Source file skip_list_repr.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
module type S = sig
type ('content, 'ptr) cell
val pp :
pp_ptr:(Format.formatter -> 'ptr -> unit) ->
pp_content:(Format.formatter -> 'content -> unit) ->
Format.formatter ->
('content, 'ptr) cell ->
unit
val equal :
('ptr -> 'ptr -> bool) ->
('content -> 'content -> bool) ->
('content, 'ptr) cell ->
('content, 'ptr) cell ->
bool
val encoding :
'ptr Data_encoding.t ->
'content Data_encoding.t ->
('content, 'ptr) cell Data_encoding.t
val index : (_, _) cell -> int
val content : ('content, 'ptr) cell -> 'content
val back_pointer : ('content, 'ptr) cell -> int -> 'ptr option
val back_pointers : ('content, 'ptr) cell -> 'ptr list
val genesis : 'content -> ('content, 'ptr) cell
val next :
prev_cell:('content, 'ptr) cell ->
prev_cell_ptr:'ptr ->
'content ->
('content, 'ptr) cell
val back_path :
deref:('ptr -> ('content, 'ptr) cell option) ->
cell_ptr:'ptr ->
target_index:int ->
'ptr list option
val valid_back_path :
equal_ptr:('ptr -> 'ptr -> bool) ->
deref:('ptr -> ('content, 'ptr) cell option) ->
cell_ptr:'ptr ->
target_ptr:'ptr ->
'ptr list ->
bool
type ('ptr, 'content) search_cell_result =
| Found of ('ptr, 'content) cell
| Nearest of {
lower : ('ptr, 'content) cell;
upper : ('ptr, 'content) cell option;
}
| No_exact_or_lower_ptr
| Deref_returned_none
type ('ptr, 'content) search_result = {
rev_path : ('ptr, 'content) cell list;
last_cell : ('ptr, 'content) search_cell_result;
}
val pp_search_result :
pp_cell:(Format.formatter -> ('ptr, 'content) cell -> unit) ->
Format.formatter ->
('ptr, 'content) search_result ->
unit
val search :
deref:('ptr -> ('content, 'ptr) cell option) ->
compare:('content -> int Lwt.t) ->
cell:('content, 'ptr) cell ->
('content, 'ptr) search_result Lwt.t
end
module Make (Parameters : sig
val basis : int
end) : S = struct
let () = assert (Compare.Int.(Parameters.basis >= 2))
open Parameters
type ('content, 'ptr) cell = {
content : 'content;
back_pointers : 'ptr option FallbackArray.t;
index : int;
}
let equal equal_ptr equal_content cell1 cell2 =
let equal_back_pointers b1 b2 =
let open FallbackArray in
Compare.Int.(length b1 = length b2)
&& fst
@@ fold
(fun (equal, i) h1 ->
(equal && Option.equal equal_ptr h1 (get b2 i), i + 1))
b1
(true, 0)
in
let {content; back_pointers; index} = cell1 in
equal_content content cell2.content
&& Compare.Int.equal index cell2.index
&& equal_back_pointers back_pointers cell2.back_pointers
let index cell = cell.index
let back_pointers_to_list a =
FallbackArray.fold
(fun l -> function
| Some ptr -> ptr :: l
| None -> assert false)
a
[]
|> List.rev
let pp ~pp_ptr ~pp_content fmt {content; back_pointers; index} =
Format.fprintf
fmt
{|
content = %a
index = %d
back_pointers = %a
|}
pp_content
content
index
(Format.pp_print_list pp_ptr)
(back_pointers_to_list back_pointers)
let encoding ptr_encoding content_encoding =
let of_list =
FallbackArray.of_list ~fallback:None ~proj:(fun c -> Some c)
in
let to_list = back_pointers_to_list in
let open Data_encoding in
conv
(fun {index; content; back_pointers} ->
(index, content, to_list back_pointers))
(fun (index, content, back_pointers) ->
{index; content; back_pointers = of_list back_pointers})
(obj3
(req "index" int31)
(req "content" content_encoding)
(req "back_pointers" (list ptr_encoding)))
let content cell = cell.content
let back_pointers cell = back_pointers_to_list cell.back_pointers
let genesis content =
{index = 0; content; back_pointers = FallbackArray.make 0 None}
let back_pointer cell i = FallbackArray.get cell.back_pointers i
let back_pointer_unsafe cell i =
match FallbackArray.get cell.back_pointers i with
| Some ptr -> ptr
| None -> assert false
let next ~prev_cell ~prev_cell_ptr content =
let index = prev_cell.index + 1 in
let back_pointers =
let rec aux power accu i =
if Compare.Int.(index < power) then List.rev accu
else
let back_pointer_i =
if Compare.Int.(index mod power = 0) then prev_cell_ptr
else
back_pointer_unsafe prev_cell i
in
let accu = back_pointer_i :: accu in
aux (power * basis) accu (i + 1)
in
aux 1 [] 0
in
let back_pointers =
FallbackArray.of_list ~fallback:None ~proj:Option.some back_pointers
in
{index; content; back_pointers}
let list_powers cell =
let rec aux n prev p =
if Compare.Int.(n <= 0) then List.rev p
else aux (n - 1) (basis * prev) (prev :: p)
in
FallbackArray.of_list
~fallback:0
~proj:(fun x -> x)
(aux (FallbackArray.length cell.back_pointers) 1 [])
let best_skip cell target_index powers =
let open FallbackArray in
let pointed_cell_index i = cell.index - (cell.index mod get powers i) - 1 in
let rec binary_search start_idx end_idx =
if Compare.Int.(start_idx >= end_idx) then Some start_idx
else
let mid_idx = start_idx + ((end_idx - start_idx) / 2) in
let mid_cell_index = pointed_cell_index mid_idx in
if Compare.Int.(mid_cell_index = target_index) then Some mid_idx
else if Compare.Int.(mid_cell_index < target_index) then
binary_search start_idx (mid_idx - 1)
else
let prev_mid_cell_index = pointed_cell_index (mid_idx + 1) in
if Compare.Int.(prev_mid_cell_index = target_index) then
Some (mid_idx + 1)
else if Compare.Int.(prev_mid_cell_index < target_index) then
Some mid_idx
else binary_search (mid_idx + 1) end_idx
in
binary_search 0 (length cell.back_pointers - 1)
let back_path ~deref ~cell_ptr ~target_index =
Option.bind (deref cell_ptr) @@ fun cell ->
let powers = list_powers cell in
let rec aux path ptr =
let path = ptr :: path in
Option.bind (deref ptr) @@ fun cell ->
let index = cell.index in
if Compare.Int.(target_index = index) then Some (List.rev path)
else if Compare.Int.(target_index > index) then None
else
Option.bind (best_skip cell target_index powers) @@ fun best_idx ->
Option.bind (back_pointer cell best_idx) @@ fun ptr -> aux path ptr
in
aux [] cell_ptr
let mem equal x l =
let open FallbackArray in
let n = length l in
let rec aux idx =
if Compare.Int.(idx >= n) then false
else
match get l idx with
| None -> aux (idx + 1)
| Some y -> if equal x y then true else aux (idx + 1)
in
aux 0
let assume_some o f = match o with None -> false | Some x -> f x
let valid_back_path ~equal_ptr ~deref ~cell_ptr ~target_ptr path =
assume_some (deref target_ptr) @@ fun target ->
assume_some (deref cell_ptr) @@ fun cell ->
let target_index = index target
and cell_index = index cell
and powers = list_powers cell in
let rec valid_path index cell_ptr path =
match (cell_ptr, path) with
| final_cell, [] ->
equal_ptr target_ptr final_cell && Compare.Int.(index = target_index)
| cell_ptr, cell_ptr' :: path ->
assume_some (deref cell_ptr) @@ fun cell ->
assume_some (deref cell_ptr') @@ fun cell' ->
mem equal_ptr cell_ptr' cell.back_pointers
&& assume_some (best_skip cell target_index powers) @@ fun best_idx ->
assume_some (back_pointer cell best_idx) @@ fun best_ptr ->
let minimal = equal_ptr best_ptr cell_ptr' in
let index' = cell'.index in
minimal && valid_path index' cell_ptr' path
in
match path with
| [] -> false
| first_cell_ptr :: path ->
equal_ptr first_cell_ptr cell_ptr && valid_path cell_index cell_ptr path
type ('ptr, 'content) search_cell_result =
| Found of ('ptr, 'content) cell
| Nearest of {
lower : ('ptr, 'content) cell;
upper : ('ptr, 'content) cell option;
}
| No_exact_or_lower_ptr
| Deref_returned_none
type ('ptr, 'content) search_result = {
rev_path : ('ptr, 'content) cell list;
last_cell : ('ptr, 'content) search_cell_result;
}
let pp_rev_path ~pp_cell =
Format.pp_print_list ~pp_sep:Format.pp_print_space pp_cell
let pp_search_cell_result ~pp_cell fmt = function
| Found ptr -> Format.fprintf fmt "Found(%a)" pp_cell ptr
| Nearest {lower; upper} ->
Format.fprintf
fmt
"Nearest(lower=%a;upper=%a)"
pp_cell
lower
(Format.pp_print_option pp_cell)
upper
| No_exact_or_lower_ptr -> Format.fprintf fmt "No_exact_or_lower_ptr"
| Deref_returned_none -> Format.fprintf fmt "Deref_returned_none"
let pp_search_result ~pp_cell fmt {rev_path; last_cell} =
Format.fprintf
fmt
"{rev_path = %a; last_point = %a}"
(pp_rev_path ~pp_cell)
rev_path
(pp_search_cell_result ~pp_cell)
last_cell
let search (type ptr) ~(deref : ptr -> ('content, ptr) cell option) ~compare
~cell =
let open Lwt_syntax in
let ( = ), ( < ), ( > ) = Compare.Int.(( = ), ( < ), ( > )) in
let rec aux rev_path cell ix =
let back_pointers_length = FallbackArray.length cell.back_pointers in
if back_pointers_length = 0 then
return {rev_path; last_cell = No_exact_or_lower_ptr}
else
let candidate_ptr =
match back_pointer cell ix with
| None ->
assert false
| Some candidate_ptr -> candidate_ptr
in
match deref candidate_ptr with
| None ->
return {rev_path; last_cell = Deref_returned_none}
| Some next_cell -> (
let* comparison = compare next_cell.content in
if comparison = 0 then
let rev_path = next_cell :: rev_path in
return {rev_path; last_cell = Found next_cell}
else if comparison > 0 then
if ix < back_pointers_length - 1 then
aux rev_path cell (ix + 1)
else
let rev_path = next_cell :: rev_path in
aux rev_path next_cell 0
else if ix = 0 then
let rev_path = next_cell :: rev_path in
return
{
rev_path;
last_cell = Nearest {lower = next_cell; upper = Some cell};
}
else
let good_candidate_ptr =
match back_pointer cell (ix - 1) with
| None -> assert false
| Some candidate_ptr -> candidate_ptr
in
match deref good_candidate_ptr with
| None ->
assert false
| Some good_next_cell ->
let rev_path = good_next_cell :: rev_path in
aux rev_path good_next_cell 0)
in
let* comparison = compare cell.content in
if Compare.Int.(comparison = 0) then
return {rev_path = [cell]; last_cell = Found cell}
else if Compare.Int.(comparison < 0) then
return
{rev_path = [cell]; last_cell = Nearest {lower = cell; upper = None}}
else aux [cell] cell 0
end