package tezos-protocol-013-PtJakart

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file sc_rollup_arith.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
(*****************************************************************************)
(*                                                                           *)
(* Open Source License                                                       *)
(* Copyright (c) 2021 Nomadic Labs <contact@nomadic-labs.com>                *)
(*                                                                           *)
(* Permission is hereby granted, free of charge, to any person obtaining a   *)
(* copy of this software and associated documentation files (the "Software"),*)
(* to deal in the Software without restriction, including without limitation *)
(* the rights to use, copy, modify, merge, publish, distribute, sublicense,  *)
(* and/or sell copies of the Software, and to permit persons to whom the     *)
(* Software is furnished to do so, subject to the following conditions:      *)
(*                                                                           *)
(* The above copyright notice and this permission notice shall be included   *)
(* in all copies or substantial portions of the Software.                    *)
(*                                                                           *)
(* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*)
(* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,  *)
(* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL   *)
(* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*)
(* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING   *)
(* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER       *)
(* DEALINGS IN THE SOFTWARE.                                                 *)
(*                                                                           *)
(*****************************************************************************)

open Alpha_context
open Sc_rollup

module type P = sig
  module Tree : Context.TREE with type key = string list and type value = bytes

  type tree = Tree.tree

  type proof

  val proof_encoding : proof Data_encoding.t

  val proof_start_state : proof -> State_hash.t

  val proof_stop_state : proof -> State_hash.t

  val verify_proof :
    proof ->
    (tree -> (tree * 'a) Lwt.t) ->
    ( tree * 'a,
      [ `Proof_mismatch of string
      | `Stream_too_long of string
      | `Stream_too_short of string ] )
    result
    Lwt.t
end

module type S = sig
  include Sc_rollup_PVM_sem.S

  val name : string

  val parse_boot_sector : string -> string option

  val pp_boot_sector : Format.formatter -> string -> unit

  val pp : state -> (Format.formatter -> unit -> unit) Lwt.t

  val get_tick : state -> Sc_rollup.Tick.t Lwt.t

  type status = Halted | WaitingForInputMessage | Parsing | Evaluating

  val get_status : state -> status Lwt.t

  type instruction = IPush : int -> instruction | IAdd : instruction

  val equal_instruction : instruction -> instruction -> bool

  val pp_instruction : Format.formatter -> instruction -> unit

  val get_parsing_result : state -> bool option Lwt.t

  val get_code : state -> instruction list Lwt.t

  val get_stack : state -> int list Lwt.t

  val get_evaluation_result : state -> bool option Lwt.t

  val get_is_stuck : state -> string option Lwt.t
end

module Make (Context : P) :
  S with type context = Context.Tree.t and type state = Context.tree = struct
  module Tree = Context.Tree

  type context = Context.Tree.t

  type hash = State_hash.t

  type proof = Context.proof

  let proof_encoding = Context.proof_encoding

  let proof_start_state = Context.proof_start_state

  let proof_stop_state = Context.proof_stop_state

  let name = "arith"

  let parse_boot_sector s = Some s

  let pp_boot_sector fmt s = Format.fprintf fmt "%s" s

  type tree = Tree.tree

  type status = Halted | WaitingForInputMessage | Parsing | Evaluating

  type instruction = IPush : int -> instruction | IAdd : instruction

  let equal_instruction i1 i2 =
    match (i1, i2) with
    | (IPush x, IPush y) -> Compare.Int.(x = y)
    | (IAdd, IAdd) -> true
    | (_, _) -> false

  let pp_instruction fmt = function
    | IPush x -> Format.fprintf fmt "push(%d)" x
    | IAdd -> Format.fprintf fmt "add"

  (*

     The machine state is represented using a Merkle tree.

     Here is the data model of this state represented in the tree:

     - tick : Tick.t
       The current tick counter of the machine.
     - status : status
       The current status of the machine.
     - stack : int deque
       The stack of integers.
     - next_message : string option
       The current input message to be processed.
     - code : instruction deque
       The instructions parsed from the input message.
     - lexer_state : int * int
       The internal state of the lexer.
     - parsing_state : parsing_state
       The internal state of the parser.
     - parsing_result : bool option
       The outcome of parsing.
     - evaluation_result : bool option
       The outcome of evaluation.

  *)
  module State = struct
    type state = tree

    module Monad : sig
      type 'a t

      val run : 'a t -> state -> (state * 'a option) Lwt.t

      val is_stuck : string option t

      val internal_error : string -> 'a t

      val return : 'a -> 'a t

      module Syntax : sig
        val ( let* ) : 'a t -> ('a -> 'b t) -> 'b t
      end

      val remove : Tree.key -> unit t

      val find_value : Tree.key -> 'a Data_encoding.t -> 'a option t

      val get_value : default:'a -> Tree.key -> 'a Data_encoding.t -> 'a t

      val set_value : Tree.key -> 'a Data_encoding.t -> 'a -> unit t
    end = struct
      type 'a t = state -> (state * 'a option) Lwt.t

      let return x state = Lwt.return (state, Some x)

      let bind m f state =
        let open Lwt_syntax in
        let* (state, res) = m state in
        match res with None -> return (state, None) | Some res -> f res state

      module Syntax = struct
        let ( let* ) = bind
      end

      let run m state = m state

      let internal_error_key = ["internal_error"]

      let internal_error msg tree =
        let open Lwt_syntax in
        let* tree = Tree.add tree internal_error_key (Bytes.of_string msg) in
        return (tree, None)

      let is_stuck tree =
        let open Lwt_syntax in
        let* v = Tree.find tree internal_error_key in
        return (tree, Some (Option.map Bytes.to_string v))

      let remove key tree =
        let open Lwt_syntax in
        let* tree = Tree.remove tree key in
        return (tree, Some ())

      let find_value key encoding state =
        let open Lwt_syntax in
        let* obytes = Tree.find state key in
        match obytes with
        | None -> return (state, Some None)
        | Some bytes -> (
            match Data_encoding.Binary.of_bytes_opt encoding bytes with
            | None -> internal_error "Internal_Error during decoding" state
            | Some v -> return (state, Some (Some v)))

      let get_value ~default key encoding =
        let open Syntax in
        let* ov = find_value key encoding in
        match ov with None -> return default | Some x -> return x

      let set_value key encoding value tree =
        let open Lwt_syntax in
        Data_encoding.Binary.to_bytes_opt encoding value |> function
        | None -> internal_error "Internal_Error during encoding" tree
        | Some bytes ->
            let* tree = Tree.add tree key bytes in
            return (tree, Some ())
    end

    open Monad
    open Monad.Syntax

    module MakeVar (P : sig
      type t

      val name : string

      val initial : t

      val pp : Format.formatter -> t -> unit

      val encoding : t Data_encoding.t
    end) =
    struct
      let key = [P.name]

      let create = set_value key P.encoding P.initial

      let get =
        let* v = find_value key P.encoding in
        match v with
        | None ->
            (* This case should not happen if [create] is properly called. *)
            return P.initial
        | Some v -> return v

      let set = set_value key P.encoding

      let pp =
        let open Monad.Syntax in
        let* v = get in
        return @@ fun fmt () -> Format.fprintf fmt "@[%s : %a@]" P.name P.pp v
    end

    module MakeDeque (P : sig
      type t

      val name : string

      val encoding : t Data_encoding.t
    end) =
    struct
      (*

         A stateful deque.

         [[head; end[] is the index range for the elements of the deque.

         The length of the deque is therefore [end - head].

      *)

      let head_key = [P.name; "head"]

      let end_key = [P.name; "end"]

      let get_head = get_value ~default:Z.zero head_key Data_encoding.z

      let set_head = set_value head_key Data_encoding.z

      let get_end = get_value ~default:(Z.of_int 0) end_key Data_encoding.z

      let set_end = set_value end_key Data_encoding.z

      let idx_key idx = [P.name; Z.to_string idx]

      let push x =
        let open Monad.Syntax in
        let* head_idx = get_head in
        let head_idx' = Z.pred head_idx in
        let* () = set_head head_idx' in
        set_value (idx_key head_idx') P.encoding x

      let pop =
        let open Monad.Syntax in
        let* head_idx = get_head in
        let* end_idx = get_end in
        if Z.(leq end_idx head_idx) then return None
        else
          let* v = find_value (idx_key head_idx) P.encoding in
          match v with
          | None -> (* By invariants of the Deque. *) assert false
          | Some x ->
              let* () = remove (idx_key head_idx) in
              let head_idx = Z.succ head_idx in
              let* () = set_head head_idx in
              return (Some x)

      let inject x =
        let open Monad.Syntax in
        let* end_idx = get_end in
        let end_idx' = Z.succ end_idx in
        let* () = set_end end_idx' in
        set_value (idx_key end_idx) P.encoding x

      let to_list =
        let open Monad.Syntax in
        let* head_idx = get_head in
        let* end_idx = get_end in
        let rec aux l idx =
          if Z.(lt idx head_idx) then return l
          else
            let* v = find_value (idx_key idx) P.encoding in
            match v with
            | None -> (* By invariants of deque *) assert false
            | Some v -> aux (v :: l) (Z.pred idx)
        in
        aux [] (Z.pred end_idx)

      let clear = remove [P.name]
    end

    module CurrentTick = MakeVar (struct
      include Tick

      let name = "tick"
    end)

    module Stack = MakeDeque (struct
      type t = int

      let name = "stack"

      let encoding = Data_encoding.int31
    end)

    module Code = MakeDeque (struct
      type t = instruction

      let name = "code"

      let encoding =
        Data_encoding.(
          union
            [
              case
                ~title:"push"
                (Tag 0)
                Data_encoding.int31
                (function IPush x -> Some x | _ -> None)
                (fun x -> IPush x);
              case
                ~title:"add"
                (Tag 1)
                Data_encoding.unit
                (function IAdd -> Some () | _ -> None)
                (fun () -> IAdd);
            ])
    end)

    module Boot_sector = MakeVar (struct
      type t = string

      let name = "boot_sector"

      let initial = ""

      let encoding = Data_encoding.string

      let pp fmt s = Format.fprintf fmt "%s" s
    end)

    module Status = MakeVar (struct
      type t = status

      let initial = Halted

      let encoding =
        Data_encoding.string_enum
          [
            ("Halted", Halted);
            ("WaitingForInput", WaitingForInputMessage);
            ("Parsing", Parsing);
            ("Evaluating", Evaluating);
          ]

      let name = "status"

      let string_of_status = function
        | Halted -> "Halted"
        | WaitingForInputMessage -> "WaitingForInputMessage"
        | Parsing -> "Parsing"
        | Evaluating -> "Evaluating"

      let pp fmt status = Format.fprintf fmt "%s" (string_of_status status)
    end)

    module CurrentLevel = MakeVar (struct
      type t = Raw_level.t

      let initial = Raw_level.root

      let encoding = Raw_level.encoding

      let name = "current_level"

      let pp = Raw_level.pp
    end)

    module MessageCounter = MakeVar (struct
      type t = Z.t

      let initial = Z.(pred zero)

      let encoding = Data_encoding.n

      let name = "message_counter"

      let pp = Z.pp_print
    end)

    module NextMessage = MakeVar (struct
      type t = string option

      let initial = None

      let encoding = Data_encoding.(option string)

      let name = "next_message"

      let pp fmt = function
        | None -> Format.fprintf fmt "None"
        | Some s -> Format.fprintf fmt "Some %s" s
    end)

    type parser_state = ParseInt | SkipLayout

    module LexerState = MakeVar (struct
      type t = int * int

      let name = "lexer_buffer"

      let initial = (-1, -1)

      let encoding = Data_encoding.(tup2 int31 int31)

      let pp fmt (start, len) =
        Format.fprintf fmt "lexer.(start = %d, len = %d)" start len
    end)

    module ParserState = MakeVar (struct
      type t = parser_state

      let name = "parser_state"

      let initial = SkipLayout

      let encoding =
        Data_encoding.string_enum
          [("ParseInt", ParseInt); ("SkipLayout", SkipLayout)]

      let pp fmt = function
        | ParseInt -> Format.fprintf fmt "Parsing int"
        | SkipLayout -> Format.fprintf fmt "Skipping layout"
    end)

    module ParsingResult = MakeVar (struct
      type t = bool option

      let name = "parsing_result"

      let initial = None

      let encoding = Data_encoding.(option bool)

      let pp fmt = function
        | None -> Format.fprintf fmt "n/a"
        | Some true -> Format.fprintf fmt "parsing succeeds"
        | Some false -> Format.fprintf fmt "parsing fails"
    end)

    module EvaluationResult = MakeVar (struct
      type t = bool option

      let name = "evaluation_result"

      let initial = None

      let encoding = Data_encoding.(option bool)

      let pp fmt = function
        | None -> Format.fprintf fmt "n/a"
        | Some true -> Format.fprintf fmt "evaluation succeeds"
        | Some false -> Format.fprintf fmt "evaluation fails"
    end)

    let pp =
      let open Monad.Syntax in
      let* status_pp = Status.pp in
      let* message_counter_pp = MessageCounter.pp in
      let* next_message_pp = NextMessage.pp in
      let* parsing_result_pp = ParsingResult.pp in
      let* parser_state_pp = ParserState.pp in
      let* lexer_state_pp = LexerState.pp in
      let* evaluation_result_pp = EvaluationResult.pp in
      return @@ fun fmt () ->
      Format.fprintf
        fmt
        "@[<v 0 >@;%a@;%a@;%a@;%a@;%a@;%a@;%a@]"
        status_pp
        ()
        message_counter_pp
        ()
        next_message_pp
        ()
        parsing_result_pp
        ()
        parser_state_pp
        ()
        lexer_state_pp
        ()
        evaluation_result_pp
        ()
  end

  open State

  type state = State.state

  let pp state =
    let open Lwt_syntax in
    let* (_, pp) = Monad.run pp state in
    match pp with
    | None -> return @@ fun fmt _ -> Format.fprintf fmt "<opaque>"
    | Some pp -> return pp

  open Monad

  let initial_state ctxt boot_sector =
    let state = Tree.empty ctxt in
    let m =
      let open Monad.Syntax in
      let* () = Boot_sector.set boot_sector in
      let* () = Status.set Halted in
      return ()
    in
    let open Lwt_syntax in
    let* (state, _) = run m state in
    return state

  let state_hash state =
    let m =
      let open Monad.Syntax in
      let* status = Status.get in
      match status with
      | Halted -> return State_hash.zero
      | _ ->
          Context_hash.to_bytes @@ Tree.hash state |> fun h ->
          return @@ State_hash.hash_bytes [h]
    in
    let open Lwt_syntax in
    let* state = Monad.run m state in
    match state with
    | (_, Some hash) -> return hash
    | _ -> (* Hash computation always succeeds. *) assert false

  let boot =
    let open Monad.Syntax in
    let* () = Status.create in
    let* () = NextMessage.create in
    let* () = Status.set WaitingForInputMessage in
    return ()

  let result_of ~default m state =
    let open Lwt_syntax in
    let* (_, v) = run m state in
    match v with None -> return default | Some v -> return v

  let state_of m state =
    let open Lwt_syntax in
    let* (s, _) = run m state in
    return s

  let get_tick = result_of ~default:Tick.initial CurrentTick.get

  let is_input_state_monadic =
    let open Monad.Syntax in
    let* status = Status.get in
    match status with
    | WaitingForInputMessage ->
        let* level = CurrentLevel.get in
        let* counter = MessageCounter.get in
        return (Some (level, counter))
    | _ -> return None

  let is_input_state = result_of ~default:None @@ is_input_state_monadic

  let get_status = result_of ~default:WaitingForInputMessage @@ Status.get

  let get_code = result_of ~default:[] @@ Code.to_list

  let get_parsing_result = result_of ~default:None @@ ParsingResult.get

  let get_stack = result_of ~default:[] @@ Stack.to_list

  let get_evaluation_result = result_of ~default:None @@ EvaluationResult.get

  let get_is_stuck = result_of ~default:None @@ is_stuck

  let set_input_monadic input =
    let open Sc_rollup_PVM_sem in
    let {inbox_level; message_counter; payload} = input in
    let open Monad.Syntax in
    let* boot_sector = Boot_sector.get in
    let msg = boot_sector ^ payload in
    let* last_level = CurrentLevel.get in
    let* last_counter = MessageCounter.get in
    let update =
      let* () = CurrentLevel.set inbox_level in
      let* () = MessageCounter.set message_counter in
      let* () = NextMessage.set (Some msg) in
      return ()
    in
    let does_not_follow =
      internal_error "The input message does not follow the previous one."
    in
    if Raw_level.(equal last_level inbox_level) then
      if Z.(equal message_counter (succ last_counter)) then update
      else does_not_follow
    else if Raw_level.(last_level < inbox_level) then
      if Z.(equal message_counter Z.zero) then update else does_not_follow
    else does_not_follow

  let set_input input = state_of @@ set_input_monadic input

  let next_char =
    let open Monad.Syntax in
    LexerState.(
      let* (start, len) = get in
      set (start, len + 1))

  let no_message_to_lex () =
    internal_error "lexer: There is no input message to lex"

  let current_char =
    let open Monad.Syntax in
    let* (start, len) = LexerState.get in
    let* msg = NextMessage.get in
    match msg with
    | None -> no_message_to_lex ()
    | Some s ->
        if Compare.Int.(start + len < String.length s) then
          return (Some s.[start + len])
        else return None

  let lexeme =
    let open Monad.Syntax in
    let* (start, len) = LexerState.get in
    let* msg = NextMessage.get in
    match msg with
    | None -> no_message_to_lex ()
    | Some s ->
        let* () = LexerState.set (start + len, 0) in
        return (String.sub s start len)

  let push_int_literal =
    let open Monad.Syntax in
    let* s = lexeme in
    match int_of_string_opt s with
    | Some x -> Code.inject (IPush x)
    | None -> (* By validity of int parsing. *) assert false

  let start_parsing : unit t =
    let open Monad.Syntax in
    let* () = Status.set Parsing in
    let* () = ParsingResult.set None in
    let* () = ParserState.set SkipLayout in
    let* () = LexerState.set (0, 0) in
    let* () = Status.set Parsing in
    let* () = Code.clear in
    return ()

  let start_evaluating : unit t =
    let open Monad.Syntax in
    let* () = EvaluationResult.set None in
    let* () = Stack.clear in
    let* () = Status.set Evaluating in
    return ()

  let stop_parsing outcome =
    let open Monad.Syntax in
    let* () = ParsingResult.set (Some outcome) in
    start_evaluating

  let stop_evaluating outcome =
    let open Monad.Syntax in
    let* () = EvaluationResult.set (Some outcome) in
    Status.set WaitingForInputMessage

  let parse : unit t =
    let open Monad.Syntax in
    let produce_add =
      let* _ = lexeme in
      let* () = next_char in
      let* () = Code.inject IAdd in
      return ()
    in
    let produce_int =
      let* () = push_int_literal in
      let* () = ParserState.set SkipLayout in
      return ()
    in
    let is_digit d = Compare.Char.(d >= '0' && d <= '9') in
    let* parser_state = ParserState.get in
    match parser_state with
    | ParseInt -> (
        let* char = current_char in
        match char with
        | Some d when is_digit d -> next_char
        | Some '+' ->
            let* () = produce_int in
            let* () = produce_add in
            return ()
        | Some ' ' ->
            let* () = produce_int in
            let* () = next_char in
            return ()
        | None ->
            let* () = push_int_literal in
            stop_parsing true
        | _ -> stop_parsing false)
    | SkipLayout -> (
        let* char = current_char in
        match char with
        | Some ' ' -> next_char
        | Some '+' -> produce_add
        | Some d when is_digit d ->
            let* _ = lexeme in
            let* () = next_char in
            let* () = ParserState.set ParseInt in
            return ()
        | None -> stop_parsing true
        | _ -> stop_parsing false)

  let evaluate =
    let open Monad.Syntax in
    let* i = Code.pop in
    match i with
    | None -> stop_evaluating true
    | Some (IPush x) -> Stack.push x
    | Some IAdd -> (
        let* v = Stack.pop in
        match v with
        | None -> stop_evaluating false
        | Some x -> (
            let* v = Stack.pop in
            match v with
            | None -> stop_evaluating false
            | Some y -> Stack.push (x + y)))

  let reboot =
    let open Monad.Syntax in
    let* () = Status.set WaitingForInputMessage in
    let* () = Stack.clear in
    let* () = Code.clear in
    return ()

  let eval_step =
    let open Monad.Syntax in
    let* x = is_stuck in
    match x with
    | Some _ -> reboot
    | None -> (
        let* status = Status.get in
        match status with
        | Halted -> boot
        | WaitingForInputMessage -> (
            let* msg = NextMessage.get in
            match msg with
            | None ->
                internal_error
                  "An input state was not provided an input message."
            | Some _ -> start_parsing)
        | Parsing -> parse
        | Evaluating -> evaluate)

  let ticked m =
    let open Monad.Syntax in
    let* tick = CurrentTick.get in
    let* () = CurrentTick.set (Tick.next tick) in
    m

  let eval state = state_of (ticked eval_step) state

  let verify_proof ~input proof =
    let open Lwt_syntax in
    let transition state =
      let* state =
        match input with
        | None -> eval state
        | Some input -> state_of (ticked (set_input_monadic input)) state
      in
      return (state, ())
    in
    let* x = Context.verify_proof proof transition in
    match x with Ok _ -> return_true | Error _ -> return_false
end

module ProtocolImplementation = Make (struct
  module Tree = struct
    include Context.Tree

    type tree = Context.tree

    type t = Context.t

    type key = string list

    type value = bytes
  end

  type tree = Context.tree

  type proof = Context.Proof.tree Context.Proof.t

  let verify_proof = Context.verify_tree_proof

  let kinded_hash_to_state_hash = function
    | `Value hash | `Node hash ->
        State_hash.hash_bytes [Context_hash.to_bytes hash]

  let proof_start_state proof =
    kinded_hash_to_state_hash proof.Context.Proof.before

  let proof_stop_state proof =
    kinded_hash_to_state_hash proof.Context.Proof.after

  let proof_encoding = Context.Proof_encoding.V2.Tree32.tree_proof_encoding
end)
OCaml

Innovation. Community. Security.