package tezos-protocol-012-Psithaca
Tezos protocol 012-Psithaca package
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/tezos_raw_protocol_012_Psithaca/script_interpreter_defs.ml.html
Source file script_interpreter_defs.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
(*****************************************************************************) (* *) (* Open Source License *) (* Copyright (c) 2021 Nomadic Labs, <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) (* This module provides auxiliary definitions used in the interpreter. These are internal private definitions. Do not rely on them outside the interpreter. *) open Alpha_context open Script open Script_typed_ir open Script_ir_translator open Local_gas_counter (* Computing the cost of Michelson instructions ============================================ The function [cost_of_instr] provides a cost model for Michelson instructions. It is used by the interpreter to track the consumption of gas. This consumption may depend on the values on the stack. *) module Interp_costs = Michelson_v1_gas.Cost_of.Interpreter let cost_of_instr : type a s r f. (a, s, r, f) kinstr -> a -> s -> Gas.cost = fun i accu stack -> match i with | IList_map _ -> let list = accu in Interp_costs.list_map list | IList_iter _ -> let list = accu in Interp_costs.list_iter list | ISet_iter _ -> let set = accu in Interp_costs.set_iter set | ISet_mem _ -> let v = accu and (set, _) = stack in Interp_costs.set_mem v set | ISet_update _ -> let v = accu and (_, (set, _)) = stack in Interp_costs.set_update v set | IMap_map _ -> let map = accu in Interp_costs.map_map map | IMap_iter _ -> let map = accu in Interp_costs.map_iter map | IMap_mem _ -> let v = accu and (map, _) = stack in Interp_costs.map_mem v map | IMap_get _ -> let v = accu and (map, _) = stack in Interp_costs.map_get v map | IMap_update _ -> let k = accu and (_, (map, _)) = stack in Interp_costs.map_update k map | IMap_get_and_update _ -> let k = accu and (_, (map, _)) = stack in Interp_costs.map_get_and_update k map | IBig_map_mem _ -> let (map, _) = stack in Interp_costs.big_map_mem map.diff | IBig_map_get _ -> let (map, _) = stack in Interp_costs.big_map_get map.diff | IBig_map_update _ -> let (_, (map, _)) = stack in Interp_costs.big_map_update map.diff | IBig_map_get_and_update _ -> let (_, (map, _)) = stack in Interp_costs.big_map_get_and_update map.diff | IAdd_seconds_to_timestamp _ -> let n = accu and (t, _) = stack in Interp_costs.add_seconds_timestamp n t | IAdd_timestamp_to_seconds _ -> let t = accu and (n, _) = stack in Interp_costs.add_timestamp_seconds t n | ISub_timestamp_seconds _ -> let t = accu and (n, _) = stack in Interp_costs.sub_timestamp_seconds t n | IDiff_timestamps _ -> let t1 = accu and (t2, _) = stack in Interp_costs.diff_timestamps t1 t2 | IConcat_string_pair _ -> let x = accu and (y, _) = stack in Interp_costs.concat_string_pair x y | IConcat_string _ -> let ss = accu in Interp_costs.concat_string_precheck ss | ISlice_string _ -> let _offset = accu in let (_length, (s, _)) = stack in Interp_costs.slice_string s | IConcat_bytes_pair _ -> let x = accu and (y, _) = stack in Interp_costs.concat_bytes_pair x y | IConcat_bytes _ -> let ss = accu in Interp_costs.concat_string_precheck ss | ISlice_bytes _ -> let (_, (s, _)) = stack in Interp_costs.slice_bytes s | IMul_teznat _ -> Interp_costs.mul_teznat | IMul_nattez _ -> Interp_costs.mul_nattez | IAbs_int _ -> let x = accu in Interp_costs.abs_int x | INeg _ -> let x = accu in Interp_costs.neg x | IAdd_int _ -> let x = accu and (y, _) = stack in Interp_costs.add_int x y | IAdd_nat _ -> let x = accu and (y, _) = stack in Interp_costs.add_nat x y | ISub_int _ -> let x = accu and (y, _) = stack in Interp_costs.sub_int x y | IMul_int _ -> let x = accu and (y, _) = stack in Interp_costs.mul_int x y | IMul_nat _ -> let x = accu and (y, _) = stack in Interp_costs.mul_nat x y | IEdiv_teznat _ -> let x = accu and (y, _) = stack in Interp_costs.ediv_teznat x y | IEdiv_int _ -> let x = accu and (y, _) = stack in Interp_costs.ediv_int x y | IEdiv_nat _ -> let x = accu and (y, _) = stack in Interp_costs.ediv_nat x y | ILsl_nat _ -> let x = accu in Interp_costs.lsl_nat x | ILsr_nat _ -> let x = accu in Interp_costs.lsr_nat x | IOr_nat _ -> let x = accu and (y, _) = stack in Interp_costs.or_nat x y | IAnd_nat _ -> let x = accu and (y, _) = stack in Interp_costs.and_nat x y | IAnd_int_nat _ -> let x = accu and (y, _) = stack in Interp_costs.and_int_nat x y | IXor_nat _ -> let x = accu and (y, _) = stack in Interp_costs.xor_nat x y | INot_int _ -> let x = accu in Interp_costs.not_int x | ICompare (_, ty, _) -> let a = accu and (b, _) = stack in Interp_costs.compare ty a b | ICheck_signature _ -> let key = accu and (_, (message, _)) = stack in Interp_costs.check_signature key message | IHash_key _ -> let pk = accu in Interp_costs.hash_key pk | IBlake2b _ -> let bytes = accu in Interp_costs.blake2b bytes | ISha256 _ -> let bytes = accu in Interp_costs.sha256 bytes | ISha512 _ -> let bytes = accu in Interp_costs.sha512 bytes | IKeccak _ -> let bytes = accu in Interp_costs.keccak bytes | ISha3 _ -> let bytes = accu in Interp_costs.sha3 bytes | IPairing_check_bls12_381 _ -> let pairs = accu in Interp_costs.pairing_check_bls12_381 pairs | ISapling_verify_update _ -> let tx = accu in let inputs = List.length tx.inputs in let outputs = List.length tx.outputs in Interp_costs.sapling_verify_update ~inputs ~outputs | ISplit_ticket _ -> let ticket = accu and ((amount_a, amount_b), _) = stack in Interp_costs.split_ticket ticket.amount amount_a amount_b | IJoin_tickets (_, ty, _) -> let (ticket_a, ticket_b) = accu in Interp_costs.join_tickets ty ticket_a ticket_b | IHalt _ -> Interp_costs.halt | IDrop _ -> Interp_costs.drop | IDup _ -> Interp_costs.dup | ISwap _ -> Interp_costs.swap | IConst _ -> Interp_costs.const | ICons_some _ -> Interp_costs.cons_some | ICons_none _ -> Interp_costs.cons_none | IIf_none _ -> Interp_costs.if_none | IOpt_map _ -> Interp_costs.opt_map | ICons_pair _ -> Interp_costs.cons_pair | IUnpair _ -> Interp_costs.unpair | ICar _ -> Interp_costs.car | ICdr _ -> Interp_costs.cdr | ICons_left _ -> Interp_costs.cons_left | ICons_right _ -> Interp_costs.cons_right | IIf_left _ -> Interp_costs.if_left | ICons_list _ -> Interp_costs.cons_list | INil _ -> Interp_costs.nil | IIf_cons _ -> Interp_costs.if_cons | IList_size _ -> Interp_costs.list_size | IEmpty_set _ -> Interp_costs.empty_set | ISet_size _ -> Interp_costs.set_size | IEmpty_map _ -> Interp_costs.empty_map | IMap_size _ -> Interp_costs.map_size | IEmpty_big_map _ -> Interp_costs.empty_big_map | IString_size _ -> Interp_costs.string_size | IBytes_size _ -> Interp_costs.bytes_size | IAdd_tez _ -> Interp_costs.add_tez | ISub_tez _ -> Interp_costs.sub_tez | ISub_tez_legacy _ -> Interp_costs.sub_tez_legacy | IOr _ -> Interp_costs.bool_or | IAnd _ -> Interp_costs.bool_and | IXor _ -> Interp_costs.bool_xor | INot _ -> Interp_costs.bool_not | IIs_nat _ -> Interp_costs.is_nat | IInt_nat _ -> Interp_costs.int_nat | IInt_bls12_381_fr _ -> Interp_costs.int_bls12_381_fr | IEdiv_tez _ -> Interp_costs.ediv_tez | IIf _ -> Interp_costs.if_ | ILoop _ -> Interp_costs.loop | ILoop_left _ -> Interp_costs.loop_left | IDip _ -> Interp_costs.dip | IExec _ -> Interp_costs.exec | IApply _ -> Interp_costs.apply | ILambda _ -> Interp_costs.lambda | IFailwith _ -> Gas.free | IEq _ -> Interp_costs.eq | INeq _ -> Interp_costs.neq | ILt _ -> Interp_costs.lt | ILe _ -> Interp_costs.le | IGt _ -> Interp_costs.gt | IGe _ -> Interp_costs.ge | IPack _ -> Gas.free | IUnpack _ -> let b = accu in Interp_costs.unpack b | IAddress _ -> Interp_costs.address | IContract _ -> Interp_costs.contract | ITransfer_tokens _ -> Interp_costs.transfer_tokens | IView _ -> Interp_costs.view | IImplicit_account _ -> Interp_costs.implicit_account | ISet_delegate _ -> Interp_costs.set_delegate | IBalance _ -> Interp_costs.balance | ILevel _ -> Interp_costs.level | INow _ -> Interp_costs.now | ISapling_empty_state _ -> Interp_costs.sapling_empty_state | ISource _ -> Interp_costs.source | ISender _ -> Interp_costs.sender | ISelf _ -> Interp_costs.self | ISelf_address _ -> Interp_costs.self_address | IAmount _ -> Interp_costs.amount | IDig (_, n, _, _) -> Interp_costs.dign n | IDug (_, n, _, _) -> Interp_costs.dugn n | IDipn (_, n, _, _, _) -> Interp_costs.dipn n | IDropn (_, n, _, _) -> Interp_costs.dropn n | IChainId _ -> Interp_costs.chain_id | ICreate_contract _ -> Interp_costs.create_contract | INever _ -> ( match accu with _ -> .) | IVoting_power _ -> Interp_costs.voting_power | ITotal_voting_power _ -> Interp_costs.total_voting_power | IAdd_bls12_381_g1 _ -> Interp_costs.add_bls12_381_g1 | IAdd_bls12_381_g2 _ -> Interp_costs.add_bls12_381_g2 | IAdd_bls12_381_fr _ -> Interp_costs.add_bls12_381_fr | IMul_bls12_381_g1 _ -> Interp_costs.mul_bls12_381_g1 | IMul_bls12_381_g2 _ -> Interp_costs.mul_bls12_381_g2 | IMul_bls12_381_fr _ -> Interp_costs.mul_bls12_381_fr | INeg_bls12_381_g1 _ -> Interp_costs.neg_bls12_381_g1 | INeg_bls12_381_g2 _ -> Interp_costs.neg_bls12_381_g2 | INeg_bls12_381_fr _ -> Interp_costs.neg_bls12_381_fr | IMul_bls12_381_fr_z _ -> let z = accu in Interp_costs.mul_bls12_381_fr_z z | IMul_bls12_381_z_fr _ -> let (z, _) = stack in Interp_costs.mul_bls12_381_z_fr z | IDup_n (_, n, _, _) -> Interp_costs.dupn n | IComb (_, n, _, _) -> Interp_costs.comb n | IUncomb (_, n, _, _) -> Interp_costs.uncomb n | IComb_get (_, n, _, _) -> Interp_costs.comb_get n | IComb_set (_, n, _, _) -> Interp_costs.comb_set n | ITicket _ -> Interp_costs.ticket | IRead_ticket _ -> Interp_costs.read_ticket | IOpen_chest _ -> let _chest_key = accu and (chest, (time, _)) = stack in Interp_costs.open_chest ~chest ~time:(Alpha_context.Script_int.to_zint time) | ILog _ -> Gas.free [@@ocaml.inline always] [@@coq_axiom_with_reason "unreachable expression `.` not handled"] let cost_of_control : type a s r f. (a, s, r, f) continuation -> Gas.cost = fun ks -> match ks with | KLog _ -> Gas.free | KNil -> Interp_costs.Control.nil | KCons (_, _) -> Interp_costs.Control.cons | KReturn _ -> Interp_costs.Control.return | KMap_head (_, _) -> Interp_costs.Control.map_head | KUndip (_, _) -> Interp_costs.Control.undip | KLoop_in (_, _) -> Interp_costs.Control.loop_in | KLoop_in_left (_, _) -> Interp_costs.Control.loop_in_left | KIter (_, _, _) -> Interp_costs.Control.iter | KList_enter_body (_, xs, _, len, _) -> Interp_costs.Control.list_enter_body xs len | KList_exit_body (_, _, _, _, _) -> Interp_costs.Control.list_exit_body | KMap_enter_body (_, _, _, _) -> Interp_costs.Control.map_enter_body | KMap_exit_body (_, _, map, key, _) -> Interp_costs.Control.map_exit_body key map | KView_exit (_, _) -> Interp_costs.Control.view_exit (* [step] calls [consume_instr] at the beginning of each execution step. [Local_gas_counter.consume] is used in the implementation of [IConcat_string] and [IConcat_bytes] because in that special cases, the cost is expressed with respect to a non-constant-time computation on the inputs. *) let consume_instr local_gas_counter k accu stack = let cost = cost_of_instr k accu stack in update_and_check local_gas_counter cost [@@ocaml.inline always] let consume_control local_gas_counter ks = let cost = cost_of_control ks in update_and_check local_gas_counter cost [@@ocaml.inline always] (* Auxiliary functions used by the instrumentation =============================================== *) let log_entry logger ctxt gas k accu stack = let kinfo = kinfo_of_kinstr k in let ctxt = update_context gas ctxt in logger.log_entry k ctxt kinfo.iloc kinfo.kstack_ty (accu, stack) let log_exit logger ctxt gas kinfo_prev k accu stack = let kinfo = kinfo_of_kinstr k in let ctxt = update_context gas ctxt in logger.log_exit k ctxt kinfo_prev.iloc kinfo.kstack_ty (accu, stack) let log_control logger ks = logger.log_control ks let get_log = function | None -> Lwt.return (Ok None) | Some logger -> logger.get_log () [@@ocaml.inline always] (* [log_kinstr logger i] emits an instruction to instrument the execution of [i] with [logger]. *) let log_kinstr logger i = ILog (kinfo_of_kinstr i, LogEntry, logger, i) (* [log_next_kinstr logger i] instruments the next instruction of [i] with the [logger]. Notice that the instrumentation breaks the sharing of continuations that is normally enforced between branches of conditionals. This has a performance cost. Anyway, the instrumentation allocates many new [ILog] instructions and [KLog] continuations which makes the execution of instrumented code significantly slower than non-instrumented code. "Zero-cost logging" means that the normal non-instrumented execution is not impacted by the ability to instrument it, not that the logging itself has no cost. *) let log_next_kinstr logger i = let apply k = ILog ( kinfo_of_kinstr k, LogExit (kinfo_of_kinstr i), logger, log_kinstr logger k ) in kinstr_rewritek i {apply} (* We pass the identity function when no instrumentation is needed. *) let id x = x [@@inline] (* Auxiliary functions used by the interpretation loop =================================================== *) (* The following function pops n elements from the stack and push their reintroduction in the continuations stack. *) let rec kundip : type a s e z c u d w b t. (a, s, e, z, c, u, d, w) stack_prefix_preservation_witness -> c -> u -> (d, w, b, t) kinstr -> a * s * (e, z, b, t) kinstr = fun w accu stack k -> match w with | KPrefix (kinfo, w) -> let k = IConst (kinfo, accu, k) in let (accu, stack) = stack in kundip w accu stack k | KRest -> (accu, stack, k) (* [apply ctxt gas ty v lam] specializes [lam] by fixing its first formal argument to [v]. The type of [v] is represented by [ty]. *) let apply ctxt gas capture_ty capture lam = let (Lam (descr, expr)) = lam in let (Item_t (full_arg_ty, _, _)) = descr.kbef in let ctxt = update_context gas ctxt in unparse_data ctxt Optimized capture_ty capture >>=? fun (const_expr, ctxt) -> let loc = Micheline.dummy_location in unparse_ty ~loc ctxt capture_ty >>?= fun (ty_expr, ctxt) -> match full_arg_ty with | Pair_t ((capture_ty, _, _), (arg_ty, _, _), _) -> let arg_stack_ty = Item_t (arg_ty, Bot_t, None) in let full_descr = { kloc = descr.kloc; kbef = arg_stack_ty; kaft = descr.kaft; kinstr = (let kinfo_const = {iloc = descr.kloc; kstack_ty = arg_stack_ty} in let kinfo_pair = { iloc = descr.kloc; kstack_ty = Item_t (capture_ty, arg_stack_ty, None); } in IConst (kinfo_const, capture, ICons_pair (kinfo_pair, descr.kinstr))); } in let full_expr = Micheline.Seq ( loc, [ Prim (loc, I_PUSH, [ty_expr; const_expr], []); Prim (loc, I_PAIR, [], []); expr; ] ) in let lam' = Lam (full_descr, full_expr) in let gas = update_local_gas_counter ctxt in return (lam', outdated ctxt, gas) | _ -> assert false (* [transfer (ctxt, sc) gas tez tp p destination entrypoint] creates an operation that transfers an amount of [tez] to a contract determined by [(destination, entrypoint)] instantiated with argument [p] of type [tp]. *) let transfer (ctxt, sc) gas amount tp p destination entrypoint = let ctxt = update_context gas ctxt in collect_lazy_storage ctxt tp p >>?= fun (to_duplicate, ctxt) -> let to_update = no_lazy_storage_id in extract_lazy_storage_diff ctxt Optimized tp p ~to_duplicate ~to_update ~temporary:true >>=? fun (p, lazy_storage_diff, ctxt) -> unparse_data ctxt Optimized tp p >>=? fun (p, ctxt) -> Gas.consume ctxt (Script.strip_locations_cost p) >>?= fun ctxt -> let operation = Transaction { amount; destination; entrypoint; parameters = Script.lazy_expr (Micheline.strip_locations p); } in fresh_internal_nonce ctxt >>?= fun (ctxt, nonce) -> let iop = {source = sc.self; operation; nonce} in let res = (Internal_operation iop, lazy_storage_diff) in let gas = update_local_gas_counter ctxt in let ctxt = outdated ctxt in return (res, ctxt, gas) (* [create_contract (ctxt, sc) gas storage_ty param_ty code root_name delegate credit init] creates an origination operation for a contract represented by [code], with some [root_name], some initial [credit] (taken to contract being executed), and an initial storage [init] of type [storage_ty]. The type of the new contract argument is [param_ty]. *) (* TODO: https://gitlab.com/tezos/tezos/-/issues/1688 Refactor the sharing part of unparse_script and create_contract *) let create_contract (ctxt, sc) gas storage_type param_type code views root_name delegate credit init = let ctxt = update_context gas ctxt in let loc = Micheline.dummy_location in unparse_ty ~loc ctxt param_type >>?= fun (unparsed_param_type, ctxt) -> let unparsed_param_type = Script_ir_translator.add_field_annot root_name None unparsed_param_type in unparse_ty ~loc ctxt storage_type >>?= fun (unparsed_storage_type, ctxt) -> let open Micheline in let view name {input_ty; output_ty; view_code} views = Prim ( loc, K_view, [ String (loc, Script_string.to_string name); input_ty; output_ty; view_code; ], [] ) :: views in let views = SMap.fold view views [] |> List.rev in let code = strip_locations (Seq ( loc, [ Prim (loc, K_parameter, [unparsed_param_type], []); Prim (loc, K_storage, [unparsed_storage_type], []); Prim (loc, K_code, [code], []); ] @ views )) in collect_lazy_storage ctxt storage_type init >>?= fun (to_duplicate, ctxt) -> let to_update = no_lazy_storage_id in extract_lazy_storage_diff ctxt Optimized storage_type init ~to_duplicate ~to_update ~temporary:true >>=? fun (init, lazy_storage_diff, ctxt) -> unparse_data ctxt Optimized storage_type init >>=? fun (storage, ctxt) -> Gas.consume ctxt (Script.strip_locations_cost storage) >>?= fun ctxt -> let storage = strip_locations storage in Contract.fresh_contract_from_current_nonce ctxt >>?= fun (ctxt, contract) -> let operation = Origination { credit; delegate; preorigination = Some contract; script = {code = Script.lazy_expr code; storage = Script.lazy_expr storage}; } in fresh_internal_nonce ctxt >>?= fun (ctxt, nonce) -> let res = (Internal_operation {source = sc.self; operation; nonce}, lazy_storage_diff) in let gas = update_local_gas_counter ctxt in let ctxt = outdated ctxt in return (res, contract, ctxt, gas) (* [unpack ctxt ty bytes] deserialize [bytes] into a value of type [ty]. *) let unpack ctxt ~ty ~bytes = Gas.consume ctxt (Script.deserialization_cost_estimated_from_bytes (Bytes.length bytes)) >>?= fun ctxt -> if Compare.Int.(Bytes.length bytes >= 1) && Compare.Int.(TzEndian.get_uint8 bytes 0 = 0x05) then let str = Bytes.sub_string bytes 1 (Bytes.length bytes - 1) in match Data_encoding.Binary.of_string_opt Script.expr_encoding str with | None -> Lwt.return ( Gas.consume ctxt (Interp_costs.unpack_failed str) >|? fun ctxt -> (None, ctxt) ) | Some expr -> ( parse_data ctxt ~legacy:false ~allow_forged:false ty (Micheline.root expr) >|= function | Ok (value, ctxt) -> ok (Some value, ctxt) | Error _ignored -> Gas.consume ctxt (Interp_costs.unpack_failed str) >|? fun ctxt -> (None, ctxt)) else return (None, ctxt) (* [interp_stack_prefix_preserving_operation f w accu stack] applies a well-typed operation [f] under some prefix of the A-stack exploiting [w] to justify that the shape of the stack is preserved. *) let rec interp_stack_prefix_preserving_operation : type a s b t c u d w result. (a -> s -> (b * t) * result) -> (a, s, b, t, c, u, d, w) stack_prefix_preservation_witness -> c -> u -> (d * w) * result = fun f n accu stk -> match (n, stk) with | (KPrefix (_, n), rest) -> interp_stack_prefix_preserving_operation f n (fst rest) (snd rest) |> fun ((v, rest'), result) -> ((accu, (v, rest')), result) | (KRest, v) -> f accu v (* Some auxiliary functions have complex types and must be annotated because of GADTs and polymorphic recursion. To improve readibility, we introduce their types as abbreviations: *) type ('a, 's, 'b, 't, 'r, 'f) step_type = outdated_context * step_constants -> local_gas_counter -> ('a, 's, 'b, 't) kinstr -> ('b, 't, 'r, 'f) continuation -> 'a -> 's -> ('r * 'f * outdated_context * local_gas_counter) tzresult Lwt.t type ('a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, 'm, 'n, 'o) kmap_exit_type = (('c, 'd, 'e, 'f) continuation -> ('a, 'b, 'g, 'h) continuation) -> outdated_context * step_constants -> local_gas_counter -> ('m * 'n, 'c * 'd, 'o, 'c * 'd) kinstr * ('m * 'n) list * ('m, 'o) map * 'm -> (('m, 'o) map, 'c * 'd, 'e, 'f) continuation -> 'o -> 'a * 'b -> ('g * 'h * outdated_context * local_gas_counter) tzresult Lwt.t type ('a, 'b, 'c, 'd, 'e, 'j, 'k) kmap_enter_type = (('a, 'b * 'c, 'd, 'e) continuation -> ('a, 'b * 'c, 'd, 'e) continuation) -> outdated_context * step_constants -> local_gas_counter -> ('j * 'k, 'b * 'c, 'a, 'b * 'c) kinstr * ('j * 'k) list * ('j, 'a) map -> (('j, 'a) map, 'b * 'c, 'd, 'e) continuation -> 'b -> 'c -> ('d * 'e * outdated_context * local_gas_counter) tzresult Lwt.t type ('a, 'b, 'c, 'd, 'i, 'j) klist_exit_type = (('a, 'b, 'c, 'd) continuation -> ('a, 'b, 'c, 'd) continuation) -> outdated_context * step_constants -> local_gas_counter -> ('i, 'a * 'b, 'j, 'a * 'b) kinstr * 'i list * 'j list * local_gas_counter -> ('j boxed_list, 'a * 'b, 'c, 'd) continuation -> 'j -> 'a * 'b -> ('c * 'd * outdated_context * local_gas_counter) tzresult Lwt.t type ('a, 'b, 'c, 'd, 'e, 'j) klist_enter_type = (('b, 'a * 'c, 'd, 'e) continuation -> ('b, 'a * 'c, 'd, 'e) continuation) -> outdated_context * step_constants -> local_gas_counter -> ('j, 'a * 'c, 'b, 'a * 'c) kinstr * 'j list * 'b list * local_gas_counter -> ('b boxed_list, 'a * 'c, 'd, 'e) continuation -> 'a -> 'c -> ('d * 'e * outdated_context * local_gas_counter) tzresult Lwt.t type ('a, 'b, 'c, 'd, 'e, 'f, 'g) kloop_in_left_type = outdated_context * step_constants -> local_gas_counter -> ('c, 'd, 'e, 'f) continuation -> ('a, 'g, 'c, 'd) kinstr -> ('b, 'g, 'e, 'f) continuation -> ('a, 'b) union -> 'g -> ('e * 'f * outdated_context * local_gas_counter) tzresult Lwt.t type ('a, 'b, 'c, 'r, 'f, 's) kloop_in_type = outdated_context * step_constants -> local_gas_counter -> ('b, 'c, 'r, 'f) continuation -> ('a, 's, 'b, 'c) kinstr -> ('a, 's, 'r, 'f) continuation -> bool -> 'a * 's -> ('r * 'f * outdated_context * local_gas_counter) tzresult Lwt.t type ('a, 'b, 's, 'r, 'f) kiter_type = (('a, 's, 'r, 'f) continuation -> ('a, 's, 'r, 'f) continuation) -> outdated_context * step_constants -> local_gas_counter -> ('b, 'a * 's, 'a, 's) kinstr * 'b list -> ('a, 's, 'r, 'f) continuation -> 'a -> 's -> ('r * 'f * outdated_context * local_gas_counter) tzresult Lwt.t type ('a, 'b, 'c, 'd, 'e, 'f, 'g, 'h) ilist_map_type = (('a, 'b, 'c, 'd) continuation -> ('a, 'b, 'c, 'd) continuation) -> outdated_context * step_constants -> local_gas_counter -> ('e, 'a * 'b, 'f, 'a * 'b) kinstr * ('f boxed_list, 'a * 'b, 'g, 'h) kinstr -> ('g, 'h, 'c, 'd) continuation -> 'e boxed_list -> 'a * 'b -> ('c * 'd * outdated_context * local_gas_counter) tzresult Lwt.t type ('a, 'b, 'c, 'd, 'e, 'f, 'g) ilist_iter_type = (('a, 'b, 'c, 'd) continuation -> ('a, 'b, 'c, 'd) continuation) -> outdated_context * step_constants -> local_gas_counter -> ('e, 'a * 'b, 'a, 'b) kinstr * ('a, 'b, 'f, 'g) kinstr -> ('f, 'g, 'c, 'd) continuation -> 'e boxed_list -> 'a * 'b -> ('c * 'd * outdated_context * local_gas_counter) tzresult Lwt.t type ('a, 'b, 'c, 'd, 'e, 'f, 'g) iset_iter_type = (('a, 'b, 'c, 'd) continuation -> ('a, 'b, 'c, 'd) continuation) -> outdated_context * step_constants -> local_gas_counter -> ('e, 'a * 'b, 'a, 'b) kinstr * ('a, 'b, 'f, 'g) kinstr -> ('f, 'g, 'c, 'd) continuation -> 'e set -> 'a * 'b -> ('c * 'd * outdated_context * local_gas_counter) tzresult Lwt.t type ('a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, 'i) imap_map_type = (('a, 'b, 'c, 'd) continuation -> ('a, 'b, 'c, 'd) continuation) -> outdated_context * step_constants -> local_gas_counter -> ('e * 'f, 'a * 'b, 'g, 'a * 'b) kinstr * (('e, 'g) map, 'a * 'b, 'h, 'i) kinstr -> ('h, 'i, 'c, 'd) continuation -> ('e, 'f) map -> 'a * 'b -> ('c * 'd * outdated_context * local_gas_counter) tzresult Lwt.t type ('a, 'b, 'c, 'd, 'e, 'f, 'g, 'h) imap_iter_type = (('a, 'b, 'c, 'd) continuation -> ('a, 'b, 'c, 'd) continuation) -> outdated_context * step_constants -> local_gas_counter -> ('e * 'f, 'a * 'b, 'a, 'b) kinstr * ('a, 'b, 'g, 'h) kinstr -> ('g, 'h, 'c, 'd) continuation -> ('e, 'f) map -> 'a * 'b -> ('c * 'd * outdated_context * local_gas_counter) tzresult Lwt.t type ('a, 'b, 'c, 'd, 'e, 'f) imul_teznat_type = logger option -> outdated_context * step_constants -> local_gas_counter -> (Tez.t, 'a) kinfo * (Tez.t, 'b, 'c, 'd) kinstr -> ('c, 'd, 'e, 'f) continuation -> Tez.t -> Script_int.n Script_int.num * 'b -> ('e * 'f * outdated_context * local_gas_counter, error trace) result Lwt.t type ('a, 'b, 'c, 'd, 'e, 'f) imul_nattez_type = logger option -> outdated_context * step_constants -> local_gas_counter -> (Script_int.n Script_int.num, 'a) kinfo * (Tez.t, 'b, 'c, 'd) kinstr -> ('c, 'd, 'e, 'f) continuation -> Script_int.n Script_int.num -> Tez.t * 'b -> ('e * 'f * outdated_context * local_gas_counter, error trace) result Lwt.t type ('a, 'b, 'c, 'd, 'e, 'f) ilsl_nat_type = logger option -> outdated_context * step_constants -> local_gas_counter -> (Script_int.n Script_int.num, 'a) kinfo * (Script_int.n Script_int.num, 'b, 'c, 'd) kinstr -> ('c, 'd, 'e, 'f) continuation -> Script_int.n Script_int.num -> Script_int.n Script_int.num * 'b -> ('e * 'f * outdated_context * local_gas_counter, error trace) result Lwt.t type ('a, 'b, 'c, 'd, 'e, 'f) ilsr_nat_type = logger option -> outdated_context * step_constants -> local_gas_counter -> (Script_int.n Script_int.num, 'a) kinfo * (Script_int.n Script_int.num, 'b, 'c, 'd) kinstr -> ('c, 'd, 'e, 'f) continuation -> Script_int.n Script_int.num -> Script_int.n Script_int.num * 'b -> ('e * 'f * outdated_context * local_gas_counter, error trace) result Lwt.t type ('a, 'b) ifailwith_type = logger option -> outdated_context * step_constants -> local_gas_counter -> Script.location -> 'a ty -> 'a -> ('b, error trace) result Lwt.t type ('a, 'b, 'c, 'd, 'e, 'f, 'g) iexec_type = logger option -> outdated_context * step_constants -> local_gas_counter -> ('a, 'b, 'c, 'd) kinstr -> ('c, 'd, 'e, 'f) continuation -> 'g -> ('g, 'a) lambda * 'b -> ('e * 'f * outdated_context * local_gas_counter) tzresult Lwt.t
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>