Source file sc_rollup_arith.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
open Sc_rollup_repr
module PS = Sc_rollup_PVM_sig
let reference_initial_state_hash =
State_hash.of_b58check_exn
"srs11Z9V76SGd97kGmDQXV8tEF67C48GMy77RuaHdF1kWLk6UTmMfj"
type error +=
| Arith_proof_production_failed
| Arith_output_proof_production_failed
| Arith_invalid_claim_about_outbox
let () =
let open Data_encoding in
let msg = "Invalid claim about outbox" in
register_error_kind
`Permanent
~id:"smart_rollup_arith_invalid_claim_about_outbox"
~title:msg
~pp:(fun fmt () -> Format.pp_print_string fmt msg)
~description:msg
unit
(function Arith_invalid_claim_about_outbox -> Some () | _ -> None)
(fun () -> Arith_invalid_claim_about_outbox) ;
let msg = "Output proof production failed" in
register_error_kind
`Permanent
~id:"smart_rollup_arith_output_proof_production_failed"
~title:msg
~pp:(fun fmt () -> Format.fprintf fmt "%s" msg)
~description:msg
unit
(function Arith_output_proof_production_failed -> Some () | _ -> None)
(fun () -> Arith_output_proof_production_failed) ;
let msg = "Proof production failed" in
register_error_kind
`Permanent
~id:"smart_rollup_arith_proof_production_failed"
~title:msg
~pp:(fun fmt () -> Format.fprintf fmt "%s" msg)
~description:msg
unit
(function Arith_proof_production_failed -> Some () | _ -> None)
(fun () -> Arith_proof_production_failed)
module type P = sig
module Tree : Context.TREE with type key = string list and type value = bytes
type tree = Tree.tree
val hash_tree : tree -> State_hash.t
type proof
val proof_encoding : proof Data_encoding.t
val proof_before : proof -> State_hash.t
val proof_after : proof -> State_hash.t
val verify_proof :
proof -> (tree -> (tree * 'a) Lwt.t) -> (tree * 'a) option Lwt.t
val produce_proof :
Tree.t -> tree -> (tree -> (tree * 'a) Lwt.t) -> (proof * 'a) option Lwt.t
end
module type S = sig
include PS.S
val parse_boot_sector : string -> string option
val pp_boot_sector : Format.formatter -> string -> unit
val pp : state -> (Format.formatter -> unit -> unit) Lwt.t
val get_tick : state -> Sc_rollup_tick_repr.t Lwt.t
type status =
| Halted
| Waiting_for_input_message
| Waiting_for_reveal
| Waiting_for_metadata
| Parsing
| Evaluating
val get_status : state -> status Lwt.t
val get_outbox :
Raw_level_repr.t -> state -> Sc_rollup_PVM_sig.output list Lwt.t
type instruction =
| IPush : int -> instruction
| IAdd : instruction
| IStore : string -> instruction
val equal_instruction : instruction -> instruction -> bool
val pp_instruction : Format.formatter -> instruction -> unit
val get_parsing_result : state -> bool option Lwt.t
val get_code : state -> instruction list Lwt.t
val get_stack : state -> int list Lwt.t
val get_var : state -> string -> int option Lwt.t
val get_evaluation_result : state -> bool option Lwt.t
val get_is_stuck : state -> string option Lwt.t
end
module Make (Context : P) :
S
with type context = Context.Tree.t
and type state = Context.tree
and type proof = Context.proof = struct
module Tree = Context.Tree
type context = Context.Tree.t
type hash = State_hash.t
type proof = Context.proof
let proof_encoding = Context.proof_encoding
let proof_start_state proof = Context.proof_before proof
let proof_stop_state proof = Context.proof_after proof
let parse_boot_sector s = Some s
let pp_boot_sector fmt s = Format.fprintf fmt "%s" s
type tree = Tree.tree
type status =
| Halted
| Waiting_for_input_message
| Waiting_for_reveal
| Waiting_for_metadata
| Parsing
| Evaluating
type instruction =
| IPush : int -> instruction
| IAdd : instruction
| IStore : string -> instruction
let equal_instruction i1 i2 =
match (i1, i2) with
| IPush x, IPush y -> Compare.Int.(x = y)
| IAdd, IAdd -> true
| IStore x, IStore y -> Compare.String.(x = y)
| _, _ -> false
let pp_instruction fmt = function
| IPush x -> Format.fprintf fmt "push(%d)" x
| IAdd -> Format.fprintf fmt "add"
| IStore x -> Format.fprintf fmt "store(%s)" x
let check_dissection ~default_number_of_sections ~start_chunk ~stop_chunk =
let open Sc_rollup_dissection_chunk_repr in
let dist = Sc_rollup_tick_repr.distance start_chunk.tick stop_chunk.tick in
let section_maximum_size = Z.div dist (Z.of_int 2) in
Sc_rollup_dissection_chunk_repr.(
default_check
~section_maximum_size
~check_sections_number:default_check_sections_number
~default_number_of_sections
~start_chunk
~stop_chunk)
module State = struct
type state = tree
module Monad : sig
type 'a t
val run : 'a t -> state -> (state * 'a option) Lwt.t
val is_stuck : string option t
val internal_error : string -> 'a t
val return : 'a -> 'a t
module Syntax : sig
val ( let* ) : 'a t -> ('a -> 'b t) -> 'b t
end
val remove : Tree.key -> unit t
val find_value : Tree.key -> 'a Data_encoding.t -> 'a option t
val children : Tree.key -> 'a Data_encoding.t -> (string * 'a) list t
val get_value : default:'a -> Tree.key -> 'a Data_encoding.t -> 'a t
val set_value : Tree.key -> 'a Data_encoding.t -> 'a -> unit t
end = struct
type 'a t = state -> (state * 'a option) Lwt.t
let return x state = Lwt.return (state, Some x)
let bind m f state =
let open Lwt_syntax in
let* state, res = m state in
match res with None -> return (state, None) | Some res -> f res state
module Syntax = struct
let ( let* ) = bind
end
let run m state = m state
let internal_error_key = ["internal_error"]
let internal_error msg tree =
let open Lwt_syntax in
let* tree = Tree.add tree internal_error_key (Bytes.of_string msg) in
return (tree, None)
let is_stuck tree =
let open Lwt_syntax in
let* v = Tree.find tree internal_error_key in
return (tree, Some (Option.map Bytes.to_string v))
let remove key tree =
let open Lwt_syntax in
let* tree = Tree.remove tree key in
return (tree, Some ())
let decode encoding bytes state =
let open Lwt_syntax in
match Data_encoding.Binary.of_bytes_opt encoding bytes with
| None -> internal_error "Error during decoding" state
| Some v -> return (state, Some v)
let find_value key encoding state =
let open Lwt_syntax in
let* obytes = Tree.find state key in
match obytes with
| None -> return (state, Some None)
| Some bytes ->
let* state, value = decode encoding bytes state in
return (state, Some value)
let children key encoding state =
let open Lwt_syntax in
let* children = Tree.list state key in
let rec aux = function
| [] -> return (state, Some [])
| (key, tree) :: children -> (
let* obytes = Tree.to_value tree in
match obytes with
| None -> internal_error "Invalid children" state
| Some bytes -> (
let* state, v = decode encoding bytes state in
match v with
| None -> return (state, None)
| Some v -> (
let* state, l = aux children in
match l with
| None -> return (state, None)
| Some l -> return (state, Some ((key, v) :: l)))))
in
aux children
let get_value ~default key encoding =
let open Syntax in
let* ov = find_value key encoding in
match ov with None -> return default | Some x -> return x
let set_value key encoding value tree =
let open Lwt_syntax in
Data_encoding.Binary.to_bytes_opt encoding value |> function
| None -> internal_error "Internal_Error during encoding" tree
| Some bytes ->
let* tree = Tree.add tree key bytes in
return (tree, Some ())
end
open Monad
module Make_var (P : sig
type t
val name : string
val initial : t
val pp : Format.formatter -> t -> unit
val encoding : t Data_encoding.t
end) =
struct
let key = [P.name]
let create = set_value key P.encoding P.initial
let get =
let open Monad.Syntax in
let* v = find_value key P.encoding in
match v with
| None ->
return P.initial
| Some v -> return v
let set = set_value key P.encoding
let pp =
let open Monad.Syntax in
let* v = get in
return @@ fun fmt () -> Format.fprintf fmt "@[%s : %a@]" P.name P.pp v
end
module Make_dict (P : sig
type t
val name : string
val pp : Format.formatter -> t -> unit
val encoding : t Data_encoding.t
end) =
struct
let key k = [P.name; k]
let get k = find_value (key k) P.encoding
let set k v = set_value (key k) P.encoding v
let entries = children [P.name] P.encoding
let mapped_to k v state =
let open Lwt_syntax in
let* state', _ = Monad.(run (set k v) state) in
let* t = Tree.find_tree state (key k)
and* t' = Tree.find_tree state' (key k) in
Lwt.return (Option.equal Tree.equal t t')
let pp =
let open Monad.Syntax in
let* l = entries in
let pp_elem fmt (key, value) =
Format.fprintf fmt "@[%s : %a@]" key P.pp value
in
return @@ fun fmt () -> Format.pp_print_list pp_elem fmt l
end
module Make_deque (P : sig
type t
val name : string
val encoding : t Data_encoding.t
end) =
struct
let head_key = [P.name; "head"]
let end_key = [P.name; "end"]
let get_head = get_value ~default:Z.zero head_key Data_encoding.z
let set_head = set_value head_key Data_encoding.z
let get_end = get_value ~default:(Z.of_int 0) end_key Data_encoding.z
let set_end = set_value end_key Data_encoding.z
let idx_key idx = [P.name; Z.to_string idx]
let top =
let open Monad.Syntax in
let* head_idx = get_head in
let* end_idx = get_end in
let* v = find_value (idx_key head_idx) P.encoding in
if Z.(leq end_idx head_idx) then return None
else
match v with
| None -> assert false
| Some x -> return (Some x)
let push x =
let open Monad.Syntax in
let* head_idx = get_head in
let head_idx' = Z.pred head_idx in
let* () = set_head head_idx' in
set_value (idx_key head_idx') P.encoding x
let pop =
let open Monad.Syntax in
let* head_idx = get_head in
let* end_idx = get_end in
if Z.(leq end_idx head_idx) then return None
else
let* v = find_value (idx_key head_idx) P.encoding in
match v with
| None -> assert false
| Some x ->
let* () = remove (idx_key head_idx) in
let head_idx = Z.succ head_idx in
let* () = set_head head_idx in
return (Some x)
let inject x =
let open Monad.Syntax in
let* end_idx = get_end in
let end_idx' = Z.succ end_idx in
let* () = set_end end_idx' in
set_value (idx_key end_idx) P.encoding x
let to_list =
let open Monad.Syntax in
let* head_idx = get_head in
let* end_idx = get_end in
let rec aux l idx =
if Z.(lt idx head_idx) then return l
else
let* v = find_value (idx_key idx) P.encoding in
match v with
| None -> assert false
| Some v -> aux (v :: l) (Z.pred idx)
in
aux [] (Z.pred end_idx)
let clear = remove [P.name]
end
module Current_tick = Make_var (struct
include Sc_rollup_tick_repr
let name = "tick"
end)
module Vars = Make_dict (struct
type t = int
let name = "vars"
let encoding = Data_encoding.int31
let pp fmt x = Format.fprintf fmt "%d" x
end)
module Stack = Make_deque (struct
type t = int
let name = "stack"
let encoding = Data_encoding.int31
end)
module Code = Make_deque (struct
type t = instruction
let name = "code"
let encoding =
Data_encoding.(
union
[
case
~title:"push"
(Tag 0)
Data_encoding.int31
(function IPush x -> Some x | _ -> None)
(fun x -> IPush x);
case
~title:"add"
(Tag 1)
Data_encoding.unit
(function IAdd -> Some () | _ -> None)
(fun () -> IAdd);
case
~title:"store"
(Tag 2)
Data_encoding.(string Plain)
(function IStore x -> Some x | _ -> None)
(fun x -> IStore x);
])
end)
module Boot_sector = Make_var (struct
type t = string
let name = "boot_sector"
let initial = ""
let encoding = Data_encoding.(string Plain)
let pp fmt s = Format.fprintf fmt "%s" s
end)
module Status = Make_var (struct
type t = status
let initial = Halted
let encoding =
Data_encoding.string_enum
[
("Halted", Halted);
("Waiting_for_input_message", Waiting_for_input_message);
("Waiting_for_reveal", Waiting_for_reveal);
("Waiting_for_metadata", Waiting_for_metadata);
("Parsing", Parsing);
("Evaluating", Evaluating);
]
let name = "status"
let string_of_status = function
| Halted -> "Halted"
| Waiting_for_input_message -> "Waiting for input message"
| Waiting_for_reveal -> "Waiting for reveal"
| Waiting_for_metadata -> "Waiting for metadata"
| Parsing -> "Parsing"
| Evaluating -> "Evaluating"
let pp fmt status = Format.fprintf fmt "%s" (string_of_status status)
end)
module Required_reveal = Make_var (struct
type t = PS.reveal option
let initial = None
let encoding = Data_encoding.option PS.reveal_encoding
let name = "required_reveal"
let pp fmt v =
match v with
| None -> Format.fprintf fmt "<none>"
| Some h -> PS.pp_reveal fmt h
end)
module Metadata = Make_var (struct
type t = Sc_rollup_metadata_repr.t option
let initial = None
let encoding = Data_encoding.option Sc_rollup_metadata_repr.encoding
let name = "metadata"
let pp fmt v =
match v with
| None -> Format.fprintf fmt "<none>"
| Some v -> Sc_rollup_metadata_repr.pp fmt v
end)
module Current_level = Make_var (struct
type t = Raw_level_repr.t
let initial = Raw_level_repr.root
let encoding = Raw_level_repr.encoding
let name = "current_level"
let pp = Raw_level_repr.pp
end)
module Message_counter = Make_var (struct
type t = Z.t option
let initial = None
let encoding = Data_encoding.option Data_encoding.n
let name = "message_counter"
let pp fmt = function
| None -> Format.fprintf fmt "None"
| Some c -> Format.fprintf fmt "Some %a" Z.pp_print c
end)
(** Store an internal message counter. This is used to distinguish
an unparsable external message and a internal message, which we both
treat as no-ops. *)
module Internal_message_counter = Make_var (struct
type t = Z.t
let initial = Z.zero
let encoding = Data_encoding.n
let name = "internal_message_counter"
let pp fmt c = Z.pp_print fmt c
end)
let incr_internal_message_counter =
let open Monad.Syntax in
let* current_counter = Internal_message_counter.get in
Internal_message_counter.set (Z.succ current_counter)
module Next_message = Make_var (struct
type t = string option
let initial = None
let encoding = Data_encoding.(option (string Plain))
let name = "next_message"
let pp fmt = function
| None -> Format.fprintf fmt "None"
| Some s -> Format.fprintf fmt "Some %s" s
end)
type parser_state = ParseInt | ParseVar | SkipLayout
module Lexer_state = Make_var (struct
type t = int * int
let name = "lexer_buffer"
let initial = (-1, -1)
let encoding = Data_encoding.(tup2 int31 int31)
let pp fmt (start, len) =
Format.fprintf fmt "lexer.(start = %d, len = %d)" start len
end)
module Parser_state = Make_var (struct
type t = parser_state
let name = "parser_state"
let initial = SkipLayout
let encoding =
Data_encoding.string_enum
[
("ParseInt", ParseInt);
("ParseVar", ParseVar);
("SkipLayout", SkipLayout);
]
let pp fmt = function
| ParseInt -> Format.fprintf fmt "Parsing int"
| ParseVar -> Format.fprintf fmt "Parsing var"
| SkipLayout -> Format.fprintf fmt "Skipping layout"
end)
module Parsing_result = Make_var (struct
type t = bool option
let name = "parsing_result"
let initial = None
let encoding = Data_encoding.(option bool)
let pp fmt = function
| None -> Format.fprintf fmt "n/a"
| Some true -> Format.fprintf fmt "parsing succeeds"
| Some false -> Format.fprintf fmt "parsing fails"
end)
module Evaluation_result = Make_var (struct
type t = bool option
let name = "evaluation_result"
let initial = None
let encoding = Data_encoding.(option bool)
let pp fmt = function
| None -> Format.fprintf fmt "n/a"
| Some true -> Format.fprintf fmt "evaluation succeeds"
| Some false -> Format.fprintf fmt "evaluation fails"
end)
module Output_counter = Make_var (struct
type t = Z.t
let initial = Z.zero
let name = "output_counter"
let encoding = Data_encoding.n
let pp = Z.pp_print
end)
module Output = Make_dict (struct
type t = Sc_rollup_PVM_sig.output
let name = "output"
let encoding = Sc_rollup_PVM_sig.output_encoding
let pp = Sc_rollup_PVM_sig.pp_output
end)
let pp =
let open Monad.Syntax in
let* status_pp = Status.pp in
let* message_counter_pp = Message_counter.pp in
let* next_message_pp = Next_message.pp in
let* parsing_result_pp = Parsing_result.pp in
let* parser_state_pp = Parser_state.pp in
let* lexer_state_pp = Lexer_state.pp in
let* evaluation_result_pp = Evaluation_result.pp in
let* vars_pp = Vars.pp in
let* output_pp = Output.pp in
let* stack = Stack.to_list in
let* current_tick_pp = Current_tick.pp in
return @@ fun fmt () ->
Format.fprintf
fmt
"@[<v 0 >@;\
%a@;\
%a@;\
%a@;\
%a@;\
%a@;\
%a@;\
%a@;\
tick : %a@;\
vars : %a@;\
output :%a@;\
stack : %a@;\
@]"
status_pp
()
message_counter_pp
()
next_message_pp
()
parsing_result_pp
()
parser_state_pp
()
lexer_state_pp
()
evaluation_result_pp
()
current_tick_pp
()
vars_pp
()
output_pp
()
Format.(pp_print_list pp_print_int)
stack
end
open State
type state = State.state
open Monad
let initial_state ~empty =
let m =
let open Monad.Syntax in
let* () = Status.set Halted in
return ()
in
let open Lwt_syntax in
let* state, _ = run m empty in
return state
let install_boot_sector state boot_sector =
let m =
let open Monad.Syntax in
let* () = Boot_sector.set boot_sector in
return ()
in
let open Lwt_syntax in
let* state, _ = run m state in
return state
let state_hash state =
let context_hash = Tree.hash state in
Lwt.return @@ State_hash.context_hash_to_state_hash context_hash
let pp state =
let open Lwt_syntax in
let* _, pp = Monad.run pp state in
match pp with
| None -> return @@ fun fmt _ -> Format.fprintf fmt "<opaque>"
| Some pp ->
let* state_hash = state_hash state in
return (fun fmt () ->
Format.fprintf fmt "@[%a: %a@]" State_hash.pp state_hash pp ())
let boot =
let open Monad.Syntax in
let* () = Status.create in
let* () = Next_message.create in
let* () = Status.set Waiting_for_metadata in
return ()
let result_of ~default m state =
let open Lwt_syntax in
let* _, v = run m state in
match v with None -> return default | Some v -> return v
let state_of m state =
let open Lwt_syntax in
let* s, _ = run m state in
return s
let get_tick = result_of ~default:Sc_rollup_tick_repr.initial Current_tick.get
let is_input_state_monadic =
let open Monad.Syntax in
let* status = Status.get in
match status with
| Waiting_for_input_message -> (
let* level = Current_level.get in
let* counter = Message_counter.get in
match counter with
| Some n -> return (PS.First_after (level, n))
| None -> return PS.Initial)
| Waiting_for_reveal -> (
let* r = Required_reveal.get in
match r with
| None -> internal_error "Internal error: Reveal invariant broken"
| Some reveal -> return (PS.Needs_reveal reveal))
| Waiting_for_metadata -> return PS.(Needs_reveal Reveal_metadata)
| Halted | Parsing | Evaluating -> return PS.No_input_required
let is_input_state =
result_of ~default:PS.No_input_required @@ is_input_state_monadic
let get_status = result_of ~default:Waiting_for_input_message @@ Status.get
let get_outbox outbox_level state =
let open Lwt_syntax in
let+ entries = result_of ~default:[] Output.entries state in
List.filter_map
(fun (_, msg) ->
if Raw_level_repr.(msg.PS.outbox_level = outbox_level) then Some msg
else None)
entries
let get_code = result_of ~default:[] @@ Code.to_list
let get_parsing_result = result_of ~default:None @@ Parsing_result.get
let get_stack = result_of ~default:[] @@ Stack.to_list
let get_var state k = (result_of ~default:None @@ Vars.get k) state
let get_evaluation_result = result_of ~default:None @@ Evaluation_result.get
let get_is_stuck = result_of ~default:None @@ is_stuck
let start_parsing : unit t =
let open Monad.Syntax in
let* () = Status.set Parsing in
let* () = Parsing_result.set None in
let* () = Parser_state.set SkipLayout in
let* () = Lexer_state.set (0, 0) in
let* () = Code.clear in
return ()
let set_inbox_message_monadic {PS.inbox_level; message_counter; payload} =
let open Monad.Syntax in
let* payload =
match Sc_rollup_inbox_message_repr.deserialize payload with
| Error _ -> return None
| Ok (External payload) -> return (Some payload)
| Ok (Internal (Transfer {payload; destination; _})) -> (
let* () = incr_internal_message_counter in
let* (metadata : Sc_rollup_metadata_repr.t option) = Metadata.get in
match metadata with
| Some {address; _} when Address.(destination = address) -> (
match Micheline.root payload with
| Bytes (_, payload) ->
let payload = Bytes.to_string payload in
return (Some payload)
| _ -> return None)
| _ -> return None)
| Ok (Internal Start_of_level) ->
let* () = incr_internal_message_counter in
return None
| Ok (Internal End_of_level) ->
let* () = incr_internal_message_counter in
return None
| Ok (Internal (Info_per_level _)) ->
let* () = incr_internal_message_counter in
return None
in
match payload with
| Some payload ->
let* boot_sector = Boot_sector.get in
let msg = boot_sector ^ payload in
let* () = Current_level.set inbox_level in
let* () = Message_counter.set (Some message_counter) in
let* () = Next_message.set (Some msg) in
let* () = start_parsing in
return ()
| None ->
let* () = Current_level.set inbox_level in
let* () = Message_counter.set (Some message_counter) in
let* () = Status.set Waiting_for_input_message in
return ()
let reveal_monadic reveal_data =
let open Monad.Syntax in
match reveal_data with
| PS.Raw_data data ->
let* () = Next_message.set (Some data) in
let* () = start_parsing in
return ()
| PS.Metadata metadata ->
let* () = Metadata.set (Some metadata) in
let* () = Status.set Waiting_for_input_message in
return ()
| PS.Dal_page None ->
let* () = Status.set Waiting_for_input_message in
return ()
| PS.Dal_page (Some data) ->
let* () = Next_message.set (Some (Bytes.to_string data)) in
let* () = start_parsing in
return ()
let ticked m =
let open Monad.Syntax in
let* tick = Current_tick.get in
let* () = Current_tick.set (Sc_rollup_tick_repr.next tick) in
m
let set_input_monadic input =
match input with
| PS.Inbox_message m -> set_inbox_message_monadic m
| PS.Reveal s -> reveal_monadic s
let set_input input = set_input_monadic input |> ticked |> state_of
let next_char =
let open Monad.Syntax in
Lexer_state.(
let* start, len = get in
set (start, len + 1))
let no_message_to_lex () =
internal_error "lexer: There is no input message to lex"
let current_char =
let open Monad.Syntax in
let* start, len = Lexer_state.get in
let* msg = Next_message.get in
match msg with
| None -> no_message_to_lex ()
| Some s ->
if Compare.Int.(start + len < String.length s) then
return (Some s.[start + len])
else return None
let lexeme =
let open Monad.Syntax in
let* start, len = Lexer_state.get in
let* msg = Next_message.get in
match msg with
| None -> no_message_to_lex ()
| Some s ->
let* () = Lexer_state.set (start + len, 0) in
return (String.sub s start len)
let push_int_literal =
let open Monad.Syntax in
let* s = lexeme in
match int_of_string_opt s with
| Some x -> Code.inject (IPush x)
| None -> assert false
let push_var =
let open Monad.Syntax in
let* s = lexeme in
Code.inject (IStore s)
let start_evaluating : unit t =
let open Monad.Syntax in
let* () = Status.set Evaluating in
let* () = Evaluation_result.set None in
return ()
let stop_parsing outcome =
let open Monad.Syntax in
let* () = Parsing_result.set (Some outcome) in
start_evaluating
let stop_evaluating outcome =
let open Monad.Syntax in
let* () = Evaluation_result.set (Some outcome) in
Status.set Waiting_for_input_message
let parse : unit t =
let open Monad.Syntax in
let produce_add =
let* (_ : string) = lexeme in
let* () = next_char in
let* () = Code.inject IAdd in
return ()
in
let produce_int =
let* () = push_int_literal in
let* () = Parser_state.set SkipLayout in
return ()
in
let produce_var =
let* () = push_var in
let* () = Parser_state.set SkipLayout in
return ()
in
let is_digit d = Compare.Char.(d >= '0' && d <= '9') in
let is_letter d =
Compare.Char.((d >= 'a' && d <= 'z') || (d >= 'A' && d <= 'Z'))
in
let is_identifier_char d =
is_letter d || is_digit d
|| Compare.Char.(d = ':')
|| Compare.Char.(d = '%')
in
let* parser_state = Parser_state.get in
match parser_state with
| ParseInt -> (
let* char = current_char in
match char with
| Some d when is_digit d -> next_char
| Some '+' ->
let* () = produce_int in
let* () = produce_add in
return ()
| Some (' ' | '\n') ->
let* () = produce_int in
let* () = next_char in
return ()
| None ->
let* () = push_int_literal in
stop_parsing true
| _ -> stop_parsing false)
| ParseVar -> (
let* char = current_char in
match char with
| Some d when is_identifier_char d -> next_char
| Some '+' ->
let* () = produce_var in
let* () = produce_add in
return ()
| Some (' ' | '\n') ->
let* () = produce_var in
let* () = next_char in
return ()
| None ->
let* () = push_var in
stop_parsing true
| _ -> stop_parsing false)
| SkipLayout -> (
let* char = current_char in
match char with
| Some (' ' | '\n') -> next_char
| Some '+' -> produce_add
| Some d when is_digit d ->
let* (_ : string) = lexeme in
let* () = next_char in
let* () = Parser_state.set ParseInt in
return ()
| Some d when is_letter d ->
let* (_ : string) = lexeme in
let* () = next_char in
let* () = Parser_state.set ParseVar in
return ()
| None -> stop_parsing true
| _ -> stop_parsing false)
let output (destination, entrypoint) v =
let open Monad.Syntax in
let open Sc_rollup_outbox_message_repr in
let* counter = Output_counter.get in
let* () = Output_counter.set (Z.succ counter) in
let unparsed_parameters =
Micheline.(Int ((), Z.of_int v) |> strip_locations)
in
let transaction = {unparsed_parameters; destination; entrypoint} in
let message = Atomic_transaction_batch {transactions = [transaction]} in
let* outbox_level = Current_level.get in
let output =
Sc_rollup_PVM_sig.{outbox_level; message_index = counter; message}
in
Output.set (Z.to_string counter) output
let identifies_target_contract x =
let open Option_syntax in
match String.split_on_char '%' x with
| destination :: entrypoint -> (
match Contract_hash.of_b58check_opt destination with
| None ->
if Compare.String.(x = "out") then
return (Contract_hash.zero, Entrypoint_repr.default)
else fail
| Some destination ->
let* entrypoint =
match entrypoint with
| [] -> return Entrypoint_repr.default
| _ ->
let* entrypoint =
Non_empty_string.of_string (String.concat "" entrypoint)
in
let* entrypoint =
Entrypoint_repr.of_annot_lax_opt entrypoint
in
return entrypoint
in
return (destination, entrypoint))
| [] -> fail
let evaluate_preimage_request hash =
let open Monad.Syntax in
match Sc_rollup_reveal_hash.of_b58check_opt hash with
| None -> stop_evaluating false
| Some hash ->
let* () = Required_reveal.set (Some (Reveal_raw_data hash)) in
let* () = Status.set Waiting_for_reveal in
return ()
let evaluate_dal_page_request =
let attestation_lag = 1l in
let page_size = 4096 / 64 in
let slot_size = (1 lsl 20) / 64 in
let number_of_slots = 256 / 64 in
let number_of_pages = slot_size / page_size in
let mk_slot_index slot_str =
let open Option_syntax in
let* index = Option.map Int32.to_int @@ Int32.of_string_opt slot_str in
if Compare.Int.(index < 0 || index >= number_of_slots) then None
else Dal_slot_repr.Index.of_int index
in
let mk_page_index page_str =
let open Option_syntax in
let* index = Option.map Int32.to_int @@ Int32.of_string_opt page_str in
if Compare.Int.(index < 0 || index >= number_of_pages) then None
else Some index
in
fun raw_page_id ->
let mk_page_id current_lvl =
let open Option_syntax in
match String.split_on_char ':' raw_page_id with
| [lvl; slot; page] ->
let* lvl = Int32.of_string_opt lvl in
let* lvl = Bounded.Non_negative_int32.of_value lvl in
let published_level = Raw_level_repr.of_int32_non_negative lvl in
let delta = Raw_level_repr.diff current_lvl published_level in
if
Compare.Int32.(
delta > 1l && delta <= Int32.mul 2l attestation_lag)
then
let* index = mk_slot_index slot in
let* page_index = mk_page_index page in
let slot_id = Dal_slot_repr.Header.{published_level; index} in
Some Dal_slot_repr.Page.{slot_id; page_index}
else None
| _ -> None
in
let open Monad.Syntax in
let* current_lvl = Current_level.get in
match mk_page_id current_lvl with
| Some page_id ->
let* () = Required_reveal.set (Some (Request_dal_page page_id)) in
let* () = Status.set Waiting_for_reveal in
return ()
| None -> stop_evaluating false
let remove_prefix prefix input input_len =
let prefix_len = String.length prefix in
if
Compare.Int.(input_len > prefix_len)
&& String.(equal (sub input 0 prefix_len) prefix)
then Some (String.sub input prefix_len (input_len - prefix_len))
else None
let evaluate =
let open Monad.Syntax in
let* i = Code.pop in
match i with
| None -> stop_evaluating true
| Some (IPush x) -> Stack.push x
| Some (IStore x) -> (
let len = String.length x in
match remove_prefix "hash:" x len with
| Some hash -> evaluate_preimage_request hash
| None -> (
match remove_prefix "dal:" x len with
| Some pid -> evaluate_dal_page_request pid
| None -> (
let* v = Stack.top in
match v with
| None -> stop_evaluating false
| Some v -> (
match identifies_target_contract x with
| Some contract_entrypoint -> output contract_entrypoint v
| None -> Vars.set x v))))
| Some IAdd -> (
let* v = Stack.pop in
match v with
| None -> stop_evaluating false
| Some x -> (
let* v = Stack.pop in
match v with
| None -> stop_evaluating false
| Some y -> Stack.push (x + y)))
let reboot =
let open Monad.Syntax in
let* () = Status.set Waiting_for_input_message in
let* () = Stack.clear in
let* () = Code.clear in
return ()
let eval_step =
let open Monad.Syntax in
let* x = is_stuck in
match x with
| Some _ -> reboot
| None -> (
let* status = Status.get in
match status with
| Halted -> boot
| Waiting_for_input_message | Waiting_for_reveal | Waiting_for_metadata
-> (
let* msg = Next_message.get in
match msg with
| None -> internal_error "An input state was not provided an input."
| Some _ -> start_parsing)
| Parsing -> parse
| Evaluating -> evaluate)
let eval state = state_of (ticked eval_step) state
let step_transition input_given state =
let open Lwt_syntax in
let* request = is_input_state state in
let error msg = state_of (internal_error msg) state in
let* state =
match (request, input_given) with
| PS.No_input_required, None -> eval state
| PS.No_input_required, Some _ ->
error "Invalid set_input: expecting no input message but got one."
| (PS.Initial | PS.First_after _), Some (PS.Inbox_message _ as input)
| ( PS.Needs_reveal (Reveal_raw_data _),
Some (PS.Reveal (Raw_data _) as input) )
| PS.Needs_reveal Reveal_metadata, Some (PS.Reveal (Metadata _) as input)
| ( PS.Needs_reveal (PS.Request_dal_page _),
Some (PS.Reveal (Dal_page _) as input) ) ->
set_input input state
| (PS.Initial | PS.First_after _), _ ->
error "Invalid set_input: expecting inbox message, got a reveal."
| PS.Needs_reveal (Reveal_raw_data _hash), _ ->
error
"Invalid set_input: expecting a raw data reveal, got an inbox \
message or a reveal metadata."
| PS.Needs_reveal Reveal_metadata, _ ->
error
"Invalid set_input: expecting a metadata reveal, got an inbox \
message or a raw data reveal."
| PS.Needs_reveal (PS.Request_dal_page _), _ ->
error
"Invalid set_input: expecting a dal page reveal, got an inbox \
message or a raw data reveal."
in
return (state, request)
type error += Arith_proof_verification_failed
let verify_proof input_given proof =
let open Lwt_result_syntax in
let*! result = Context.verify_proof proof (step_transition input_given) in
match result with
| None -> tzfail Arith_proof_verification_failed
| Some (_state, request) -> return request
let produce_proof context input_given state =
let open Lwt_result_syntax in
let*! result =
Context.produce_proof context state (step_transition input_given)
in
match result with
| Some (tree_proof, _requested) -> return tree_proof
| None -> tzfail Arith_proof_production_failed
let verify_origination_proof proof boot_sector =
let open Lwt_syntax in
let before = Context.proof_before proof in
if State_hash.(before <> reference_initial_state_hash) then return false
else
let* result =
Context.verify_proof proof (fun state ->
let* state = install_boot_sector state boot_sector in
return (state, ()))
in
match result with None -> return false | Some (_, ()) -> return true
let produce_origination_proof context boot_sector =
let open Lwt_result_syntax in
let*! state = initial_state ~empty:(Tree.empty context) in
let*! result =
Context.produce_proof context state (fun state ->
let open Lwt_syntax in
let* state = install_boot_sector state boot_sector in
return (state, ()))
in
match result with
| Some (proof, ()) -> return proof
| None -> tzfail Arith_proof_production_failed
type output_proof = {
output_proof : Context.proof;
output_proof_state : hash;
output_proof_output : PS.output;
}
let output_proof_encoding =
let open Data_encoding in
conv
(fun {output_proof; output_proof_state; output_proof_output} ->
(output_proof, output_proof_state, output_proof_output))
(fun (output_proof, output_proof_state, output_proof_output) ->
{output_proof; output_proof_state; output_proof_output})
(obj3
(req "output_proof" Context.proof_encoding)
(req "output_proof_state" State_hash.encoding)
(req "output_proof_output" PS.output_encoding))
let output_of_output_proof s = s.output_proof_output
let state_of_output_proof s = s.output_proof_state
let output_key (output : PS.output) = Z.to_string output.message_index
let has_output output tree =
let open Lwt_syntax in
let* equal = Output.mapped_to (output_key output) output tree in
return (tree, equal)
let verify_output_proof p =
let open Lwt_syntax in
let transition = has_output p.output_proof_output in
let* result = Context.verify_proof p.output_proof transition in
match result with None -> return false | Some _ -> return true
let produce_output_proof context state output_proof_output =
let open Lwt_result_syntax in
let*! output_proof_state = state_hash state in
let*! result =
Context.produce_proof context state @@ has_output output_proof_output
in
match result with
| Some (output_proof, true) ->
return {output_proof; output_proof_state; output_proof_output}
| Some (_, false) -> fail Arith_invalid_claim_about_outbox
| None -> fail Arith_output_proof_production_failed
let get_current_level state =
let open Lwt_syntax in
let* _state_, current_level = Monad.run Current_level.get state in
return current_level
module Internal_for_tests = struct
let insert_failure state =
let add n = Tree.add state ["failures"; string_of_int n] Bytes.empty in
let open Lwt_syntax in
let* n = Tree.length state ["failures"] in
add n
end
end
module Protocol_implementation = Make (struct
module Tree = struct
include Context.Tree
type tree = Context.tree
type t = Context.t
type key = string list
type value = bytes
end
type tree = Context.tree
let hash_tree t = State_hash.context_hash_to_state_hash (Tree.hash t)
type proof = Context.Proof.tree Context.Proof.t
let verify_proof p f =
let open Lwt_option_syntax in
let*? () = Result.to_option (Context_binary_proof.check_is_binary p) in
Lwt.map Result.to_option (Context.verify_tree_proof p f)
let produce_proof _context _state _f =
Lwt.return None
let kinded_hash_to_state_hash = function
| `Value hash | `Node hash -> State_hash.context_hash_to_state_hash hash
let proof_before proof = kinded_hash_to_state_hash proof.Context.Proof.before
let proof_after proof = kinded_hash_to_state_hash proof.Context.Proof.after
let proof_encoding = Context.Proof_encoding.V2.Tree2.tree_proof_encoding
end)