package tezos-protocol-012-Psithaca
Tezos protocol 012-Psithaca package
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/tezos_raw_protocol_012_Psithaca/gas_limit_repr.ml.html
Source file gas_limit_repr.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
(*****************************************************************************) (* *) (* Open Source License *) (* Copyright (c) 2018 Dynamic Ledger Solutions, Inc. <contact@tezos.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) let decimals = 3 type fp_tag type integral_tag module S = Saturation_repr (* 1 gas unit *) let scaling_factor = S.mul_safe_of_int_exn 1000 module Arith = struct type 'a t = S.may_saturate S.t type fp = fp_tag t type integral = integral_tag t let scaling_factor = scaling_factor let sub = S.sub let add = S.add let zero = S.zero let min = S.min let max = S.max let compare = S.compare let ( < ) = S.( < ) let ( <> ) = S.( <> ) let ( > ) = S.( > ) let ( <= ) = S.( <= ) let ( >= ) = S.( >= ) let ( = ) = S.( = ) let equal = S.equal let of_int_opt = S.of_int_opt let fatally_saturated_int i = failwith (string_of_int i ^ " should not be saturated.") let fatally_saturated_z z = failwith (Z.to_string z ^ " should not be saturated.") let integral_of_int_exn i = S.( match of_int_opt i with | None -> fatally_saturated_int i | Some i' -> let r = scale_fast scaling_factor i' in if r = saturated then fatally_saturated_int i else r) let integral_exn z = match Z.to_int z with | i -> integral_of_int_exn i | exception Z.Overflow -> fatally_saturated_z z let integral_to_z (i : integral) : Z.t = S.(to_z (ediv i scaling_factor)) let ceil x = let r = S.erem x scaling_factor in if r = zero then x else add x (sub scaling_factor r) let floor x = sub x (S.erem x scaling_factor) let fp x = x let pp fmtr fp = let q = S.(ediv fp scaling_factor |> to_int) in let r = S.(erem fp scaling_factor |> to_int) in if Compare.Int.(r = 0) then Format.fprintf fmtr "%d" q else Format.fprintf fmtr "%d.%0*d" q decimals r let pp_integral = pp let n_fp_encoding : fp Data_encoding.t = S.n_encoding let z_fp_encoding : fp Data_encoding.t = S.z_encoding let n_integral_encoding : integral Data_encoding.t = Data_encoding.conv integral_to_z integral_exn Data_encoding.n let z_integral_encoding : integral Data_encoding.t = Data_encoding.conv integral_to_z integral_exn Data_encoding.z let unsafe_fp x = match of_int_opt (Z.to_int x) with | Some int -> int | None -> fatally_saturated_z x let sub_opt = S.sub_opt end type t = Unaccounted | Limited of {remaining : Arith.fp} type cost = S.may_saturate S.t let encoding = let open Data_encoding in union [ case (Tag 0) ~title:"Limited" Arith.z_fp_encoding (function Limited {remaining} -> Some remaining | _ -> None) (fun remaining -> Limited {remaining}); case (Tag 1) ~title:"Unaccounted" (constant "unaccounted") (function Unaccounted -> Some () | _ -> None) (fun () -> Unaccounted); ] let pp ppf = function | Unaccounted -> Format.fprintf ppf "unaccounted" | Limited {remaining} -> Format.fprintf ppf "%a units remaining" Arith.pp remaining let cost_encoding = S.z_encoding let pp_cost fmt z = S.pp fmt z (* 2 units of gas *) let allocation_weight = S.(mul_fast scaling_factor (S.mul_safe_of_int_exn 2)) |> S.mul_safe_exn let step_weight = scaling_factor (* 100 units of gas *) let read_base_weight = S.(mul_fast scaling_factor (S.mul_safe_of_int_exn 100)) |> S.mul_safe_exn (* 160 units of gas *) let write_base_weight = S.(mul_fast scaling_factor (S.mul_safe_of_int_exn 160)) |> S.mul_safe_exn (* 10 units of gas *) let byte_read_weight = S.(mul_fast scaling_factor (S.mul_safe_of_int_exn 10)) |> S.mul_safe_exn (* 15 units of gas *) let byte_written_weight = S.(mul_fast scaling_factor (S.mul_safe_of_int_exn 15)) |> S.mul_safe_exn let cost_to_milligas (cost : cost) : Arith.fp = cost let raw_consume gas_counter cost = let gas = cost_to_milligas cost in Arith.sub_opt gas_counter gas let alloc_cost n = S.scale_fast allocation_weight S.(add n (S.mul_safe_of_int_exn 1)) let alloc_bytes_cost n = alloc_cost (S.safe_int ((n + 7) / 8)) let atomic_step_cost : 'a S.t -> cost = S.may_saturate let step_cost n = S.scale_fast step_weight n let free = S.zero let read_bytes_cost n = S.add read_base_weight (S.scale_fast byte_read_weight (S.safe_int n)) let write_bytes_cost n = S.add write_base_weight (S.scale_fast byte_written_weight (S.safe_int n)) let ( +@ ) x y = S.add x y let ( *@ ) x y = S.mul x y let alloc_mbytes_cost n = alloc_cost (S.mul_safe_of_int_exn 12) +@ alloc_bytes_cost n
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>