package tezos-protocol-014-PtKathma

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file script_interpreter.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
(*****************************************************************************)
(*                                                                           *)
(* Open Source License                                                       *)
(* Copyright (c) 2018 Dynamic Ledger Solutions, Inc. <contact@tezos.com>     *)
(* Copyright (c) 2020 Metastate AG <hello@metastate.dev>                     *)
(* Copyright (c) 2021-2022 Nomadic Labs <contact@nomadic-labs.com>           *)
(*                                                                           *)
(* Permission is hereby granted, free of charge, to any person obtaining a   *)
(* copy of this software and associated documentation files (the "Software"),*)
(* to deal in the Software without restriction, including without limitation *)
(* the rights to use, copy, modify, merge, publish, distribute, sublicense,  *)
(* and/or sell copies of the Software, and to permit persons to whom the     *)
(* Software is furnished to do so, subject to the following conditions:      *)
(*                                                                           *)
(* The above copyright notice and this permission notice shall be included   *)
(* in all copies or substantial portions of the Software.                    *)
(*                                                                           *)
(* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*)
(* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,  *)
(* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL   *)
(* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*)
(* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING   *)
(* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER       *)
(* DEALINGS IN THE SOFTWARE.                                                 *)
(*                                                                           *)
(*****************************************************************************)

(*

  This module implements an interpreter for Michelson. It takes the
  form of a [step] function that interprets script instructions in a
  dedicated abstract machine.

  The interpreter is written in a small-step style: an execution
  [step] only interprets a single instruction by updating the
  configuration of a dedicated abstract machine.

  This abstract machine has two components:

  - a stack to control which instructions must be executed ; and

  - a stack of values where instructions get their inputs and put
   their outputs.

  In addition, the machine has access to effectful primitives to
  interact with the execution environment (e.g. the Tezos
  node). These primitives live in the [Lwt+State+Error] monad. Hence,
  this interpreter produces a computation in the [Lwt+State+Error]
  monad.

  This interpreter enjoys the following properties:

  - The interpreter is tail-recursive, hence it is robust to stack
    overflow. This property is checked by the compiler thanks to the
    [@ocaml.tailcall] annotation of each recursive call.

  - The interpreter is type-preserving. Thanks to GADTs, the typing
    rules of Michelson are statically checked by the OCaml typechecker:
    a Michelson program cannot go wrong.

  - The interpreter is tagless. Thanks to GADTs, the exact shape of
    the stack is known statically so the interpreter does not have to
    check that the input stack has the shape expected by the
    instruction to be executed.

  Outline
  =======

  This file is organized as follows:

  1. Definition of runtime errors.

  2. Interpretation loop: This is the main functionality of this
   module, aka the [step] function.

  3. Interface functions: This part of the module builds high-level
   functions on top of the more basic [step] function.

  Auxiliary definitions can be found in {!Script_interpreter_defs}.

  Implementation details are explained along the file.

*)

open Alpha_context
open Script_typed_ir
open Script_ir_translator
open Local_gas_counter
open Script_interpreter_defs
module S = Saturation_repr

type step_constants = Script_typed_ir.step_constants = {
  source : Contract.t;
  payer : Contract.t;
  self : Contract_hash.t;
  amount : Tez.t;
  balance : Tez.t;
  chain_id : Chain_id.t;
  now : Script_timestamp.t;
  level : Script_int.n Script_int.num;
}

(* ---- Run-time errors -----------------------------------------------------*)

type error += Reject of Script.location * Script.expr * execution_trace option

type error += Overflow of Script.location * execution_trace option

type error += Runtime_contract_error of Contract_hash.t

type error += Bad_contract_parameter of Contract.t (* `Permanent *)

type error += Cannot_serialize_failure

type error += Cannot_serialize_storage

type error += Michelson_too_many_recursive_calls

let () =
  let open Data_encoding in
  let trace_encoding =
    list
    @@ obj3
         (req "location" Script.location_encoding)
         (req "gas" Gas.encoding)
         (req "stack" (list Script.expr_encoding))
  in
  (* Reject *)
  register_error_kind
    `Temporary
    ~id:"michelson_v1.script_rejected"
    ~title:"Script failed"
    ~description:"A FAILWITH instruction was reached"
    (obj3
       (req "location" Script.location_encoding)
       (req "with" Script.expr_encoding)
       (opt "trace" trace_encoding))
    (function Reject (loc, v, trace) -> Some (loc, v, trace) | _ -> None)
    (fun (loc, v, trace) -> Reject (loc, v, trace)) ;
  (* Overflow *)
  register_error_kind
    `Temporary
    ~id:"michelson_v1.script_overflow"
    ~title:"Script failed (overflow error)"
    ~description:
      "A FAIL instruction was reached due to the detection of an overflow"
    (obj2
       (req "location" Script.location_encoding)
       (opt "trace" trace_encoding))
    (function Overflow (loc, trace) -> Some (loc, trace) | _ -> None)
    (fun (loc, trace) -> Overflow (loc, trace)) ;
  (* Runtime contract error *)
  register_error_kind
    `Temporary
    ~id:"michelson_v1.runtime_error"
    ~title:"Script runtime error"
    ~description:"Toplevel error for all runtime script errors"
    (obj2
       (req "contract_handle" Contract.originated_encoding)
       (req "contract_code" (constant "Deprecated")))
    (function
      | Runtime_contract_error contract -> Some (contract, ()) | _ -> None)
    (fun (contract, ()) -> Runtime_contract_error contract) ;
  (* Bad contract parameter *)
  register_error_kind
    `Permanent
    ~id:"michelson_v1.bad_contract_parameter"
    ~title:"Contract supplied an invalid parameter"
    ~description:
      "Either no parameter was supplied to a contract with a non-unit \
       parameter type, a non-unit parameter was passed to an account, or a \
       parameter was supplied of the wrong type"
    Data_encoding.(obj1 (req "contract" Contract.encoding))
    (function Bad_contract_parameter c -> Some c | _ -> None)
    (fun c -> Bad_contract_parameter c) ;
  (* Cannot serialize failure *)
  register_error_kind
    `Temporary
    ~id:"michelson_v1.cannot_serialize_failure"
    ~title:"Not enough gas to serialize argument of FAILWITH"
    ~description:
      "Argument of FAILWITH was too big to be serialized with the provided gas"
    Data_encoding.empty
    (function Cannot_serialize_failure -> Some () | _ -> None)
    (fun () -> Cannot_serialize_failure) ;
  (* Cannot serialize storage *)
  register_error_kind
    `Temporary
    ~id:"michelson_v1.cannot_serialize_storage"
    ~title:"Not enough gas to serialize execution storage"
    ~description:
      "The returned storage was too big to be serialized with the provided gas"
    Data_encoding.empty
    (function Cannot_serialize_storage -> Some () | _ -> None)
    (fun () -> Cannot_serialize_storage)

(*

  Interpretation loop
  ===================

*)

(*

   As announced earlier, the [step] function produces a computation in
   the [Lwt+State+Error] monad. The [State] monad is implemented by
   having the [context] passed as input and returned updated as
   output. The [Error] monad is represented by the [tzresult] type
   constructor.

   The [step] function is actually defined as an internal
   tail-recursive routine of the toplevel [step]. It monitors the gas
   level before executing the instruction under focus, once this is
   done, it recursively calls itself on the continuation held by the
   current instruction.

   For each pure instruction (i.e. that is not monadic), the
   interpretation simply updates the input arguments of the [step]
   function. Since these arguments are (most likely) stored in
   hardware registers and since the tail-recursive calls are compiled
   into direct jumps, this interpretation technique offers good
   performances while saving safety thanks to a rich typing.

   For each impure instruction, the interpreter makes use of monadic
   bindings to compose monadic primitives with the [step] function.
   Again, we make sure that the recursive calls to [step] are tail
   calls by annotating them with [@ocaml.tailcall].

   The [step] function is actually based on several mutually
   recursive functions that can be separated in two groups: the first
   group focuses on the evaluation of continuations while the second
   group is about evaluating the instructions.

*)

(*

    Evaluation of continuations
    ===========================

    As explained in [Script_typed_ir], there are several kinds of
    continuations, each having a specific evaluation rules. The
    following group of functions starts with a list of evaluation
    rules for continuations that generate fresh continuations. This
    group ends with the definition of [next], which dispatches
    evaluation rules depending on the continuation at stake.

   Some of these functions generate fresh continuations. As such, they
   expect a constructor [instrument] which inserts a [KLog] if the
   evaluation is logged.

 *)
let rec kmap_exit :
    type a b c e f m n o. (a, b, c, e, f, m, n, o) kmap_exit_type =
 fun instrument g gas body xs ty ys yk ks accu stack ->
  let ys = Script_map.update yk (Some accu) ys in
  let ks = instrument @@ KMap_enter_body (body, xs, ys, ty, ks) in
  let accu, stack = stack in
  (next [@ocaml.tailcall]) g gas ks accu stack
 [@@inline]

and kmap_enter : type a b c d f i j k. (a, b, c, d, f, i, j, k) kmap_enter_type
    =
 fun instrument g gas body xs ty ys ks accu stack ->
  match xs with
  | [] -> (next [@ocaml.tailcall]) g gas ks ys (accu, stack)
  | (xk, xv) :: xs ->
      let ks = instrument @@ KMap_exit_body (body, xs, ys, xk, ty, ks) in
      let res = (xk, xv) in
      let stack = (accu, stack) in
      (step [@ocaml.tailcall]) g gas body ks res stack
 [@@inline]

and klist_exit : type a b c d e i j. (a, b, c, d, e, i, j) klist_exit_type =
 fun instrument g gas body xs ys ty len ks accu stack ->
  let ks = instrument @@ KList_enter_body (body, xs, accu :: ys, ty, len, ks) in
  let accu, stack = stack in
  (next [@ocaml.tailcall]) g gas ks accu stack
 [@@inline]

and klist_enter : type a b c d e f j. (a, b, c, d, e, f, j) klist_enter_type =
 fun instrument g gas body xs ys ty len ks' accu stack ->
  match xs with
  | [] ->
      let ys = {elements = List.rev ys; length = len} in
      (next [@ocaml.tailcall]) g gas ks' ys (accu, stack)
  | x :: xs ->
      let ks = instrument @@ KList_exit_body (body, xs, ys, ty, len, ks') in
      (step [@ocaml.tailcall]) g gas body ks x (accu, stack)
 [@@inline]

and kloop_in_left : type a b c d e f g. (a, b, c, d, e, f, g) kloop_in_left_type
    =
 fun g gas ks0 ki ks' accu stack ->
  match accu with
  | L v -> (step [@ocaml.tailcall]) g gas ki ks0 v stack
  | R v -> (next [@ocaml.tailcall]) g gas ks' v stack
 [@@inline]

and kloop_in : type a b c r f s. (a, b, c, r, f, s) kloop_in_type =
 fun g gas ks0 ki ks' accu stack ->
  let accu', stack' = stack in
  if accu then (step [@ocaml.tailcall]) g gas ki ks0 accu' stack'
  else (next [@ocaml.tailcall]) g gas ks' accu' stack'
 [@@inline]

and kiter : type a b s r f c. (a, b, s, r, f, c) kiter_type =
 fun instrument g gas body ty xs ks accu stack ->
  match xs with
  | [] -> (next [@ocaml.tailcall]) g gas ks accu stack
  | x :: xs ->
      let ks = instrument @@ KIter (body, ty, xs, ks) in
      (step [@ocaml.tailcall]) g gas body ks x (accu, stack)
 [@@inline]

and next :
    type a s r f.
    outdated_context * step_constants ->
    local_gas_counter ->
    (a, s, r, f) continuation ->
    a ->
    s ->
    (r * f * outdated_context * local_gas_counter) tzresult Lwt.t =
 fun ((ctxt, _) as g) gas ks0 accu stack ->
  match consume_control gas ks0 with
  | None -> fail Gas.Operation_quota_exceeded
  | Some gas -> (
      match ks0 with
      | KLog (ks, sty, logger) ->
          (klog [@ocaml.tailcall]) logger g gas sty ks0 ks accu stack
      | KNil -> Lwt.return (Ok (accu, stack, ctxt, gas))
      | KCons (k, ks) -> (step [@ocaml.tailcall]) g gas k ks accu stack
      | KLoop_in (ki, ks') ->
          (kloop_in [@ocaml.tailcall]) g gas ks0 ki ks' accu stack
      | KReturn (stack', _, ks) -> (next [@ocaml.tailcall]) g gas ks accu stack'
      | KMap_head (f, ks) -> (next [@ocaml.tailcall]) g gas ks (f accu) stack
      | KLoop_in_left (ki, ks') ->
          (kloop_in_left [@ocaml.tailcall]) g gas ks0 ki ks' accu stack
      | KUndip (x, _, ks) -> (next [@ocaml.tailcall]) g gas ks x (accu, stack)
      | KIter (body, ty, xs, ks) ->
          (kiter [@ocaml.tailcall]) id g gas body ty xs ks accu stack
      | KList_enter_body (body, xs, ys, ty, len, ks) ->
          (klist_enter [@ocaml.tailcall])
            id
            g
            gas
            body
            xs
            ys
            ty
            len
            ks
            accu
            stack
      | KList_exit_body (body, xs, ys, ty, len, ks) ->
          (klist_exit [@ocaml.tailcall])
            id
            g
            gas
            body
            xs
            ys
            ty
            len
            ks
            accu
            stack
      | KMap_enter_body (body, xs, ys, ty, ks) ->
          (kmap_enter [@ocaml.tailcall]) id g gas body xs ty ys ks accu stack
      | KMap_exit_body (body, xs, ys, yk, ty, ks) ->
          (kmap_exit [@ocaml.tailcall]) id g gas body xs ty ys yk ks accu stack
      | KView_exit (orig_step_constants, ks) ->
          let g = (fst g, orig_step_constants) in
          (next [@ocaml.tailcall]) g gas ks accu stack)

(*

   Evaluation of instructions
   ==========================

   The following functions define evaluation rules for instructions that
   generate fresh continuations. As such, they expect a constructor
   [instrument] which inserts a [KLog] if the evaluation is logged.

   The [step] function is taking care of the evaluation of the other
   instructions.

*)
and ilist_map :
    type a b c d e f g h i. (a, b, c, d, e, f, g, h, i) ilist_map_type =
 fun instrument g gas body k ks ty accu stack ->
  let xs = accu.elements in
  let ys = [] in
  let len = accu.length in
  let ks =
    instrument @@ KList_enter_body (body, xs, ys, ty, len, KCons (k, ks))
  in
  let accu, stack = stack in
  (next [@ocaml.tailcall]) g gas ks accu stack
 [@@inline]

and ilist_iter :
    type a b c d e f g cmp. (a, b, c, d, e, f, g, cmp) ilist_iter_type =
 fun instrument g gas body ty k ks accu stack ->
  let xs = accu.elements in
  let ks = instrument @@ KIter (body, ty, xs, KCons (k, ks)) in
  let accu, stack = stack in
  (next [@ocaml.tailcall]) g gas ks accu stack
 [@@inline]

and iset_iter : type a b c d e f g. (a, b, c, d, e, f, g) iset_iter_type =
 fun instrument g gas body ty k ks accu stack ->
  let set = accu in
  let l = List.rev (Script_set.fold (fun e acc -> e :: acc) set []) in
  let ks = instrument @@ KIter (body, ty, l, KCons (k, ks)) in
  let accu, stack = stack in
  (next [@ocaml.tailcall]) g gas ks accu stack
 [@@inline]

and imap_map :
    type a b c d e f g h i j. (a, b, c, d, e, f, g, h, i, j) imap_map_type =
 fun instrument g gas body k ks ty accu stack ->
  let map = accu in
  let xs = List.rev (Script_map.fold (fun k v a -> (k, v) :: a) map []) in
  let ys = Script_map.empty_from map in
  let ks = instrument @@ KMap_enter_body (body, xs, ys, ty, KCons (k, ks)) in
  let accu, stack = stack in
  (next [@ocaml.tailcall]) g gas ks accu stack
 [@@inline]

and imap_iter :
    type a b c d e f g h cmp. (a, b, c, d, e, f, g, h, cmp) imap_iter_type =
 fun instrument g gas body ty k ks accu stack ->
  let map = accu in
  let l = List.rev (Script_map.fold (fun k v a -> (k, v) :: a) map []) in
  let ks = instrument @@ KIter (body, ty, l, KCons (k, ks)) in
  let accu, stack = stack in
  (next [@ocaml.tailcall]) g gas ks accu stack
 [@@inline]

and imul_teznat : type a b c d e f. (a, b, c, d, e, f) imul_teznat_type =
 fun logger g gas loc k ks accu stack ->
  let x = accu in
  let y, stack = stack in
  match Script_int.to_int64 y with
  | None -> get_log logger >>=? fun log -> fail (Overflow (loc, log))
  | Some y ->
      Tez.(x *? y) >>?= fun res -> (step [@ocaml.tailcall]) g gas k ks res stack

and imul_nattez : type a b c d e f. (a, b, c, d, e, f) imul_nattez_type =
 fun logger g gas loc k ks accu stack ->
  let y = accu in
  let x, stack = stack in
  match Script_int.to_int64 y with
  | None -> get_log logger >>=? fun log -> fail (Overflow (loc, log))
  | Some y ->
      Tez.(x *? y) >>?= fun res -> (step [@ocaml.tailcall]) g gas k ks res stack

and ilsl_nat : type a b c d e f. (a, b, c, d, e, f) ilsl_nat_type =
 fun logger g gas loc k ks accu stack ->
  let x = accu and y, stack = stack in
  match Script_int.shift_left_n x y with
  | None -> get_log logger >>=? fun log -> fail (Overflow (loc, log))
  | Some x -> (step [@ocaml.tailcall]) g gas k ks x stack

and ilsr_nat : type a b c d e f. (a, b, c, d, e, f) ilsr_nat_type =
 fun logger g gas loc k ks accu stack ->
  let x = accu and y, stack = stack in
  match Script_int.shift_right_n x y with
  | None -> get_log logger >>=? fun log -> fail (Overflow (loc, log))
  | Some r -> (step [@ocaml.tailcall]) g gas k ks r stack

and ifailwith : ifailwith_type =
  {
    ifailwith =
      (fun logger (ctxt, _) gas kloc tv accu ->
        let v = accu in
        let ctxt = update_context gas ctxt in
        trace Cannot_serialize_failure (unparse_data ctxt Optimized tv v)
        >>=? fun (v, _ctxt) ->
        let v = Micheline.strip_locations v in
        get_log logger >>=? fun log -> fail (Reject (kloc, v, log)));
  }

and iexec : type a b c d e f g. (a, b, c, d, e, f, g) iexec_type =
 fun instrument logger g gas cont_sty k ks accu stack ->
  let arg = accu and code, stack = stack in
  let (Lam (code, _)) = code in
  let code =
    match logger with
    | None -> code.kinstr
    | Some logger ->
        Script_interpreter_logging.log_kinstr logger code.kbef code.kinstr
  in
  let ks = instrument @@ KReturn (stack, cont_sty, KCons (k, ks)) in
  (step [@ocaml.tailcall]) g gas code ks arg (EmptyCell, EmptyCell)

and iview : type a b c d e f i o. (a, b, c, d, e, f, i, o) iview_type =
 fun instrument
     (ctxt, sc)
     gas
     (View_signature {name; input_ty; output_ty})
     stack_ty
     k
     ks
     accu
     stack ->
  let input = accu in
  let addr, stack = stack in
  let ctxt = update_context gas ctxt in
  let return_none ctxt =
    let gas, ctxt = local_gas_counter_and_outdated_context ctxt in
    (step [@ocaml.tailcall]) (ctxt, sc) gas k ks None stack
  in
  match addr.destination with
  | Contract (Implicit _) | Tx_rollup _ | Sc_rollup _ ->
      (return_none [@ocaml.tailcall]) ctxt
  | Contract (Originated contract_hash as c) -> (
      Contract.get_script ctxt contract_hash >>=? fun (ctxt, script_opt) ->
      match script_opt with
      | None -> (return_none [@ocaml.tailcall]) ctxt
      | Some script -> (
          parse_script ~legacy:true ~allow_forged_in_storage:true ctxt script
          >>=? fun (Ex_script (Script {storage; storage_type; views; _}), ctxt)
            ->
          Gas.consume ctxt (Interp_costs.view_get name views) >>?= fun ctxt ->
          match Script_map.get name views with
          | None -> (return_none [@ocaml.tailcall]) ctxt
          | Some view -> (
              let view_result =
                Script_ir_translator.parse_view
                  ctxt
                  ~legacy:true
                  storage_type
                  view
              in
              trace_eval
                (fun () ->
                  Script_tc_errors.Ill_typed_contract
                    (Micheline.strip_locations view.view_code, []))
                view_result
              >>=? fun ( Typed_view
                           {
                             input_ty = input_ty';
                             output_ty = output_ty';
                             kinstr;
                             original_code_expr = _;
                           },
                         ctxt ) ->
              let io_ty =
                let open Gas_monad.Syntax in
                let* out_eq = ty_eq ~error_details:Fast output_ty' output_ty in
                let+ in_eq = ty_eq ~error_details:Fast input_ty input_ty' in
                (out_eq, in_eq)
              in
              Gas_monad.run ctxt io_ty >>?= fun (eq, ctxt) ->
              match eq with
              | Error Inconsistent_types_fast ->
                  (return_none [@ocaml.tailcall]) ctxt
              | Ok (Eq, Eq) ->
                  let kcons = KCons (ICons_some (kinstr_location k, k), ks) in
                  Contract.get_balance_carbonated ctxt c
                  >>=? fun (ctxt, balance) ->
                  let gas, ctxt = local_gas_counter_and_outdated_context ctxt in
                  (step [@ocaml.tailcall])
                    ( ctxt,
                      {
                        source = Contract.Originated sc.self;
                        self = contract_hash;
                        amount = Tez.zero;
                        balance;
                        (* The following remain unchanged, but let's
                           list them anyway, so that we don't forget
                           to update something added later. *)
                        payer = sc.payer;
                        chain_id = sc.chain_id;
                        now = sc.now;
                        level = sc.level;
                      } )
                    gas
                    kinstr
                    (instrument
                    @@ KView_exit (sc, KReturn (stack, stack_ty, kcons)))
                    (input, storage)
                    (EmptyCell, EmptyCell))))

and step : type a s b t r f. (a, s, b, t, r, f) step_type =
 fun ((ctxt, sc) as g) gas i ks accu stack ->
  match consume_instr gas i accu stack with
  | None -> fail Gas.Operation_quota_exceeded
  | Some gas -> (
      match i with
      | ILog (_, sty, event, logger, k) ->
          (log [@ocaml.tailcall]) (logger, event) sty g gas k ks accu stack
      | IHalt _ -> (next [@ocaml.tailcall]) g gas ks accu stack
      (* stack ops *)
      | IDrop (_, k) ->
          let accu, stack = stack in
          (step [@ocaml.tailcall]) g gas k ks accu stack
      | IDup (_, k) -> (step [@ocaml.tailcall]) g gas k ks accu (accu, stack)
      | ISwap (_, k) ->
          let top, stack = stack in
          (step [@ocaml.tailcall]) g gas k ks top (accu, stack)
      | IConst (_, _ty, v, k) ->
          (step [@ocaml.tailcall]) g gas k ks v (accu, stack)
      (* options *)
      | ICons_some (_, k) ->
          (step [@ocaml.tailcall]) g gas k ks (Some accu) stack
      | ICons_none (_, _ty, k) ->
          (step [@ocaml.tailcall]) g gas k ks None (accu, stack)
      | IIf_none {branch_if_none; branch_if_some; k; _} -> (
          match accu with
          | None ->
              let accu, stack = stack in
              (step [@ocaml.tailcall])
                g
                gas
                branch_if_none
                (KCons (k, ks))
                accu
                stack
          | Some v ->
              (step [@ocaml.tailcall])
                g
                gas
                branch_if_some
                (KCons (k, ks))
                v
                stack)
      | IOpt_map {body; k; loc = _} -> (
          match accu with
          | None -> (step [@ocaml.tailcall]) g gas k ks None stack
          | Some v ->
              let ks' = KMap_head (Option.some, KCons (k, ks)) in
              (step [@ocaml.tailcall]) g gas body ks' v stack)
      (* pairs *)
      | ICons_pair (_, k) ->
          let b, stack = stack in
          (step [@ocaml.tailcall]) g gas k ks (accu, b) stack
      | IUnpair (_, k) ->
          let a, b = accu in
          (step [@ocaml.tailcall]) g gas k ks a (b, stack)
      | ICar (_, k) ->
          let a, _ = accu in
          (step [@ocaml.tailcall]) g gas k ks a stack
      | ICdr (_, k) ->
          let _, b = accu in
          (step [@ocaml.tailcall]) g gas k ks b stack
      (* unions *)
      | ICons_left (_, _tyb, k) ->
          (step [@ocaml.tailcall]) g gas k ks (L accu) stack
      | ICons_right (_, _tya, k) ->
          (step [@ocaml.tailcall]) g gas k ks (R accu) stack
      | IIf_left {branch_if_left; branch_if_right; k; _} -> (
          match accu with
          | L v ->
              (step [@ocaml.tailcall])
                g
                gas
                branch_if_left
                (KCons (k, ks))
                v
                stack
          | R v ->
              (step [@ocaml.tailcall])
                g
                gas
                branch_if_right
                (KCons (k, ks))
                v
                stack)
      (* lists *)
      | ICons_list (_, k) ->
          let tl, stack = stack in
          let accu = Script_list.cons accu tl in
          (step [@ocaml.tailcall]) g gas k ks accu stack
      | INil (_, _ty, k) ->
          let stack = (accu, stack) in
          let accu = Script_list.empty in
          (step [@ocaml.tailcall]) g gas k ks accu stack
      | IIf_cons {branch_if_cons; branch_if_nil; k; _} -> (
          match accu.elements with
          | [] ->
              let accu, stack = stack in
              (step [@ocaml.tailcall])
                g
                gas
                branch_if_nil
                (KCons (k, ks))
                accu
                stack
          | hd :: tl ->
              let tl = {elements = tl; length = accu.length - 1} in
              (step [@ocaml.tailcall])
                g
                gas
                branch_if_cons
                (KCons (k, ks))
                hd
                (tl, stack))
      | IList_map (_, body, ty, k) ->
          (ilist_map [@ocaml.tailcall]) id g gas body k ks ty accu stack
      | IList_size (_, k) ->
          let list = accu in
          let len = Script_int.(abs (of_int list.length)) in
          (step [@ocaml.tailcall]) g gas k ks len stack
      | IList_iter (_, ty, body, k) ->
          (ilist_iter [@ocaml.tailcall]) id g gas body ty k ks accu stack
      (* sets *)
      | IEmpty_set (_, ty, k) ->
          let res = Script_set.empty ty in
          let stack = (accu, stack) in
          (step [@ocaml.tailcall]) g gas k ks res stack
      | ISet_iter (_, ty, body, k) ->
          (iset_iter [@ocaml.tailcall]) id g gas body ty k ks accu stack
      | ISet_mem (_, k) ->
          let set, stack = stack in
          let res = Script_set.mem accu set in
          (step [@ocaml.tailcall]) g gas k ks res stack
      | ISet_update (_, k) ->
          let presence, (set, stack) = stack in
          let res = Script_set.update accu presence set in
          (step [@ocaml.tailcall]) g gas k ks res stack
      | ISet_size (_, k) ->
          let res = Script_set.size accu in
          (step [@ocaml.tailcall]) g gas k ks res stack
      (* maps *)
      | IEmpty_map (_, kty, _vty, k) ->
          let res = Script_map.empty kty and stack = (accu, stack) in
          (step [@ocaml.tailcall]) g gas k ks res stack
      | IMap_map (_, ty, body, k) ->
          (imap_map [@ocaml.tailcall]) id g gas body k ks ty accu stack
      | IMap_iter (_, kvty, body, k) ->
          (imap_iter [@ocaml.tailcall]) id g gas body kvty k ks accu stack
      | IMap_mem (_, k) ->
          let map, stack = stack in
          let res = Script_map.mem accu map in
          (step [@ocaml.tailcall]) g gas k ks res stack
      | IMap_get (_, k) ->
          let map, stack = stack in
          let res = Script_map.get accu map in
          (step [@ocaml.tailcall]) g gas k ks res stack
      | IMap_update (_, k) ->
          let v, (map, stack) = stack in
          let key = accu in
          let res = Script_map.update key v map in
          (step [@ocaml.tailcall]) g gas k ks res stack
      | IMap_get_and_update (_, k) ->
          let key = accu in
          let v, (map, rest) = stack in
          let map' = Script_map.update key v map in
          let v' = Script_map.get key map in
          (step [@ocaml.tailcall]) g gas k ks v' (map', rest)
      | IMap_size (_, k) ->
          let res = Script_map.size accu in
          (step [@ocaml.tailcall]) g gas k ks res stack
      (* Big map operations *)
      | IEmpty_big_map (_, tk, tv, k) ->
          let ebm = Script_big_map.empty tk tv in
          (step [@ocaml.tailcall]) g gas k ks ebm (accu, stack)
      | IBig_map_mem (_, k) ->
          let map, stack = stack in
          let key = accu in
          ( use_gas_counter_in_context ctxt gas @@ fun ctxt ->
            Script_big_map.mem ctxt key map )
          >>=? fun (res, ctxt, gas) ->
          (step [@ocaml.tailcall]) (ctxt, sc) gas k ks res stack
      | IBig_map_get (_, k) ->
          let map, stack = stack in
          let key = accu in
          ( use_gas_counter_in_context ctxt gas @@ fun ctxt ->
            Script_big_map.get ctxt key map )
          >>=? fun (res, ctxt, gas) ->
          (step [@ocaml.tailcall]) (ctxt, sc) gas k ks res stack
      | IBig_map_update (_, k) ->
          let key = accu in
          let maybe_value, (map, stack) = stack in
          ( use_gas_counter_in_context ctxt gas @@ fun ctxt ->
            Script_big_map.update ctxt key maybe_value map )
          >>=? fun (big_map, ctxt, gas) ->
          (step [@ocaml.tailcall]) (ctxt, sc) gas k ks big_map stack
      | IBig_map_get_and_update (_, k) ->
          let key = accu in
          let v, (map, stack) = stack in
          ( use_gas_counter_in_context ctxt gas @@ fun ctxt ->
            Script_big_map.get_and_update ctxt key v map )
          >>=? fun ((v', map'), ctxt, gas) ->
          (step [@ocaml.tailcall]) (ctxt, sc) gas k ks v' (map', stack)
      (* timestamp operations *)
      | IAdd_seconds_to_timestamp (_, k) ->
          let n = accu in
          let t, stack = stack in
          let result = Script_timestamp.add_delta t n in
          (step [@ocaml.tailcall]) g gas k ks result stack
      | IAdd_timestamp_to_seconds (_, k) ->
          let t = accu in
          let n, stack = stack in
          let result = Script_timestamp.add_delta t n in
          (step [@ocaml.tailcall]) g gas k ks result stack
      | ISub_timestamp_seconds (_, k) ->
          let t = accu in
          let s, stack = stack in
          let result = Script_timestamp.sub_delta t s in
          (step [@ocaml.tailcall]) g gas k ks result stack
      | IDiff_timestamps (_, k) ->
          let t1 = accu in
          let t2, stack = stack in
          let result = Script_timestamp.diff t1 t2 in
          (step [@ocaml.tailcall]) g gas k ks result stack
      (* string operations *)
      | IConcat_string_pair (_, k) ->
          let x = accu in
          let y, stack = stack in
          let s = Script_string.concat_pair x y in
          (step [@ocaml.tailcall]) g gas k ks s stack
      | IConcat_string (_, k) ->
          let ss = accu in
          (* The cost for this fold_left has been paid upfront *)
          let total_length =
            List.fold_left
              (fun acc s -> S.add acc (S.safe_int (Script_string.length s)))
              S.zero
              ss.elements
          in
          consume gas (Interp_costs.concat_string total_length) >>?= fun gas ->
          let s = Script_string.concat ss.elements in
          (step [@ocaml.tailcall]) g gas k ks s stack
      | ISlice_string (_, k) ->
          let offset = accu and length, (s, stack) = stack in
          let s_length = Z.of_int (Script_string.length s) in
          let offset = Script_int.to_zint offset in
          let length = Script_int.to_zint length in
          if Compare.Z.(offset < s_length && Z.add offset length <= s_length)
          then
            let s = Script_string.sub s (Z.to_int offset) (Z.to_int length) in
            (step [@ocaml.tailcall]) g gas k ks (Some s) stack
          else (step [@ocaml.tailcall]) g gas k ks None stack
      | IString_size (_, k) ->
          let s = accu in
          let result = Script_int.(abs (of_int (Script_string.length s))) in
          (step [@ocaml.tailcall]) g gas k ks result stack
      (* bytes operations *)
      | IConcat_bytes_pair (_, k) ->
          let x = accu in
          let y, stack = stack in
          let s = Bytes.cat x y in
          (step [@ocaml.tailcall]) g gas k ks s stack
      | IConcat_bytes (_, k) ->
          let ss = accu in
          (* The cost for this fold_left has been paid upfront *)
          let total_length =
            List.fold_left
              (fun acc s -> S.add acc (S.safe_int (Bytes.length s)))
              S.zero
              ss.elements
          in
          consume gas (Interp_costs.concat_string total_length) >>?= fun gas ->
          let s = Bytes.concat Bytes.empty ss.elements in
          (step [@ocaml.tailcall]) g gas k ks s stack
      | ISlice_bytes (_, k) ->
          let offset = accu and length, (s, stack) = stack in
          let s_length = Z.of_int (Bytes.length s) in
          let offset = Script_int.to_zint offset in
          let length = Script_int.to_zint length in
          if Compare.Z.(offset < s_length && Z.add offset length <= s_length)
          then
            let s = Bytes.sub s (Z.to_int offset) (Z.to_int length) in
            (step [@ocaml.tailcall]) g gas k ks (Some s) stack
          else (step [@ocaml.tailcall]) g gas k ks None stack
      | IBytes_size (_, k) ->
          let s = accu in
          let result = Script_int.(abs (of_int (Bytes.length s))) in
          (step [@ocaml.tailcall]) g gas k ks result stack
      (* currency operations *)
      | IAdd_tez (_, k) ->
          let x = accu in
          let y, stack = stack in
          Tez.(x +? y) >>?= fun res ->
          (step [@ocaml.tailcall]) g gas k ks res stack
      | ISub_tez (_, k) ->
          let x = accu in
          let y, stack = stack in
          let res = Tez.sub_opt x y in
          (step [@ocaml.tailcall]) g gas k ks res stack
      | ISub_tez_legacy (_, k) ->
          let x = accu in
          let y, stack = stack in
          Tez.(x -? y) >>?= fun res ->
          (step [@ocaml.tailcall]) g gas k ks res stack
      | IMul_teznat (loc, k) -> imul_teznat None g gas loc k ks accu stack
      | IMul_nattez (loc, k) -> imul_nattez None g gas loc k ks accu stack
      (* boolean operations *)
      | IOr (_, k) ->
          let x = accu in
          let y, stack = stack in
          (step [@ocaml.tailcall]) g gas k ks (x || y) stack
      | IAnd (_, k) ->
          let x = accu in
          let y, stack = stack in
          (step [@ocaml.tailcall]) g gas k ks (x && y) stack
      | IXor (_, k) ->
          let x = accu in
          let y, stack = stack in
          let res = Compare.Bool.(x <> y) in
          (step [@ocaml.tailcall]) g gas k ks res stack
      | INot (_, k) ->
          let x = accu in
          (step [@ocaml.tailcall]) g gas k ks (not x) stack
      (* integer operations *)
      | IIs_nat (_, k) ->
          let x = accu in
          let res = Script_int.is_nat x in
          (step [@ocaml.tailcall]) g gas k ks res stack
      | IAbs_int (_, k) ->
          let x = accu in
          let res = Script_int.abs x in
          (step [@ocaml.tailcall]) g gas k ks res stack
      | IInt_nat (_, k) ->
          let x = accu in
          let res = Script_int.int x in
          (step [@ocaml.tailcall]) g gas k ks res stack
      | INeg (_, k) ->
          let x = accu in
          let res = Script_int.neg x in
          (step [@ocaml.tailcall]) g gas k ks res stack
      | IAdd_int (_, k) ->
          let x = accu and y, stack = stack in
          let res = Script_int.add x y in
          (step [@ocaml.tailcall]) g gas k ks res stack
      | IAdd_nat (_, k) ->
          let x = accu and y, stack = stack in
          let res = Script_int.add_n x y in
          (step [@ocaml.tailcall]) g gas k ks res stack
      | ISub_int (_, k) ->
          let x = accu and y, stack = stack in
          let res = Script_int.sub x y in
          (step [@ocaml.tailcall]) g gas k ks res stack
      | IMul_int (_, k) ->
          let x = accu and y, stack = stack in
          let res = Script_int.mul x y in
          (step [@ocaml.tailcall]) g gas k ks res stack
      | IMul_nat (_, k) ->
          let x = accu and y, stack = stack in
          let res = Script_int.mul_n x y in
          (step [@ocaml.tailcall]) g gas k ks res stack
      | IEdiv_teznat (_, k) ->
          let x = accu and y, stack = stack in
          let x = Script_int.of_int64 (Tez.to_mutez x) in
          let result =
            match Script_int.ediv x y with
            | None -> None
            | Some (q, r) -> (
                match (Script_int.to_int64 q, Script_int.to_int64 r) with
                | Some q, Some r -> (
                    match (Tez.of_mutez q, Tez.of_mutez r) with
                    | Some q, Some r -> Some (q, r)
                    (* Cannot overflow *)
                    | _ -> assert false)
                (* Cannot overflow *)
                | _ -> assert false)
          in
          (step [@ocaml.tailcall]) g gas k ks result stack
      | IEdiv_tez (_, k) ->
          let x = accu and y, stack = stack in
          let x = Script_int.abs (Script_int.of_int64 (Tez.to_mutez x)) in
          let y = Script_int.abs (Script_int.of_int64 (Tez.to_mutez y)) in
          let result =
            match Script_int.ediv_n x y with
            | None -> None
            | Some (q, r) -> (
                match Script_int.to_int64 r with
                | None -> assert false (* Cannot overflow *)
                | Some r -> (
                    match Tez.of_mutez r with
                    | None -> assert false (* Cannot overflow *)
                    | Some r -> Some (q, r)))
          in
          (step [@ocaml.tailcall]) g gas k ks result stack
      | IEdiv_int (_, k) ->
          let x = accu and y, stack = stack in
          let res = Script_int.ediv x y in
          (step [@ocaml.tailcall]) g gas k ks res stack
      | IEdiv_nat (_, k) ->
          let x = accu and y, stack = stack in
          let res = Script_int.ediv_n x y in
          (step [@ocaml.tailcall]) g gas k ks res stack
      | ILsl_nat (loc, k) -> ilsl_nat None g gas loc k ks accu stack
      | ILsr_nat (loc, k) -> ilsr_nat None g gas loc k ks accu stack
      | IOr_nat (_, k) ->
          let x = accu and y, stack = stack in
          let res = Script_int.logor x y in
          (step [@ocaml.tailcall]) g gas k ks res stack
      | IAnd_nat (_, k) ->
          let x = accu and y, stack = stack in
          let res = Script_int.logand x y in
          (step [@ocaml.tailcall]) g gas k ks res stack
      | IAnd_int_nat (_, k) ->
          let x = accu and y, stack = stack in
          let res = Script_int.logand x y in
          (step [@ocaml.tailcall]) g gas k ks res stack
      | IXor_nat (_, k) ->
          let x = accu and y, stack = stack in
          let res = Script_int.logxor x y in
          (step [@ocaml.tailcall]) g gas k ks res stack
      | INot_int (_, k) ->
          let x = accu in
          let res = Script_int.lognot x in
          (step [@ocaml.tailcall]) g gas k ks res stack
      (* control *)
      | IIf {branch_if_true; branch_if_false; k; _} ->
          let res, stack = stack in
          if accu then
            (step [@ocaml.tailcall])
              g
              gas
              branch_if_true
              (KCons (k, ks))
              res
              stack
          else
            (step [@ocaml.tailcall])
              g
              gas
              branch_if_false
              (KCons (k, ks))
              res
              stack
      | ILoop (_, body, k) ->
          let ks = KLoop_in (body, KCons (k, ks)) in
          (next [@ocaml.tailcall]) g gas ks accu stack
      | ILoop_left (_, bl, br) ->
          let ks = KLoop_in_left (bl, KCons (br, ks)) in
          (next [@ocaml.tailcall]) g gas ks accu stack
      | IDip (_, b, ty, k) ->
          let ign = accu in
          let ks = KUndip (ign, ty, KCons (k, ks)) in
          let accu, stack = stack in
          (step [@ocaml.tailcall]) g gas b ks accu stack
      | IExec (_, sty, k) -> iexec id None g gas sty k ks accu stack
      | IApply (_, capture_ty, k) ->
          let capture = accu in
          let lam, stack = stack in
          apply ctxt gas capture_ty capture lam >>=? fun (lam', ctxt, gas) ->
          (step [@ocaml.tailcall]) (ctxt, sc) gas k ks lam' stack
      | ILambda (_, lam, k) ->
          (step [@ocaml.tailcall]) g gas k ks lam (accu, stack)
      | IFailwith (kloc, tv) ->
          let {ifailwith} = ifailwith in
          ifailwith None g gas kloc tv accu
      (* comparison *)
      | ICompare (_, ty, k) ->
          let a = accu in
          let b, stack = stack in
          let r =
            Script_int.of_int @@ Script_comparable.compare_comparable ty a b
          in
          (step [@ocaml.tailcall]) g gas k ks r stack
      (* comparators *)
      | IEq (_, k) ->
          let a = accu in
          let a = Script_int.compare a Script_int.zero in
          let a = Compare.Int.(a = 0) in
          (step [@ocaml.tailcall]) g gas k ks a stack
      | INeq (_, k) ->
          let a = accu in
          let a = Script_int.compare a Script_int.zero in
          let a = Compare.Int.(a <> 0) in
          (step [@ocaml.tailcall]) g gas k ks a stack
      | ILt (_, k) ->
          let a = accu in
          let a = Script_int.compare a Script_int.zero in
          let a = Compare.Int.(a < 0) in
          (step [@ocaml.tailcall]) g gas k ks a stack
      | ILe (_, k) ->
          let a = accu in
          let a = Script_int.compare a Script_int.zero in
          let a = Compare.Int.(a <= 0) in
          (step [@ocaml.tailcall]) g gas k ks a stack
      | IGt (_, k) ->
          let a = accu in
          let a = Script_int.compare a Script_int.zero in
          let a = Compare.Int.(a > 0) in
          (step [@ocaml.tailcall]) g gas k ks a stack
      | IGe (_, k) ->
          let a = accu in
          let a = Script_int.compare a Script_int.zero in
          let a = Compare.Int.(a >= 0) in
          (step [@ocaml.tailcall]) g gas k ks a stack
      (* packing *)
      | IPack (_, ty, k) ->
          let value = accu in
          ( use_gas_counter_in_context ctxt gas @@ fun ctxt ->
            Script_ir_translator.pack_data ctxt ty value )
          >>=? fun (bytes, ctxt, gas) ->
          (step [@ocaml.tailcall]) (ctxt, sc) gas k ks bytes stack
      | IUnpack (_, ty, k) ->
          let bytes = accu in
          ( use_gas_counter_in_context ctxt gas @@ fun ctxt ->
            unpack ctxt ~ty ~bytes )
          >>=? fun (opt, ctxt, gas) ->
          (step [@ocaml.tailcall]) (ctxt, sc) gas k ks opt stack
      | IAddress (_, k) ->
          let (Typed_contract {address; _}) = accu in
          (step [@ocaml.tailcall]) g gas k ks address stack
      | IContract (loc, t, entrypoint, k) -> (
          let addr = accu in
          let entrypoint_opt =
            if Entrypoint.is_default addr.entrypoint then Some entrypoint
            else if Entrypoint.is_default entrypoint then Some addr.entrypoint
            else (* both entrypoints are non-default *) None
          in
          match entrypoint_opt with
          | Some entrypoint ->
              let ctxt = update_context gas ctxt in
              Script_ir_translator.parse_contract_for_script
                ctxt
                loc
                t
                addr.destination
                ~entrypoint
              >>=? fun (ctxt, maybe_contract) ->
              let gas, ctxt = local_gas_counter_and_outdated_context ctxt in
              let accu = maybe_contract in
              (step [@ocaml.tailcall]) (ctxt, sc) gas k ks accu stack
          | None -> (step [@ocaml.tailcall]) (ctxt, sc) gas k ks None stack)
      | ITransfer_tokens (loc, k) ->
          let p = accu in
          let amount, (Typed_contract {arg_ty; address}, stack) = stack in
          let {destination; entrypoint} = address in
          transfer (ctxt, sc) gas amount loc arg_ty p destination entrypoint
          >>=? fun (accu, ctxt, gas) ->
          (step [@ocaml.tailcall]) (ctxt, sc) gas k ks accu stack
      | IImplicit_account (_, k) ->
          let key = accu in
          let arg_ty = unit_t in
          let address =
            {
              destination = Contract (Contract.Implicit key);
              entrypoint = Entrypoint.default;
            }
          in
          let res = Typed_contract {arg_ty; address} in
          (step [@ocaml.tailcall]) g gas k ks res stack
      | IView (_, view_signature, stack_ty, k) ->
          (iview [@ocaml.tailcall])
            id
            g
            gas
            view_signature
            stack_ty
            k
            ks
            accu
            stack
      | ICreate_contract {storage_type; code; k; loc = _} ->
          (* Removed the instruction's arguments manager, spendable and delegatable *)
          let delegate = accu in
          let credit, (init, stack) = stack in
          create_contract g gas storage_type code delegate credit init
          >>=? fun (res, contract, ctxt, gas) ->
          let destination = Destination.Contract (Originated contract) in
          let stack = ({destination; entrypoint = Entrypoint.default}, stack) in
          (step [@ocaml.tailcall]) (ctxt, sc) gas k ks res stack
      | ISet_delegate (_, k) ->
          let delegate = accu in
          let operation = Delegation delegate in
          let ctxt = update_context gas ctxt in
          fresh_internal_nonce ctxt >>?= fun (ctxt, nonce) ->
          let piop =
            Internal_operation
              {source = Contract.Originated sc.self; operation; nonce}
          in
          let res = {piop; lazy_storage_diff = None} in
          let gas, ctxt = local_gas_counter_and_outdated_context ctxt in
          (step [@ocaml.tailcall]) (ctxt, sc) gas k ks res stack
      | IBalance (_, k) ->
          let ctxt = update_context gas ctxt in
          let gas, ctxt = local_gas_counter_and_outdated_context ctxt in
          let g = (ctxt, sc) in
          (step [@ocaml.tailcall]) g gas k ks sc.balance (accu, stack)
      | ILevel (_, k) ->
          (step [@ocaml.tailcall]) g gas k ks sc.level (accu, stack)
      | INow (_, k) -> (step [@ocaml.tailcall]) g gas k ks sc.now (accu, stack)
      | IMin_block_time (_, k) ->
          let ctxt = update_context gas ctxt in
          let min_block_time =
            Alpha_context.Constants.minimal_block_delay ctxt
            |> Period.to_seconds |> Script_int.of_int64
            (* Realistically the block delay is never negative. *)
            |> Script_int.abs
          in
          let new_stack = (accu, stack) in
          (step [@ocaml.tailcall]) g gas k ks min_block_time new_stack
      | ICheck_signature (_, k) ->
          let key = accu and signature, (message, stack) = stack in
          let res = Script_signature.check key signature message in
          (step [@ocaml.tailcall]) g gas k ks res stack
      | IHash_key (_, k) ->
          let key = accu in
          let res = Signature.Public_key.hash key in
          (step [@ocaml.tailcall]) g gas k ks res stack
      | IBlake2b (_, k) ->
          let bytes = accu in
          let hash = Raw_hashes.blake2b bytes in
          (step [@ocaml.tailcall]) g gas k ks hash stack
      | ISha256 (_, k) ->
          let bytes = accu in
          let hash = Raw_hashes.sha256 bytes in
          (step [@ocaml.tailcall]) g gas k ks hash stack
      | ISha512 (_, k) ->
          let bytes = accu in
          let hash = Raw_hashes.sha512 bytes in
          (step [@ocaml.tailcall]) g gas k ks hash stack
      | ISource (_, k) ->
          let destination : Destination.t = Contract sc.payer in
          let res = {destination; entrypoint = Entrypoint.default} in
          (step [@ocaml.tailcall]) g gas k ks res (accu, stack)
      | ISender (_, k) ->
          let destination : Destination.t = Contract sc.source in
          let res = {destination; entrypoint = Entrypoint.default} in
          (step [@ocaml.tailcall]) g gas k ks res (accu, stack)
      | ISelf (_, ty, entrypoint, k) ->
          let destination : Destination.t = Contract (Originated sc.self) in
          let address = {destination; entrypoint} in
          let res = Typed_contract {arg_ty = ty; address} in
          (step [@ocaml.tailcall]) g gas k ks res (accu, stack)
      | ISelf_address (_, k) ->
          let destination : Destination.t = Contract (Originated sc.self) in
          let res = {destination; entrypoint = Entrypoint.default} in
          (step [@ocaml.tailcall]) g gas k ks res (accu, stack)
      | IAmount (_, k) ->
          let accu = sc.amount and stack = (accu, stack) in
          (step [@ocaml.tailcall]) g gas k ks accu stack
      | IDig (_, _n, n', k) ->
          let (accu, stack), x =
            interp_stack_prefix_preserving_operation
              (fun v stack -> (stack, v))
              n'
              accu
              stack
          in
          let accu = x and stack = (accu, stack) in
          (step [@ocaml.tailcall]) g gas k ks accu stack
      | IDug (_, _n, n', k) ->
          let v = accu in
          let accu, stack = stack in
          let (accu, stack), () =
            interp_stack_prefix_preserving_operation
              (fun accu stack -> ((v, (accu, stack)), ()))
              n'
              accu
              stack
          in
          (step [@ocaml.tailcall]) g gas k ks accu stack
      | IDipn (_, _n, n', b, k) ->
          let accu, stack, restore_prefix = kundip n' accu stack k in
          let ks = KCons (restore_prefix, ks) in
          (step [@ocaml.tailcall]) g gas b ks accu stack
      | IDropn (_, _n, n', k) ->
          let stack =
            let rec aux :
                type a s b t.
                (b, t, b, t, a, s, a, s) stack_prefix_preservation_witness ->
                a ->
                s ->
                b * t =
             fun w accu stack ->
              match w with
              | KRest -> (accu, stack)
              | KPrefix (_, _ty, w) ->
                  let accu, stack = stack in
                  aux w accu stack
            in
            aux n' accu stack
          in
          let accu, stack = stack in
          (step [@ocaml.tailcall]) g gas k ks accu stack
      | ISapling_empty_state (_, memo_size, k) ->
          let state = Sapling.empty_state ~memo_size () in
          (step [@ocaml.tailcall]) g gas k ks state (accu, stack)
      | ISapling_verify_update (_, k) -> (
          let transaction = accu in
          let state, stack = stack in
          let address = Contract_hash.to_b58check sc.self in
          let sc_chain_id = Script_chain_id.make sc.chain_id in
          let chain_id = Script_chain_id.to_b58check sc_chain_id in
          let anti_replay = address ^ chain_id in
          let ctxt = update_context gas ctxt in
          Sapling.verify_update ctxt state transaction anti_replay
          >>=? fun (ctxt, balance_state_opt) ->
          let gas, ctxt = local_gas_counter_and_outdated_context ctxt in
          match balance_state_opt with
          | Some (balance, state) ->
              let state =
                Some
                  ( Bytes.of_string transaction.bound_data,
                    (Script_int.of_int64 balance, state) )
              in
              (step [@ocaml.tailcall]) (ctxt, sc) gas k ks state stack
          | None -> (step [@ocaml.tailcall]) (ctxt, sc) gas k ks None stack)
      | ISapling_verify_update_deprecated (_, k) -> (
          let transaction = accu in
          let state, stack = stack in
          let address = Contract_hash.to_b58check sc.self in
          let sc_chain_id = Script_chain_id.make sc.chain_id in
          let chain_id = Script_chain_id.to_b58check sc_chain_id in
          let anti_replay = address ^ chain_id in
          let ctxt = update_context gas ctxt in
          Sapling.Legacy.verify_update ctxt state transaction anti_replay
          >>=? fun (ctxt, balance_state_opt) ->
          let gas, ctxt = local_gas_counter_and_outdated_context ctxt in
          match balance_state_opt with
          | Some (balance, state) ->
              let state = Some (Script_int.of_int64 balance, state) in
              (step [@ocaml.tailcall]) (ctxt, sc) gas k ks state stack
          | None -> (step [@ocaml.tailcall]) (ctxt, sc) gas k ks None stack)
      | IChainId (_, k) ->
          let accu = Script_chain_id.make sc.chain_id
          and stack = (accu, stack) in
          (step [@ocaml.tailcall]) g gas k ks accu stack
      | INever _ -> ( match accu with _ -> .)
      | IVoting_power (_, k) ->
          let key_hash = accu in
          let ctxt = update_context gas ctxt in
          Vote.get_voting_power ctxt key_hash >>=? fun (ctxt, power) ->
          let power = Script_int.(abs (of_int64 power)) in
          let gas, ctxt = local_gas_counter_and_outdated_context ctxt in
          (step [@ocaml.tailcall]) (ctxt, sc) gas k ks power stack
      | ITotal_voting_power (_, k) ->
          let ctxt = update_context gas ctxt in
          Vote.get_total_voting_power ctxt >>=? fun (ctxt, power) ->
          let power = Script_int.(abs (of_int64 power)) in
          let gas, ctxt = local_gas_counter_and_outdated_context ctxt in
          let g = (ctxt, sc) in
          (step [@ocaml.tailcall]) g gas k ks power (accu, stack)
      | IKeccak (_, k) ->
          let bytes = accu in
          let hash = Raw_hashes.keccak256 bytes in
          (step [@ocaml.tailcall]) g gas k ks hash stack
      | ISha3 (_, k) ->
          let bytes = accu in
          let hash = Raw_hashes.sha3_256 bytes in
          (step [@ocaml.tailcall]) g gas k ks hash stack
      | IAdd_bls12_381_g1 (_, k) ->
          let x = accu and y, stack = stack in
          let accu = Script_bls.G1.add x y in
          (step [@ocaml.tailcall]) g gas k ks accu stack
      | IAdd_bls12_381_g2 (_, k) ->
          let x = accu and y, stack = stack in
          let accu = Script_bls.G2.add x y in
          (step [@ocaml.tailcall]) g gas k ks accu stack
      | IAdd_bls12_381_fr (_, k) ->
          let x = accu and y, stack = stack in
          let accu = Script_bls.Fr.add x y in
          (step [@ocaml.tailcall]) g gas k ks accu stack
      | IMul_bls12_381_g1 (_, k) ->
          let x = accu and y, stack = stack in
          let accu = Script_bls.G1.mul x y in
          (step [@ocaml.tailcall]) g gas k ks accu stack
      | IMul_bls12_381_g2 (_, k) ->
          let x = accu and y, stack = stack in
          let accu = Script_bls.G2.mul x y in
          (step [@ocaml.tailcall]) g gas k ks accu stack
      | IMul_bls12_381_fr (_, k) ->
          let x = accu and y, stack = stack in
          let accu = Script_bls.Fr.mul x y in
          (step [@ocaml.tailcall]) g gas k ks accu stack
      | IMul_bls12_381_fr_z (_, k) ->
          let x = accu and y, stack = stack in
          let x = Script_bls.Fr.of_z (Script_int.to_zint x) in
          let res = Script_bls.Fr.mul x y in
          (step [@ocaml.tailcall]) g gas k ks res stack
      | IMul_bls12_381_z_fr (_, k) ->
          let y = accu and x, stack = stack in
          let x = Script_bls.Fr.of_z (Script_int.to_zint x) in
          let res = Script_bls.Fr.mul x y in
          (step [@ocaml.tailcall]) g gas k ks res stack
      | IInt_bls12_381_fr (_, k) ->
          let x = accu in
          let res = Script_int.of_zint (Script_bls.Fr.to_z x) in
          (step [@ocaml.tailcall]) g gas k ks res stack
      | INeg_bls12_381_g1 (_, k) ->
          let x = accu in
          let accu = Script_bls.G1.negate x in
          (step [@ocaml.tailcall]) g gas k ks accu stack
      | INeg_bls12_381_g2 (_, k) ->
          let x = accu in
          let accu = Script_bls.G2.negate x in
          (step [@ocaml.tailcall]) g gas k ks accu stack
      | INeg_bls12_381_fr (_, k) ->
          let x = accu in
          let accu = Script_bls.Fr.negate x in
          (step [@ocaml.tailcall]) g gas k ks accu stack
      | IPairing_check_bls12_381 (_, k) ->
          let pairs = accu in
          let check = Script_bls.pairing_check pairs.elements in
          (step [@ocaml.tailcall]) g gas k ks check stack
      | IComb (_, _, witness, k) ->
          let rec aux :
              type a b s c d t.
              (a, b, s, c, d, t) comb_gadt_witness -> a * (b * s) -> c * (d * t)
              =
           fun witness stack ->
            match (witness, stack) with
            | Comb_one, stack -> stack
            | Comb_succ witness', (a, tl) ->
                let b, tl' = aux witness' tl in
                ((a, b), tl')
          in
          let stack = aux witness (accu, stack) in
          let accu, stack = stack in
          (step [@ocaml.tailcall]) g gas k ks accu stack
      | IUncomb (_, _, witness, k) ->
          let rec aux :
              type a b s c d t.
              (a, b, s, c, d, t) uncomb_gadt_witness ->
              a * (b * s) ->
              c * (d * t) =
           fun witness stack ->
            match (witness, stack) with
            | Uncomb_one, stack -> stack
            | Uncomb_succ witness', ((a, b), tl) -> (a, aux witness' (b, tl))
          in
          let stack = aux witness (accu, stack) in
          let accu, stack = stack in
          (step [@ocaml.tailcall]) g gas k ks accu stack
      | IComb_get (_, _, witness, k) ->
          let comb = accu in
          let rec aux :
              type before after.
              (before, after) comb_get_gadt_witness -> before -> after =
           fun witness comb ->
            match (witness, comb) with
            | Comb_get_zero, v -> v
            | Comb_get_one, (a, _) -> a
            | Comb_get_plus_two witness', (_, b) -> aux witness' b
          in
          let accu = aux witness comb in
          (step [@ocaml.tailcall]) g gas k ks accu stack
      | IComb_set (_, _, witness, k) ->
          let value = accu and comb, stack = stack in
          let rec aux :
              type value before after.
              (value, before, after) comb_set_gadt_witness ->
              value ->
              before ->
              after =
           fun witness value item ->
            match (witness, item) with
            | Comb_set_zero, _ -> value
            | Comb_set_one, (_hd, tl) -> (value, tl)
            | Comb_set_plus_two witness', (hd, tl) -> (hd, aux witness' value tl)
          in
          let accu = aux witness value comb in
          (step [@ocaml.tailcall]) g gas k ks accu stack
      | IDup_n (_, _, witness, k) ->
          let rec aux :
              type a b before after.
              (a, b, before, after) dup_n_gadt_witness ->
              a * (b * before) ->
              after =
           fun witness stack ->
            match (witness, stack) with
            | Dup_n_zero, (a, _) -> a
            | Dup_n_succ witness', (_, tl) -> aux witness' tl
          in
          let stack = (accu, stack) in
          let accu = aux witness stack in
          (step [@ocaml.tailcall]) g gas k ks accu stack
      (* Tickets *)
      | ITicket (_, _, k) ->
          let contents = accu and amount, stack = stack in
          let ticketer = Contract.Originated sc.self in
          let accu = {ticketer; contents; amount} in
          (step [@ocaml.tailcall]) g gas k ks accu stack
      | IRead_ticket (_, _, k) ->
          let {ticketer; contents; amount} = accu in
          let stack = (accu, stack) in
          let destination : Destination.t = Contract ticketer in
          let addr = {destination; entrypoint = Entrypoint.default} in
          let accu = (addr, (contents, amount)) in
          (step [@ocaml.tailcall]) g gas k ks accu stack
      | ISplit_ticket (_, k) ->
          let ticket = accu and (amount_a, amount_b), stack = stack in
          let result =
            if
              Compare.Int.(
                Script_int.(compare (add_n amount_a amount_b) ticket.amount) = 0)
            then
              Some
                ( {ticket with amount = amount_a},
                  {ticket with amount = amount_b} )
            else None
          in
          (step [@ocaml.tailcall]) g gas k ks result stack
      | IJoin_tickets (_, contents_ty, k) ->
          let ticket_a, ticket_b = accu in
          let result =
            if
              Compare.Int.(
                Contract.compare ticket_a.ticketer ticket_b.ticketer = 0
                && Script_comparable.compare_comparable
                     contents_ty
                     ticket_a.contents
                     ticket_b.contents
                   = 0)
            then
              Some
                {
                  ticketer = ticket_a.ticketer;
                  contents = ticket_a.contents;
                  amount = Script_int.add_n ticket_a.amount ticket_b.amount;
                }
            else None
          in
          (step [@ocaml.tailcall]) g gas k ks result stack
      | IOpen_chest (_, k) ->
          let open Timelock in
          let chest_key = accu in
          let chest, (time_z, stack) = stack in
          (* If the time is not an integer we then consider the proof as
             incorrect. Indeed the verification asks for an integer for practical reasons.
             Therefore no proof can be correct.*)
          let accu =
            match Script_int.to_int time_z with
            | None -> R false
            | Some time -> (
                match Script_timelock.open_chest chest chest_key ~time with
                | Correct bytes -> L bytes
                | Bogus_cipher -> R false
                | Bogus_opening -> R true)
          in
          (step [@ocaml.tailcall]) g gas k ks accu stack
      | IEmit {tag; ty = event_type; unparsed_ty; k; loc = _} ->
          let event_data = accu in
          emit_event (ctxt, sc) gas ~event_type ~unparsed_ty ~tag ~event_data
          >>=? fun (accu, ctxt, gas) ->
          (step [@ocaml.tailcall]) (ctxt, sc) gas k ks accu stack)

(*

  Zero-cost logging
  =================

*)

(*

   The following functions insert a logging instruction to continue
   the logging process in the next execution steps.

   There is a special treatment of instructions that generate fresh
   continuations: we pass a constructor as argument to their
   evaluation rules so that they can instrument these fresh
   continuations by themselves. Instructions that create continuations
   without calling specialised functions have their branches from [step]
   function duplicated and adjusted here.

   This on-the-fly instrumentation of the execution allows zero-cost
   logging since logging instructions are only introduced if an
   initial logging continuation is pushed in the initial continuation
   that starts the evaluation.

*)
and log :
    type a s b t r f.
    logger * logging_event -> (a, s) stack_ty -> (a, s, b, t, r, f) step_type =
 fun (logger, event) sty ((ctxt, _) as g) gas k ks accu stack ->
  (match (k, event) with
  | ILog _, LogEntry -> ()
  | _, LogEntry ->
      Script_interpreter_logging.log_entry logger ctxt gas k sty accu stack
  | _, LogExit prev_loc ->
      Script_interpreter_logging.log_exit
        logger
        ctxt
        gas
        prev_loc
        k
        sty
        accu
        stack) ;
  Script_interpreter_logging.log_next_kinstr logger sty k >>?= fun k ->
  (* We need to match on instructions that create continuations so
     that we can instrument those continuations with [KLog] (see
     comment above).  For functions that don't do this, we simply call
     [step], as they don't require any special treatment. *)
  match k with
  | IIf_none {branch_if_none; branch_if_some; k; _} -> (
      let (Item_t (Option_t (ty, _, _), rest)) = sty in
      Script_interpreter_logging.branched_final_stack_type
        [
          Ex_init_stack_ty (rest, branch_if_none);
          Ex_init_stack_ty (Item_t (ty, rest), branch_if_some);
        ]
      >>?= fun sty_opt ->
      let ks' =
        match sty_opt with
        | None -> KCons (k, ks)
        | Some sty' ->
            Script_interpreter_logging.instrument_cont logger sty'
            @@ KCons (k, ks)
      in
      match accu with
      | None ->
          let accu, stack = stack in
          (step [@ocaml.tailcall]) g gas branch_if_none ks' accu stack
      | Some v -> (step [@ocaml.tailcall]) g gas branch_if_some ks' v stack)
  | IOpt_map {body; k; loc = _} -> (
      match accu with
      | None -> (step [@ocaml.tailcall]) g gas k ks None stack
      | Some v ->
          let (Item_t (Option_t (ty, _, _), rest)) = sty in
          let bsty = Item_t (ty, rest) in
          let kmap_head = KMap_head (Option.some, KCons (k, ks)) in
          Script_interpreter_logging.kinstr_final_stack_type bsty body
          >>?= fun sty_opt ->
          let ks' =
            match sty_opt with
            | None -> kmap_head
            | Some sty' ->
                Script_interpreter_logging.instrument_cont logger sty' kmap_head
          in
          (step [@ocaml.tailcall]) g gas body ks' v stack)
  | IIf_left {branch_if_left; branch_if_right; k; _} -> (
      let (Item_t (Union_t (lty, rty, _, _), rest)) = sty in
      Script_interpreter_logging.branched_final_stack_type
        [
          Ex_init_stack_ty (Item_t (lty, rest), branch_if_left);
          Ex_init_stack_ty (Item_t (rty, rest), branch_if_right);
        ]
      >>?= fun sty_opt ->
      let k' =
        match sty_opt with
        | None -> KCons (k, ks)
        | Some sty' ->
            Script_interpreter_logging.instrument_cont logger sty'
            @@ KCons (k, ks)
      in
      match accu with
      | L v -> (step [@ocaml.tailcall]) g gas branch_if_left k' v stack
      | R v -> (step [@ocaml.tailcall]) g gas branch_if_right k' v stack)
  | IIf_cons {branch_if_cons; branch_if_nil; k; _} -> (
      let (Item_t ((List_t (elty, _) as lty), rest)) = sty in
      Script_interpreter_logging.branched_final_stack_type
        [
          Ex_init_stack_ty (rest, branch_if_nil);
          Ex_init_stack_ty (Item_t (elty, Item_t (lty, rest)), branch_if_cons);
        ]
      >>?= fun sty' ->
      let k' =
        match sty' with
        | None -> KCons (k, ks)
        | Some sty' ->
            Script_interpreter_logging.instrument_cont logger sty'
            @@ KCons (k, ks)
      in
      match accu.elements with
      | [] ->
          let accu, stack = stack in
          (step [@ocaml.tailcall]) g gas branch_if_nil k' accu stack
      | hd :: tl ->
          let tl = {elements = tl; length = accu.length - 1} in
          (step [@ocaml.tailcall]) g gas branch_if_cons k' hd (tl, stack))
  | IList_map (_, body, ty, k) ->
      let (Item_t (_, sty')) = sty in
      let instrument = Script_interpreter_logging.instrument_cont logger sty' in
      (ilist_map [@ocaml.tailcall]) instrument g gas body k ks ty accu stack
  | IList_iter (_, ty, body, k) ->
      let (Item_t (_, sty')) = sty in
      let instrument = Script_interpreter_logging.instrument_cont logger sty' in
      (ilist_iter [@ocaml.tailcall]) instrument g gas body ty k ks accu stack
  | ISet_iter (_, ty, body, k) ->
      let (Item_t (_, rest)) = sty in
      let instrument = Script_interpreter_logging.instrument_cont logger rest in
      (iset_iter [@ocaml.tailcall]) instrument g gas body ty k ks accu stack
  | IMap_map (_, ty, body, k) ->
      let (Item_t (_, rest)) = sty in
      let instrument = Script_interpreter_logging.instrument_cont logger rest in
      (imap_map [@ocaml.tailcall]) instrument g gas body k ks ty accu stack
  | IMap_iter (_, kvty, body, k) ->
      let (Item_t (_, rest)) = sty in
      let instrument = Script_interpreter_logging.instrument_cont logger rest in
      (imap_iter [@ocaml.tailcall]) instrument g gas body kvty k ks accu stack
  | IMul_teznat (loc, k) ->
      (imul_teznat [@ocaml.tailcall]) (Some logger) g gas loc k ks accu stack
  | IMul_nattez (loc, k) ->
      (imul_nattez [@ocaml.tailcall]) (Some logger) g gas loc k ks accu stack
  | ILsl_nat (loc, k) ->
      (ilsl_nat [@ocaml.tailcall]) (Some logger) g gas loc k ks accu stack
  | ILsr_nat (loc, k) ->
      (ilsr_nat [@ocaml.tailcall]) (Some logger) g gas loc k ks accu stack
  | IIf {branch_if_true; branch_if_false; k; _} ->
      let (Item_t (Bool_t, rest)) = sty in
      Script_interpreter_logging.branched_final_stack_type
        [
          Ex_init_stack_ty (rest, branch_if_true);
          Ex_init_stack_ty (rest, branch_if_false);
        ]
      >>?= fun sty' ->
      let k' =
        match sty' with
        | None -> KCons (k, ks)
        | Some sty' ->
            Script_interpreter_logging.instrument_cont logger sty'
            @@ KCons (k, ks)
      in
      let res, stack = stack in
      if accu then (step [@ocaml.tailcall]) g gas branch_if_true k' res stack
      else (step [@ocaml.tailcall]) g gas branch_if_false k' res stack
  | ILoop (_, body, k) ->
      let ks =
        Script_interpreter_logging.instrument_cont logger sty
        @@ KLoop_in (body, KCons (k, ks))
      in
      (next [@ocaml.tailcall]) g gas ks accu stack
  | ILoop_left (_, bl, br) ->
      let ks =
        Script_interpreter_logging.instrument_cont logger sty
        @@ KLoop_in_left (bl, KCons (br, ks))
      in
      (next [@ocaml.tailcall]) g gas ks accu stack
  | IDip (_, b, ty, k) ->
      let (Item_t (_, rest)) = sty in
      Script_interpreter_logging.kinstr_final_stack_type rest b
      >>?= fun rest' ->
      let ign = accu in
      let ks =
        match rest' with
        | None -> KUndip (ign, ty, KCons (k, ks))
        | Some rest' ->
            Script_interpreter_logging.instrument_cont
              logger
              rest'
              (KUndip (ign, ty, KCons (k, ks)))
      in
      let accu, stack = stack in
      (step [@ocaml.tailcall]) g gas b ks accu stack
  | IExec (_, stack_ty, k) ->
      let (Item_t (_, Item_t (Lambda_t (_, ret, _), _))) = sty in
      let sty' = Item_t (ret, Bot_t) in
      let instrument = Script_interpreter_logging.instrument_cont logger sty' in
      iexec instrument (Some logger) g gas stack_ty k ks accu stack
  | IFailwith (kloc, tv) ->
      let {ifailwith} = ifailwith in
      (ifailwith [@ocaml.tailcall]) (Some logger) g gas kloc tv accu
  | IDipn (_, _n, n', b, k) ->
      let accu, stack, restore_prefix = kundip n' accu stack k in
      let dipped_sty = Script_interpreter_logging.dipn_stack_ty n' sty in
      Script_interpreter_logging.kinstr_final_stack_type dipped_sty b
      >>?= fun sty' ->
      let ks =
        match sty' with
        | None -> KCons (restore_prefix, ks)
        | Some sty' ->
            Script_interpreter_logging.instrument_cont logger sty'
            @@ KCons (restore_prefix, ks)
      in
      (step [@ocaml.tailcall]) g gas b ks accu stack
  | IView (_, (View_signature {output_ty; _} as view_signature), stack_ty, k) ->
      let sty' = Item_t (output_ty, Bot_t) in
      let instrument = Script_interpreter_logging.instrument_cont logger sty' in
      (iview [@ocaml.tailcall])
        instrument
        g
        gas
        view_signature
        stack_ty
        k
        ks
        accu
        stack
  | _ -> (step [@ocaml.tailcall]) g gas k ks accu stack
 [@@inline]

and klog :
    type a s r f.
    logger ->
    outdated_context * step_constants ->
    local_gas_counter ->
    (a, s) stack_ty ->
    (a, s, r, f) continuation ->
    (a, s, r, f) continuation ->
    a ->
    s ->
    (r * f * outdated_context * local_gas_counter) tzresult Lwt.t =
 fun logger g gas stack_ty k0 ks accu stack ->
  (match ks with
  | KLog _ -> ()
  | _ -> Script_interpreter_logging.log_control logger ks) ;
  Script_interpreter_logging.log_next_continuation logger stack_ty ks
  >>?= function
  | KCons (ki, k) -> (step [@ocaml.tailcall]) g gas ki k accu stack
  | KLoop_in (ki, k) -> (kloop_in [@ocaml.tailcall]) g gas k0 ki k accu stack
  | KReturn (_, _, _) as k -> (next [@ocaml.tailcall]) g gas k accu stack
  | KLoop_in_left (ki, k) ->
      (kloop_in_left [@ocaml.tailcall]) g gas k0 ki k accu stack
  | KUndip (_, _, _) as k -> (next [@ocaml.tailcall]) g gas k accu stack
  | KIter (body, xty, xs, k) ->
      let instrument =
        Script_interpreter_logging.instrument_cont logger stack_ty
      in
      (kiter [@ocaml.tailcall]) instrument g gas body xty xs k accu stack
  | KList_enter_body (body, xs, ys, ty, len, k) ->
      let (List_t (vty, _)) = ty in
      let sty = Item_t (vty, stack_ty) in
      let instrument = Script_interpreter_logging.instrument_cont logger sty in
      (klist_enter [@ocaml.tailcall])
        instrument
        g
        gas
        body
        xs
        ys
        ty
        len
        k
        accu
        stack
  | KList_exit_body (body, xs, ys, ty_opt, len, k) ->
      let (Item_t (_, rest)) = stack_ty in
      let instrument = Script_interpreter_logging.instrument_cont logger rest in
      (klist_exit [@ocaml.tailcall])
        instrument
        g
        gas
        body
        xs
        ys
        ty_opt
        len
        k
        accu
        stack
  | KMap_enter_body (body, xs, ys, ty, k) ->
      let (Map_t (_, vty, _)) = ty in
      let sty = Item_t (vty, stack_ty) in
      let instrument = Script_interpreter_logging.instrument_cont logger sty in
      (kmap_enter [@ocaml.tailcall]) instrument g gas body xs ty ys k accu stack
  | KMap_exit_body (body, xs, ys, yk, ty_opt, k) ->
      let (Item_t (_, rest)) = stack_ty in
      let instrument = Script_interpreter_logging.instrument_cont logger rest in
      (kmap_exit [@ocaml.tailcall])
        instrument
        g
        gas
        body
        xs
        ty_opt
        ys
        yk
        k
        accu
        stack
  | KMap_head (f, k) -> (next [@ocaml.taillcall]) g gas k (f accu) stack
  | KView_exit (scs, k) ->
      (next [@ocaml.tailcall]) (fst g, scs) gas k accu stack
  | KLog _ as k ->
      (* This case should never happen. *)
      (next [@ocaml.tailcall]) g gas k accu stack
  | KNil as k -> (next [@ocaml.tailcall]) g gas k accu stack
 [@@inline]
(*

   Entrypoints
   ===========

*)

let step_descr ~log_now logger (ctxt, sc) descr accu stack =
  let gas, outdated_ctxt = local_gas_counter_and_outdated_context ctxt in
  (match logger with
  | None -> step (outdated_ctxt, sc) gas descr.kinstr KNil accu stack
  | Some logger ->
      (if log_now then
       let loc = kinstr_location descr.kinstr in
       logger.log_interp descr.kinstr ctxt loc descr.kbef (accu, stack)) ;
      let log =
        ILog
          ( kinstr_location descr.kinstr,
            descr.kbef,
            LogEntry,
            logger,
            descr.kinstr )
      in
      let knil = KLog (KNil, descr.kaft, logger) in
      step (outdated_ctxt, sc) gas log knil accu stack)
  >>=? fun (accu, stack, ctxt, gas) ->
  return (accu, stack, update_context gas ctxt)

let interp logger g (Lam (code, _)) arg =
  step_descr ~log_now:true logger g code arg (EmptyCell, EmptyCell)
  >|=? fun (ret, (EmptyCell, EmptyCell), ctxt) -> (ret, ctxt)

(*

   High-level functions
   ====================

*)
type execution_arg =
  | Typed_arg :
      Script.location * ('a, _) Script_typed_ir.ty * 'a
      -> execution_arg
  | Untyped_arg : Script.expr -> execution_arg

let lift_execution_arg (type a ac) ctxt ~internal (entrypoint_ty : (a, ac) ty)
    (construct : a -> 'b) arg : ('b * context) tzresult Lwt.t =
  (match arg with
  | Untyped_arg arg ->
      let arg = Micheline.root arg in
      parse_data ctxt ~legacy:false ~allow_forged:internal entrypoint_ty arg
  | Typed_arg (loc, parsed_arg_ty, parsed_arg) ->
      Gas_monad.run
        ctxt
        (Script_ir_translator.ty_eq
           ~error_details:(Informative loc)
           entrypoint_ty
           parsed_arg_ty)
      >>?= fun (res, ctxt) ->
      res >>?= fun Eq ->
      let parsed_arg : a = parsed_arg in
      return (parsed_arg, ctxt))
  >>=? fun (entrypoint_arg, ctxt) -> return (construct entrypoint_arg, ctxt)

type execution_result = {
  script : Script_ir_translator.ex_script;
  code_size : int;
  storage : Script.expr;
  lazy_storage_diff : Lazy_storage.diffs option;
  operations : packed_internal_operation list;
  ticket_diffs : Z.t Ticket_token_map.t;
}

let execute_any_arg logger ctxt mode step_constants ~entrypoint ~internal
    unparsed_script cached_script arg =
  (match cached_script with
  | None ->
      parse_script
        ctxt
        unparsed_script
        ~legacy:true
        ~allow_forged_in_storage:true
  | Some ex_script -> return (ex_script, ctxt))
  >>=? fun ( Ex_script
               (Script
                 {
                   code_size;
                   code;
                   arg_type;
                   storage = old_storage;
                   storage_type;
                   entrypoints;
                   views;
                 }),
             ctxt ) ->
  Gas_monad.run
    ctxt
    (find_entrypoint
       ~error_details:(Informative ())
       arg_type
       entrypoints
       entrypoint)
  >>?= fun (r, ctxt) ->
  let self_contract = Contract.Originated step_constants.self in
  record_trace (Bad_contract_parameter self_contract) r
  >>?= fun (Ex_ty_cstr {ty = entrypoint_ty; construct; original_type_expr = _})
    ->
  trace
    (Bad_contract_parameter self_contract)
    (lift_execution_arg ctxt ~internal entrypoint_ty construct arg)
  >>=? fun (arg, ctxt) ->
  Script_ir_translator.collect_lazy_storage ctxt arg_type arg
  >>?= fun (to_duplicate, ctxt) ->
  Script_ir_translator.collect_lazy_storage ctxt storage_type old_storage
  >>?= fun (to_update, ctxt) ->
  trace
    (Runtime_contract_error step_constants.self)
    (interp logger (ctxt, step_constants) code (arg, old_storage))
  >>=? fun ((ops, new_storage), ctxt) ->
  Script_ir_translator.extract_lazy_storage_diff
    ctxt
    mode
    ~temporary:false
    ~to_duplicate
    ~to_update
    storage_type
    new_storage
  >>=? fun (storage, lazy_storage_diff, ctxt) ->
  trace
    Cannot_serialize_storage
    ( unparse_data ctxt mode storage_type storage
    >>=? fun (unparsed_storage, ctxt) ->
      Lwt.return
        ( Gas.consume ctxt (Script.strip_locations_cost unparsed_storage)
        >>? fun ctxt -> ok (Micheline.strip_locations unparsed_storage, ctxt) )
    )
  >>=? fun (unparsed_storage, ctxt) ->
  let op_to_couple op = (op.piop, op.lazy_storage_diff) in
  let operations, op_diffs =
    ops.elements |> List.map op_to_couple |> List.split
  in
  let lazy_storage_diff_all =
    match
      List.flatten
        (List.map (Option.value ~default:[]) (op_diffs @ [lazy_storage_diff]))
    with
    | [] -> None
    | diff -> Some diff
  in
  let script =
    Ex_script
      (Script
         {code_size; code; arg_type; storage; storage_type; entrypoints; views})
  in
  Ticket_scanner.type_has_tickets ctxt arg_type
  >>?= fun (arg_type_has_tickets, ctxt) ->
  Ticket_scanner.type_has_tickets ctxt storage_type
  >>?= fun (storage_type_has_tickets, ctxt) ->
  (* Collect the ticket diffs *)
  Ticket_accounting.ticket_diffs
    ctxt
    ~arg_type_has_tickets
    ~storage_type_has_tickets
    ~arg
    ~old_storage
    ~new_storage
    ~lazy_storage_diff:(Option.value ~default:[] lazy_storage_diff)
  >>=? fun (ticket_diffs, ctxt) ->
  (* We consume gas after the fact in order to not have to instrument
     [script_size] (for efficiency).
     This is safe, as we already pay gas proportional to storage size
     in [unparse_data]. *)
  let size, cost = Script_ir_translator.script_size script in
  Gas.consume ctxt cost >>?= fun ctxt ->
  return
    ( {
        script;
        code_size = size;
        storage = unparsed_storage;
        lazy_storage_diff = lazy_storage_diff_all;
        operations;
        ticket_diffs;
      },
      ctxt )

let execute_with_typed_parameter ?logger ctxt ~cached_script mode step_constants
    ~script ~entrypoint ~parameter_ty ~location ~parameter ~internal =
  execute_any_arg
    logger
    ctxt
    mode
    step_constants
    ~entrypoint
    ~internal
    script
    cached_script
    (Typed_arg (location, parameter_ty, parameter))

let execute ?logger ctxt ~cached_script mode step_constants ~script ~entrypoint
    ~parameter ~internal =
  execute_any_arg
    logger
    ctxt
    mode
    step_constants
    ~entrypoint
    ~internal
    script
    cached_script
    (Untyped_arg parameter)

(*

    Internals
    =========

*)

(*

   We export the internals definitions for tool that requires
   a white-box view on the interpreter, typically snoop, the
   gas model inference engine.

*)
module Internals = struct
  let next logger g gas sty ks accu stack =
    let ks =
      match logger with None -> ks | Some logger -> KLog (ks, sty, logger)
    in
    next g gas ks accu stack

  let kstep logger ctxt step_constants sty kinstr accu stack =
    let kinstr =
      match logger with
      | None -> kinstr
      | Some logger ->
          ILog (kinstr_location kinstr, sty, LogEntry, logger, kinstr)
    in
    let gas, outdated_ctxt = local_gas_counter_and_outdated_context ctxt in
    step (outdated_ctxt, step_constants) gas kinstr KNil accu stack
    >>=? fun (accu, stack, ctxt, gas) ->
    return (accu, stack, update_context gas ctxt)

  let step (ctxt, step_constants) gas ks accu stack =
    step (ctxt, step_constants) gas ks KNil accu stack

  let step_descr logger ctxt step_constants descr stack =
    step_descr ~log_now:false logger (ctxt, step_constants) descr stack
end
OCaml

Innovation. Community. Security.