IUncomb n)

    let comb_get n = atomic_step_cost (cost_N_IComb_get n)

    let comb_set n = atomic_step_cost (cost_N_IComb_set n)

    let dupn n = atomic_step_cost (cost_N_IDupN n)

    let sapling_verify_update ~inputs ~outputs ~bound_data =
      atomic_step_cost (cost_N_ISapling_verify_update inputs outputs bound_data)

    let sapling_verify_update_deprecated ~inputs ~outputs =
      atomic_step_cost (cost_N_ISapling_verify_update inputs outputs 0)

    let sapling_empty_state = atomic_step_cost cost_N_ISapling_empty_state

    let halt = atomic_step_cost cost_N_IHalt

    let push = atomic_step_cost cost_N_IPush

    let empty_big_map = atomic_step_cost cost_N_IEmpty_big_map

    let lt = atomic_step_cost cost_N_ILt

    let le = atomic_step_cost cost_N_ILe

    let gt = atomic_step_cost cost_N_IGt

    let ge = atomic_step_cost cost_N_IGe

    let exec = atomic_step_cost cost_N_IExec

    let apply ~(rec_flag : bool) = atomic_step_cost (cost_N_IApply rec_flag)

    let lambda = atomic_step_cost cost_N_ILambda

    let address = atomic_step_cost cost_N_IAddress

    let contract = atomic_step_cost cost_N_IContract

    let transfer_tokens = atomic_step_cost cost_N_ITransfer_tokens

    let implicit_account = atomic_step_cost cost_N_IImplicit_account

    let create_contract = atomic_step_cost cost_N_ICreate_contract

    let set_delegate = atomic_step_cost cost_N_ISet_delegate

    let level = atomic_step_cost cost_N_ILevel

    let now = atomic_step_cost cost_N_INow

    let min_block_time = atomic_step_cost cost_N_IMin_block_time

    let source = atomic_step_cost cost_N_ISource

    let sender = atomic_step_cost cost_N_ISender

    let self = atomic_step_cost cost_N_ISelf

    let self_address = atomic_step_cost cost_N_ISelf_address

    let amount = atomic_step_cost cost_N_IAmount

    let balance = atomic_step_cost cost_N_IBalance

    let chain_id = atomic_step_cost cost_N_IChainId

    let ticket = atomic_step_cost cost_N_ITicket

    let read_ticket = atomic_step_cost cost_N_IRead_ticket

    let hash_key _ = atomic_step_cost cost_N_IHash_key

    let split_ticket amount_a amount_b =
      atomic_step_cost
        (cost_N_ISplit_ticket
           (int_size_in_bytes amount_a)
           (int_size_in_bytes amount_b))

    let open_chest ~chest ~time =
      let plaintext =
        Script_typed_ir.Script_timelock.get_plaintext_size chest
      in
      let log_time = Z.log2 Z.(add one time) in
      atomic_step_cost (cost_N_IOpen_chest log_time plaintext)

    (* --------------------------------------------------------------------- *)
    (* Semi-hand-crafted models *)

    let compare_unit = atomic_step_cost (S.safe_int 10)

    let compare_pair_tag = atomic_step_cost (S.safe_int 10)

    let compare_or_tag = atomic_step_cost (S.safe_int 10)

    let compare_option_tag = atomic_step_cost (S.safe_int 10)

    let compare_bool = atomic_step_cost (cost_N_ICompare 1 1)

    let compare_signature = atomic_step_cost (S.safe_int 92)

    let compare_string s1 s2 =
      atomic_step_cost
        (cost_N_ICompare (Script_string.length s1) (Script_string.length s2))

    let compare_bytes b1 b2 =
      atomic_step_cost (cost_N_ICompare (Bytes.length b1) (Bytes.length b2))

    let compare_mutez = atomic_step_cost (cost_N_ICompare 8 8)

    let compare_int i1 i2 =
      atomic_step_cost
        (cost_N_ICompare (int_size_in_bytes i1) (int_size_in_bytes i2))

    let compare_nat n1 n2 =
      atomic_step_cost
        (cost_N_ICompare (int_size_in_bytes n1) (int_size_in_bytes n2))

    let compare_key_hash =
      let sz = Signature.Public_key_hash.size in
      atomic_step_cost (cost_N_ICompare sz sz)

    let compare_key = atomic_step_cost (S.safe_int 92)

    let compare_timestamp t1 t2 =
      atomic_step_cost
        (cost_N_ICompare
           (z_bytes (Script_timestamp.to_zint t1))
           (z_bytes (Script_timestamp.to_zint t2)))

    (* Maximum size of an entrypoint in bytes *)
    let entrypoint_size = 31

    let compare_address =
      let sz = Signature.Public_key_hash.size + entrypoint_size in
      atomic_step_cost (cost_N_ICompare sz sz)

    (** TODO: https://gitlab.com/tezos/tezos/-/issues/2340
        Refine the gas model *)
    let compare_tx_rollup_l2_address = atomic_step_cost (cost_N_ICompare 48 48)

    let compare_chain_id = atomic_step_cost (S.safe_int 30)

    (* Defunctionalized CPS *)
    type cont =
      | Compare : 'a Script_typed_ir.comparable_ty * 'a * 'a * cont -> cont
      | Return : cont

    let compare : type a. a Script_typed_ir.comparable_ty -> a -> a -> cost =
     fun ty x y ->
      let rec compare :
          type a.
          a Script_typed_ir.comparable_ty -> a -> a -> cost -> cont -> cost =
       fun ty x y acc k ->
        match ty with
        | Unit_t -> (apply [@tailcall]) Gas.(acc +@ compare_unit) k
        | Never_t -> ( match x with _ -> .)
        | Bool_t -> (apply [@tailcall]) Gas.(acc +@ compare_bool) k
        | String_t -> (apply [@tailcall]) Gas.(acc +@ compare_string x y) k
        | Signature_t -> (apply [@tailcall]) Gas.(acc +@ compare_signature) k
        | Bytes_t -> (apply [@tailcall]) Gas.(acc +@ compare_bytes x y) k
        | Mutez_t -> (apply [@tailcall]) Gas.(acc +@ compare_mutez) k
        | Int_t -> (apply [@tailcall]) Gas.(acc +@ compare_int x y) k
        | Nat_t -> (apply [@tailcall]) Gas.(acc +@ compare_nat x y) k
        | Key_hash_t -> (apply [@tailcall]) Gas.(acc +@ compare_key_hash) k
        | Key_t -> (apply [@tailcall]) Gas.(acc +@ compare_key) k
        | Timestamp_t ->
            (apply [@tailcall]) Gas.(acc +@ compare_timestamp x y) k
        | Address_t -> (apply [@tailcall]) Gas.(acc +@ compare_address) k
        | Tx_rollup_l2_address_t ->
            (apply [@tailcall]) Gas.(acc +@ compare_tx_rollup_l2_address) k
        | Chain_id_t -> (apply [@tailcall]) Gas.(acc +@ compare_chain_id) k
        | Pair_t (tl, tr, _, YesYes) ->
            (* Reasonable over-approximation of the cost of lexicographic comparison. *)
            let xl, xr = x in
            let yl, yr = y in
            (compare [@tailcall])
              tl
              xl
              yl
              Gas.(acc +@ compare_pair_tag)
              (Compare (tr, xr, yr, k))
        | Or_t (tl, tr, _, YesYes) -> (
            match (x, y) with
            | L x, L y ->
                (compare [@tailcall]) tl x y Gas.(acc +@ compare_or_tag) k
            | L _, R _ -> (apply [@tailcall]) Gas.(acc +@ compare_or_tag) k
            | R _, L _ -> (apply [@tailcall]) Gas.(acc +@ compare_or_tag) k
            | R x, R y ->
                (compare [@tailcall]) tr x y Gas.(acc +@ compare_or_tag) k)
        | Option_t (t, _, Yes) -> (
            match (x, y) with
            | None, None ->
                (apply [@tailcall]) Gas.(acc +@ compare_option_tag) k
            | None, Some _ ->
                (apply [@tailcall]) Gas.(acc +@ compare_option_tag) k
            | Some _, None ->
                (apply [@tailcall]) Gas.(acc +@ compare_option_tag) k
            | Some x, Some y ->
                (compare [@tailcall]) t x y Gas.(acc +@ compare_option_tag) k)
      and apply cost k =
        match k with
        | Compare (ty, x, y, k) -> (compare [@tailcall]) ty x y cost k
        | Return -> cost
      in
      compare ty x y Gas.free Return

    let set_mem (type a) (elt : a) (set : a Script_typed_ir.set) =
      let open S.Syntax in
      let (module Box) = Script_set.get set in
      let per_elt_cost = Box.OPS.elt_size elt |> Size.to_int |> S.safe_int in
      let size = S.safe_int Box.size in
      let intercept = atomic_step_cost (S.safe_int 115) in
      Gas.(intercept +@ (log2 size *@ per_elt_cost))

    let set_update (type a) (elt : a) (set : a Script_typed_ir.set) =
      let open S.Syntax in
      let (module Box) = Script_set.get set in
      let per_elt_cost = Box.OPS.elt_size elt |> Size.to_int |> S.safe_int in
      let size = S.safe_int Box.size in
      let intercept = atomic_step_cost (S.safe_int 130) in
      (* The 2 factor reflects the update vs mem overhead as benchmarked
         on non-structured data *)
      Gas.(intercept +@ (S.safe_int 2 * log2 size *@ per_elt_cost))

    let map_mem (type k v) (elt : k) (map : (k, v) Script_typed_ir.map) =
      let open S.Syntax in
      let (module Box) = Script_map.get_module map in
      let per_elt_cost = Box.OPS.key_size elt |> Size.to_int |> S.safe_int in
      let size = S.safe_int Box.size in
      let intercept = atomic_step_cost (S.safe_int 80) in
      Gas.(intercept +@ (log2 size *@ per_elt_cost))

    let map_get = map_mem

    let map_update (type k v) (elt : k) (map : (k, v) Script_typed_ir.map) =
      let open S.Syntax in
      let (module Box) = Script_map.get_module map in
      let per_elt_cost = Box.OPS.key_size elt |> Size.to_int |> S.safe_int in
      let size = S.safe_int Box.size in
      let intercept = atomic_step_cost (S.safe_int 80) in
      (* The 2 factor reflects the update vs mem overhead as benchmarked
         on non-structured data *)
      Gas.(intercept +@ (S.safe_int 2 * log2 size *@ per_elt_cost))

    let map_get_and_update (type k v) (elt : k)
        (map : (k, v) Script_typed_ir.map) =
      let open S.Syntax in
      let (module Box) = Script_map.get_module map in
      let per_elt_cost = Box.OPS.key_size elt |> Size.to_int |> S.safe_int in
      let size = S.safe_int Box.size in
      let intercept = atomic_step_cost (S.safe_int 80) in
      (* The 3 factor reflects the update vs mem overhead as benchmarked
         on non-structured data *)
      Gas.(intercept +@ (S.safe_int 3 * log2 size *@ per_elt_cost))

    let view_get (elt : Script_string.t) (m : Script_typed_ir.view_map) =
      map_get elt m

    let view_update (elt : Script_string.t) (m : Script_typed_ir.view_map) =
      map_update elt m

    let join_tickets :
        'a Script_typed_ir.comparable_ty ->
        'a Script_typed_ir.ticket ->
        'a Script_typed_ir.ticket ->
        Gas.cost =
     fun ty ticket_a ticket_b ->
      let contents_comparison =
        compare ty ticket_a.contents ticket_b.contents
      in
      Gas.(
        contents_comparison +@ compare_address
        +@ add_nat
             (ticket_a.amount :> Script_int.n Script_int.num)
             (ticket_b.amount :> Script_int.n Script_int.num))

    let emit = atomic_step_cost cost_N_IEmit

    (* Continuations *)
    module Control = struct
      let nil = atomic_step_cost cost_N_KNil

      let cons = atomic_step_cost cost_N_KCons

      let return = atomic_step_cost cost_N_KReturn

      let view_exit = atomic_step_cost cost_N_KView_exit

      let map_head = atomic_step_cost cost_N_KMap_head

      let undip = atomic_step_cost cost_N_KUndip

      let loop_in = atomic_step_cost cost_N_KLoop_in

      let loop_in_left = atomic_step_cost cost_N_KLoop_in_left

      let iter = atomic_step_cost cost_N_KIter

      let list_enter_body xs ys_len =
        atomic_step_cost (cost_N_KList_enter_body xs ys_len)

      let list_exit_body = atomic_step_cost cost_N_KList_exit_body

      let map_enter_body = atomic_step_cost cost_N_KMap_enter_body

      let map_exit_body (type k v) (key : k) (map : (k, v) Script_typed_ir.map)
          =
        map_update key map
    end

    (* --------------------------------------------------------------------- *)
    (* Hand-crafted models *)

    (* The cost functions below where not benchmarked, a cost model was derived
       from looking at similar instructions. *)

    (* Cost for Concat_string is paid in two steps: when entering the interpreter,
       the user pays for the cost of computing the information necessary to compute
       the actual gas (so it's meta-gas): indeed, one needs to run through the
       list of strings to compute the total allocated cost.
       [concat_string_precheck] corresponds to the meta-gas cost of this computation.
    *)
    let concat_string_precheck (l : 'a Script_list.t) =
      (* we set the precheck to be slightly more expensive than cost_N_IList_iter *)
      atomic_step_cost (S.mul (S.safe_int l.length) (S.safe_int 10))

    (* This is the cost of allocating a string and blitting existing ones into it. *)
    let concat_string total_bytes =
      atomic_step_cost S.(add (S.safe_int 100) (S.shift_right total_bytes 1))

    (* Same story as Concat_string. *)
    let concat_bytes total_bytes =
      atomic_step_cost S.(add (S.safe_int 100) (S.shift_right total_bytes 1))

    (* Cost of Unpack pays two integer comparisons, and a Bytes slice *)
    let unpack bytes =
      let blen = Bytes.length bytes in
      let open S.Syntax in
      atomic_step_cost (S.safe_int 260 + (S.safe_int blen lsr 1))

    (* TODO benchmark *)
    (* FIXME: imported from 006, needs proper benchmarks *)
    let unpack_failed bytes =
      (* We cannot instrument failed deserialization,
         so we take worst case fees: a set of size 1 bytes values. *)
      let blen = String.length bytes in
      let len = S.safe_int blen in
      let d = Z.numbits (Z.of_int blen) in
      (len *@ alloc_mbytes_cost 1)
      +@ len
         *@ (S.safe_int d *@ (alloc_cost (S.safe_int 3) +@ step_cost S.one))
  end

  module Typechecking = struct
    open Michelson_v1_gas_costs

    let public_key_optimized =
      atomic_step_cost
      @@ S.(
           max
             cost_DECODING_PUBLIC_KEY_ed25519
             (max
                cost_DECODING_PUBLIC_KEY_secp256k1
                (max cost_DECODING_PUBLIC_KEY_p256 cost_DECODING_PUBLIC_KEY_bls)))

    let public_key_readable =
      atomic_step_cost
      @@ S.(
           max
             cost_B58CHECK_DECODING_PUBLIC_KEY_ed25519
             (max
                cost_B58CHECK_DECODING_PUBLIC_KEY_secp256k1
                (max
                   cost_B58CHECK_DECODING_PUBLIC_KEY_p256
                   cost_B58CHECK_DECODING_PUBLIC_KEY_bls)))

    let key_hash_optimized =
      atomic_step_cost
      @@ S.(
           max
             cost_DECODING_PUBLIC_KEY_HASH_ed25519
             (max
                cost_DECODING_PUBLIC_KEY_HASH_secp256k1
                (max
                   cost_DECODING_PUBLIC_KEY_HASH_p256
                   cost_DECODING_PUBLIC_KEY_HASH_bls)))

    let key_hash_readable =
      atomic_step_cost
      @@ S.(
           max
             cost_B58CHECK_DECODING_PUBLIC_KEY_HASH_ed25519
             (max
                cost_B58CHECK_DECODING_PUBLIC_KEY_HASH_secp256k1
                (max
                   cost_B58CHECK_DECODING_PUBLIC_KEY_HASH_p256
                   cost_B58CHECK_DECODING_PUBLIC_KEY_HASH_bls)))

    let signature_optimized =
      atomic_step_cost
      @@ S.(
           max
             cost_DECODING_SIGNATURE_ed25519
             (max
                cost_DECODING_SIGNATURE_secp256k1
                (max cost_DECODING_SIGNATURE_p256 cost_DECODING_SIGNATURE_bls)))

    let signature_readable =
      atomic_step_cost
      @@ S.(
           max
             cost_B58CHECK_DECODING_SIGNATURE_ed25519
             (max
                cost_B58CHECK_DECODING_SIGNATURE_secp256k1
                (max
                   cost_B58CHECK_DECODING_SIGNATURE_p256
                   cost_B58CHECK_DECODING_SIGNATURE_bls)))

    let chain_id_optimized = atomic_step_cost cost_DECODING_CHAIN_ID

    let chain_id_readable = atomic_step_cost cost_B58CHECK_DECODING_CHAIN_ID

    (* Reasonable approximation *)
    let address_optimized = key_hash_optimized

    (* Reasonable approximation *)
    let contract_optimized = key_hash_optimized

    (* Reasonable approximation *)
    let contract_readable = key_hash_readable

    let bls12_381_g1 = atomic_step_cost cost_DECODING_BLS_G1

    let bls12_381_g2 = atomic_step_cost cost_DECODING_BLS_G2

    let bls12_381_fr = atomic_step_cost cost_DECODING_BLS_FR

    let check_printable s =
      atomic_step_cost (cost_CHECK_PRINTABLE (String.length s))

    let merge_cycle = atomic_step_cost cost_TY_EQ

    let parse_type_cycle = atomic_step_cost cost_PARSE_TYPE

    let parse_instr_cycle = atomic_step_cost cost_TYPECHECKING_CODE

    let parse_data_cycle = atomic_step_cost cost_TYPECHECKING_DATA

    (* Cost of a cycle of checking that a type is dupable *)
    (* TODO: bench *)
    let check_dupable_cycle = atomic_step_cost cost_TYPECHECKING_DATA

    let find_entrypoint_cycle = atomic_step_cost cost_FIND_ENTRYPOINT

    let bool = free

    let unit = free

    let timestamp_readable s =
      atomic_step_cost (cost_TIMESTAMP_READABLE_DECODING (String.length s))

    (** TODO: https://gitlab.com/tezos/tezos/-/issues/2340
        Refine the gas model *)
    let tx_rollup_l2_address = bls12_381_g1

    (* Balance stored at /contracts/index/hash/balance, on 64 bits *)
    let contract_exists =
      Gas.cost_of_repr @@ Storage_costs.read_access ~path_length:4 ~read_bytes:8

    (* Constructing proof arguments consists in a decreasing loop in the result
       monad, allocating at each step. We charge a reasonable overapproximation. *)
    let proof_argument n =
      atomic_step_cost (S.mul (S.safe_int n) (S.safe_int 50))

    let chest_key = atomic_step_cost cost_DECODING_Chest_key

    let chest ~bytes = atomic_step_cost (cost_DECODING_Chest bytes)
  end

  module Unparsing = struct
    open Michelson_v1_gas_costs

    let public_key_optimized =
      atomic_step_cost
      @@ S.(
           max
             cost_ENCODING_PUBLIC_KEY_ed25519
             (max
                cost_ENCODING_PUBLIC_KEY_secp256k1
                (max cost_ENCODING_PUBLIC_KEY_p256 cost_ENCODING_PUBLIC_KEY_bls)))

    let public_key_readable =
      atomic_step_cost
      @@ S.(
           max
             cost_B58CHECK_ENCODING_PUBLIC_KEY_ed25519
             (max
                cost_B58CHECK_ENCODING_PUBLIC_KEY_secp256k1
                (max
                   cost_B58CHECK_ENCODING_PUBLIC_KEY_p256
                   cost_B58CHECK_ENCODING_PUBLIC_KEY_bls)))

    let key_hash_optimized =
      atomic_step_cost
      @@ S.(
           max
             cost_ENCODING_PUBLIC_KEY_HASH_ed25519
             (max
                cost_ENCODING_PUBLIC_KEY_HASH_secp256k1
                (max
                   cost_ENCODING_PUBLIC_KEY_HASH_p256
                   cost_ENCODING_PUBLIC_KEY_HASH_bls)))

    let key_hash_readable =
      atomic_step_cost
      @@ S.(
           max
             cost_B58CHECK_ENCODING_PUBLIC_KEY_HASH_ed25519
             (max
                cost_B58CHECK_ENCODING_PUBLIC_KEY_HASH_secp256k1
                (max
                   cost_B58CHECK_ENCODING_PUBLIC_KEY_HASH_p256
                   cost_B58CHECK_ENCODING_PUBLIC_KEY_HASH_bls)))

    let signature_optimized =
      atomic_step_cost
      @@ S.(
           max
             cost_ENCODING_SIGNATURE_ed25519
             (max
                cost_ENCODING_SIGNATURE_secp256k1
                (max cost_ENCODING_SIGNATURE_p256 cost_ENCODING_SIGNATURE_bls)))

    let signature_readable =
      atomic_step_cost
      @@ S.(
           max
             cost_B58CHECK_ENCODING_SIGNATURE_ed25519
             (max
                cost_B58CHECK_ENCODING_SIGNATURE_secp256k1
                (max
                   cost_B58CHECK_ENCODING_SIGNATURE_p256
                   cost_B58CHECK_ENCODING_SIGNATURE_bls)))

    let chain_id_optimized = atomic_step_cost cost_ENCODING_CHAIN_ID

    let chain_id_readable = atomic_step_cost cost_B58CHECK_ENCODING_CHAIN_ID

    let timestamp_readable = atomic_step_cost cost_TIMESTAMP_READABLE_ENCODING

    (* Reasonable approximation *)
    let address_optimized = key_hash_optimized

    (* Reasonable approximation *)
    let contract_optimized = key_hash_optimized

    (* Reasonable approximation *)
    let contract_readable = key_hash_readable

    let bls12_381_g1 = atomic_step_cost cost_ENCODING_BLS_G1

    let bls12_381_g2 = atomic_step_cost cost_ENCODING_BLS_G2

    let bls12_381_fr = atomic_step_cost cost_ENCODING_BLS_FR

    let unparse_type ty =
      atomic_step_cost
      @@ cost_UNPARSE_TYPE Script_typed_ir.(ty_size ty |> Type_size.to_int)

    let unparse_instr_cycle = atomic_step_cost cost_UNPARSING_CODE

    let unparse_data_cycle = atomic_step_cost cost_UNPARSING_DATA

    let unit = Gas.free

    (** TODO: https://gitlab.com/tezos/tezos/-/issues/2340
        Refine the gas model *)
    let tx_rollup_l2_address = bls12_381_g1

    (* Reuse 006 costs. *)
    let operation bytes = Script.bytes_node_cost bytes

    let sapling_transaction (t : Sapling.transaction) =
      let inputs = Size.sapling_transaction_inputs t in
      let outputs = Size.sapling_transaction_outputs t in
      let bound_data = Size.sapling_transaction_bound_data t in
      atomic_step_cost
        (cost_SAPLING_TRANSACTION_ENCODING ~inputs ~outputs ~bound_data)

    let sapling_transaction_deprecated (t : Sapling.Legacy.transaction) =
      let inputs = List.length t.inputs in
      let outputs = List.length t.outputs in
      atomic_step_cost
        (cost_SAPLING_TRANSACTION_ENCODING ~inputs ~outputs ~bound_data:0)

    let sapling_diff (d : Sapling.diff) =
      let nfs = List.length d.nullifiers in
      let cms = List.length d.commitments_and_ciphertexts in
      atomic_step_cost (cost_SAPLING_DIFF_ENCODING ~nfs ~cms)

    let chest_key = atomic_step_cost cost_ENCODING_Chest_key

    let chest ~plaintext_size =
      atomic_step_cost (cost_ENCODING_Chest plaintext_size)
  end
end

module Internal_for_tests = struct
  let int_cost_of_manager_operation = Cost_of.manager_operation_int
end
OCaml

Innovation. Community. Security.