package tezos-protocol-010-PtGRANAD

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file michelson_v1_gas.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
(*****************************************************************************)
(*                                                                           *)
(* Open Source License                                                       *)
(* Copyright (c) 2018 Dynamic Ledger Solutions, Inc. <contact@tezos.com>     *)
(* Copyright (c) 2019-2020 Nomadic Labs <contact@nomadic-labs.com>           *)
(* Copyright (c) 2020 Metastate AG <hello@metastate.dev>                     *)
(*                                                                           *)
(* Permission is hereby granted, free of charge, to any person obtaining a   *)
(* copy of this software and associated documentation files (the "Software"),*)
(* to deal in the Software without restriction, including without limitation *)
(* the rights to use, copy, modify, merge, publish, distribute, sublicense,  *)
(* and/or sell copies of the Software, and to permit persons to whom the     *)
(* Software is furnished to do so, subject to the following conditions:      *)
(*                                                                           *)
(* The above copyright notice and this permission notice shall be included   *)
(* in all copies or substantial portions of the Software.                    *)
(*                                                                           *)
(* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*)
(* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,  *)
(* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL   *)
(* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*)
(* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING   *)
(* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER       *)
(* DEALINGS IN THE SOFTWARE.                                                 *)
(*                                                                           *)
(*****************************************************************************)

open Alpha_context
open Gas
module S = Saturation_repr

module Cost_of = struct
  module S_syntax = struct
    (* This is a good enough approximation. S.numbits 0 = 0 *)
    let log2 x = S.safe_int (1 + S.numbits x)

    let ( + ) = S.add

    let ( * ) = S.mul

    let ( lsr ) = S.shift_right
  end

  let z_bytes (z : Z.t) =
    let bits = Z.numbits z in
    (7 + bits) / 8

  let int_bytes (z : 'a Script_int.num) = z_bytes (Script_int.to_zint z)

  let manager_operation = step_cost @@ S.safe_int 1_000

  module Generated_costs = struct
    (* Automatically generated costs functions. *)

    (* model N_IAbs_int *)
    (* Approximating 0.065045 x term *)
    let cost_N_IAbs_int size = S.safe_int (25 + (size lsr 4))

    (* model N_IAdd_bls12_381_fr *)
    let cost_N_IAdd_bls12_381_fr = S.safe_int 145

    (* model N_IAdd_bls12_381_g1 *)
    let cost_N_IAdd_bls12_381_g1 = S.safe_int 8_300

    (* model N_IAdd_bls12_381_g2 *)
    let cost_N_IAdd_bls12_381_g2 = S.safe_int 11_450

    let cost_linear_op_int size1 size2 =
      let open S_syntax in
      let v0 = S.safe_int (Compare.Int.max size1 size2) in
      S.safe_int 35 + ((v0 lsr 4) + (v0 lsr 7))

    (* model N_IAdd_intint *)
    (* Approximating 0.077989 x term *)
    let cost_N_IAdd_intint = cost_linear_op_int

    (* model N_IAdd_intnat *)
    (* Approximating 0.077997 x term *)
    let cost_N_IAdd_intnat = cost_linear_op_int

    (* model N_IAdd_natint *)
    (* Approximating 0.078154 x term *)
    let cost_N_IAdd_natint = cost_linear_op_int

    (* model N_IAdd_natnat *)
    (* Approximating 0.077807 x term *)
    let cost_N_IAdd_natnat = cost_linear_op_int

    (* model N_IAdd_seconds_to_timestamp *)
    (* Approximating 0.078056 x term *)
    let cost_N_IAdd_seconds_to_timestamp = cost_linear_op_int

    (* model N_IAdd_tez *)
    let cost_N_IAdd_tez = S.safe_int 25

    (* model N_IAdd_timestamp_to_seconds *)
    (* Approximating 0.077771 x term *)
    let cost_N_IAdd_timestamp_to_seconds = cost_linear_op_int

    (* model N_IAddress *)
    let cost_N_IAddress = S.safe_int 10

    (* model N_IAmount *)
    let cost_N_IAmount = S.safe_int 15

    (* model N_IAnd *)
    let cost_N_IAnd = S.safe_int 20

    (* model N_IAnd_int_nat *)
    (* Approximating 0.076804 x 2 x term *)
    let cost_N_IAnd_int_nat size1 size2 =
      let open S_syntax in
      let v0 = S.safe_int (Compare.Int.min size1 size2) in
      S.safe_int 35 + ((v0 lsr 3) + (v0 lsr 6))

    (* model N_IAnd_nat *)
    (* Approximating 0.076804 x term *)
    let cost_N_IAnd_nat size1 size2 =
      let open S_syntax in
      let v0 = S.safe_int (Compare.Int.min size1 size2) in
      S.safe_int 35 + ((v0 lsr 4) + (v0 lsr 7))

    (* model N_IApply *)
    let cost_N_IApply = S.safe_int 135

    (* model N_IBlake2b *)
    (* Approximating 1.120804 x term *)
    let cost_N_IBlake2b size =
      let open S_syntax in
      let v0 = S.safe_int size in
      S.safe_int 605 + v0 + (v0 lsr 3)

    (* model N_IBytes_size *)
    let cost_N_IBytes_size = S.safe_int 15

    (* model N_ICar *)
    let cost_N_ICar = S.safe_int 10

    (* model N_ICdr *)
    let cost_N_ICdr = S.safe_int 10

    (* model N_IChainId *)
    let cost_N_IChainId = S.safe_int 15

    (* model N_ICheck_signature_ed25519 *)
    (* Approximating 1.123507 x term *)
    let cost_N_ICheck_signature_ed25519 size =
      let open S_syntax in
      let v0 = S.safe_int size in
      S.safe_int 242_950 + (v0 + (v0 lsr 3))

    (* model N_ICheck_signature_p256 *)
    (* Approximating 1.111539 x term *)
    let cost_N_ICheck_signature_p256 size =
      let open S_syntax in
      let v0 = S.safe_int size in
      S.safe_int 532_150 + (v0 + (v0 lsr 3))

    (* model N_ICheck_signature_secp256k1 *)
    (* Approximating 1.125404 x term *)
    let cost_N_ICheck_signature_secp256k1 size =
      let open S_syntax in
      let v0 = S.safe_int size in
      S.safe_int 49_700 + (v0 + (v0 lsr 3))

    (* model N_IComb *)
    (* Approximating 3.315655 x term *)
    (* Note: size >= 2, so the cost is never 0 *)
    let cost_N_IComb size =
      let open S_syntax in
      let v0 = S.safe_int size in
      (S.safe_int 3 * v0) + (v0 lsr 2)

    (* model N_IComb_get *)
    (* Approximating 0.531991 x term *)
    let cost_N_IComb_get size =
      let open S_syntax in
      let v0 = S.safe_int size in
      S.safe_int 5 + (v0 lsr 1) + (v0 lsr 5)

    (* model N_IComb_set *)
    (* Approximating 1.268749 x term *)
    let cost_N_IComb_set size =
      let open S_syntax in
      let v0 = S.safe_int size in
      S.safe_int 10 + (v0 + (v0 lsr 2))

    (* Model N_ICompare *)
    (* Approximating 0.024413 x term *)
    let cost_N_ICompare size1 size2 =
      let open S_syntax in
      let v0 = S.safe_int (Compare.Int.min size1 size2) in
      S.safe_int 35 + ((v0 lsr 6) + (v0 lsr 7))

    (* model N_IConcat_bytes_pair *)
    (* Approximating 0.065017 x term *)
    let cost_N_IConcat_bytes_pair size1 size2 =
      let open S_syntax in
      let v0 = S.safe_int size1 + S.safe_int size2 in
      S.safe_int 65 + (v0 lsr 4)

    (* model N_IConcat_string_pair *)
    (* Approximating 0.061402 x term *)
    let cost_N_IConcat_string_pair size1 size2 =
      let open S_syntax in
      let v0 = S.safe_int size1 + S.safe_int size2 in
      S.safe_int 65 + (v0 lsr 4)

    (* model N_ICons_list *)
    let cost_N_ICons_list = S.safe_int 15

    (* model N_ICons_none *)
    let cost_N_ICons_none = S.safe_int 15

    (* model N_ICons_pair *)
    let cost_N_ICons_pair = S.safe_int 15

    (* model N_ICons_some *)
    let cost_N_ICons_some = S.safe_int 15

    (* model N_IConst *)
    let cost_N_IConst = S.safe_int 10

    (* model N_IContract *)
    let cost_N_IContract = S.safe_int 30

    (* model N_ICreate_contract *)
    let cost_N_ICreate_contract = S.safe_int 30

    (* model N_IDiff_timestamps *)
    (* Approximating 0.077922 x term *)
    let cost_N_IDiff_timestamps = cost_linear_op_int

    (* model N_IDig *)
    (* Approximating 6.750442 x term *)
    let cost_N_IDig size =
      let open S_syntax in
      let v0 = S.safe_int size in
      S.safe_int 20 + ((S.safe_int 6 * v0) + (v0 lsr 1) + (v0 lsr 2))

    (* model N_IDip *)
    let cost_N_IDip = S.safe_int 15

    (* model N_IDipN *)
    (* Approximating 1.708122 x term *)
    let cost_N_IDipN size =
      let open S_syntax in
      let v0 = S.safe_int size in
      S.safe_int 20 + (v0 + (v0 lsr 1) + (v0 lsr 3))

    (* model N_IDrop *)
    let cost_N_IDrop = S.safe_int 10

    (* model N_IDropN *)
    (* Approximating 2.713108 x term *)
    let cost_N_IDropN size =
      let open S_syntax in
      let v0 = S.safe_int size in
      S.safe_int 20 + (S.safe_int 2 * v0) + (v0 lsr 1) + (v0 lsr 3)

    (* model N_IDug *)
    (* Approximating 6.718396 x term *)
    let cost_N_IDug size =
      let open S_syntax in
      let v0 = S.safe_int size in
      S.safe_int 20 + ((S.safe_int 6 * v0) + (v0 lsr 1) + (v0 lsr 2))

    (* model N_IDup *)
    let cost_N_IDup = S.safe_int 10

    (* model N_IDupN *)
    (* Approximating 1.129785 x term *)
    let cost_N_IDupN size =
      let open S_syntax in
      let v0 = S.safe_int size in
      S.safe_int 20 + v0 + (v0 lsr 3)

    let cost_div_int size1 size2 =
      let q = size1 - size2 in
      if Compare.Int.(q < 0) then S.safe_int 110
      else
        let open S_syntax in
        let v0 = S.safe_int q * S.safe_int size2 in
        S.safe_int 110 + (v0 lsr 10) + (v0 lsr 11) + (v0 lsr 13)

    (* model N_IEdiv_intint *)
    (* Approximating 0.001591 x term *)
    let cost_N_IEdiv_intint = cost_div_int

    (* model N_IEdiv_intnat *)
    (* Approximating 0.001548 x term *)
    let cost_N_IEdiv_intnat = cost_div_int

    (* model N_IEdiv_natint *)
    (* Approximating 0.001535 x term *)
    let cost_N_IEdiv_natint = cost_div_int

    (* model N_IEdiv_natnat *)
    (* Approximating 0.001605 x term *)
    let cost_N_IEdiv_natnat = cost_div_int

    (* model N_IEdiv_tez *)
    let cost_N_IEdiv_tez = S.safe_int 65

    (* model N_IEdiv_teznat *)
    let cost_N_IEdiv_teznat = S.safe_int 70

    (* model N_IEmpty_big_map *)
    let cost_N_IEmpty_big_map = S.safe_int 15

    (* model N_IEmpty_map *)
    let cost_N_IEmpty_map = S.safe_int 155

    (* model N_IEmpty_set *)
    let cost_N_IEmpty_set = S.safe_int 155

    (* model N_IEq *)
    let cost_N_IEq = S.safe_int 15

    (* model N_IExec *)
    let cost_N_IExec = S.safe_int 15

    (* model N_IFailwith *)
    (* let cost_N_IFailwith = S.safe_int 105 *)

    (* model N_IGe *)
    let cost_N_IGe = S.safe_int 15

    (* model N_IGt *)
    let cost_N_IGt = S.safe_int 15

    (* model N_IHalt *)
    let cost_N_IHalt = S.safe_int 15

    (* model N_IHash_key *)
    let cost_N_IHash_key = S.safe_int 655

    (* model N_IIf *)
    let cost_N_IIf = S.safe_int 10

    (* model N_IIf_cons *)
    let cost_N_IIf_cons = S.safe_int 10

    (* model N_IIf_left *)
    let cost_N_IIf_left = S.safe_int 10

    (* model N_IIf_none *)
    let cost_N_IIf_none = S.safe_int 10

    (* model N_IImplicit_account *)
    let cost_N_IImplicit_account = S.safe_int 10

    (* model N_IInt_bls12_381_z_fr *)
    let cost_N_IInt_bls12_381_z_fr = S.safe_int 40

    (* model N_IInt_nat *)
    let cost_N_IInt_nat = S.safe_int 15

    (* model N_IIs_nat *)
    let cost_N_IIs_nat = S.safe_int 15

    (* model N_IKeccak *)
    (* Approximating 32.7522064274 x term *)
    let cost_N_IKeccak size =
      let open S_syntax in
      let v0 = S.safe_int size in
      S.safe_int 5100 + ((S.safe_int 32 * v0) + (v0 lsr 1) + (v0 lsr 2))

    (* model N_ILambda *)
    let cost_N_ILambda = S.safe_int 10

    (* model N_ILe *)
    let cost_N_ILe = S.safe_int 15

    (* model N_ILeft *)
    let cost_N_ILeft = S.safe_int 15

    (* model N_ILevel *)
    let cost_N_ILevel = S.safe_int 25

    (* model N_IList_iter *)
    let cost_N_IList_iter _ = S.safe_int 50

    (* model N_IList_map *)
    let cost_N_IList_map _ = S.safe_int 45

    (* model N_IList_size *)
    let cost_N_IList_size = S.safe_int 15

    (* model N_ILoop *)
    let cost_N_ILoop = S.safe_int 10

    (* model N_ILoop_left *)
    let cost_N_ILoop_left = S.safe_int 10

    (* model N_ILsl_nat *)
    (* Approximating 0.115642 x term *)
    let cost_N_ILsl_nat size =
      let open S_syntax in
      let v0 = S.safe_int size in
      S.safe_int 35 + ((v0 lsr 4) + (v0 lsr 5) + (v0 lsr 6))

    (* model N_ILsr_nat *)
    (* Approximating 0.115565 x term *)
    let cost_N_ILsr_nat size =
      let open S_syntax in
      let v0 = S.safe_int size in
      S.safe_int 35 + ((v0 lsr 4) + (v0 lsr 5) + (v0 lsr 6))

    (* model N_ILt *)
    let cost_N_ILt = S.safe_int 15

    (* model N_IMap_get *)
    (* Approximating 0.048359 x term *)
    let cost_N_IMap_get size1 size2 =
      let open S_syntax in
      let v0 = size1 * log2 size2 in
      S.safe_int 80 + (v0 lsr 5) + (v0 lsr 6)

    (* model N_IMap_get_and_update *)
    (* Approximating 0.145661 x term *)
    let cost_N_IMap_get_and_update size1 size2 =
      let open S_syntax in
      let v0 = size1 * log2 size2 in
      S.safe_int 165 + (v0 lsr 3) + (v0 lsr 6)

    (* model N_IMap_iter *)
    (* Approximating 5.235173 x term *)
    let cost_N_IMap_iter size =
      let open S_syntax in
      let v0 = S.safe_int size in
      S.safe_int 60 + (S.safe_int 5 * v0) + (v0 lsr 2)

    (* model N_IMap_map *)
    (* Approximating 7.46280485884 x term *)
    let cost_N_IMap_map size =
      let open S_syntax in
      let v0 = S.safe_int size in
      S.safe_int 180 + ((S.safe_int 7 * v0) + (v0 lsr 1))

    (* model N_IMap_mem *)
    (* Approximating 0.048446 x term *)
    let cost_N_IMap_mem size1 size2 =
      let open S_syntax in
      let v0 = size1 * log2 size2 in
      S.safe_int 80 + (v0 lsr 5) + (v0 lsr 6)

    (* model N_IMap_size *)
    let cost_N_IMap_size = S.safe_int 15

    (* model N_IMap_update *)
    (* Approximating 0.097072 x term *)
    let cost_N_IMap_update size1 size2 =
      let open S_syntax in
      let v0 = size1 * log2 size2 in
      S.safe_int 100 + (v0 lsr 4) + (v0 lsr 5)

    (* model N_IMul_bls12_381_fr *)
    let cost_N_IMul_bls12_381_fr = S.safe_int 170

    (* model N_IMul_bls12_381_fr_z *)
    (* Approximating 1.059386 x term *)
    let cost_N_IMul_bls12_381_fr_z size1 =
      let open S_syntax in
      let v0 = S.safe_int size1 in
      S.safe_int 270 + v0 + (v0 lsr 4)

    (* model N_IMul_bls12_381_g1 *)
    let cost_N_IMul_bls12_381_g1 = S.safe_int 229_850

    (* model N_IMul_bls12_381_g2 *)
    let cost_N_IMul_bls12_381_g2 = S.safe_int 760_350

    (* model N_IMul_bls12_381_z_fr *)
    (* Approximating 1.068674 x term *)
    let cost_N_IMul_bls12_381_z_fr size1 =
      let open S_syntax in
      let v0 = S.safe_int size1 in
      S.safe_int 270 + v0 + (v0 lsr 4)

    let cost_mul size1 size2 =
      let open S_syntax in
      let a = S.add (S.safe_int size1) (S.safe_int size2) in
      let v0 = a * log2 a in
      S.safe_int 75 + (v0 lsr 1) + (v0 lsr 2) + (v0 lsr 4)

    (* model N_IMul_intint *)
    (* Approximating 0.857296 x term *)
    let cost_N_IMul_intint = cost_mul

    (* model N_IMul_intnat *)
    (* Approximating 0.857931 x term *)
    let cost_N_IMul_intnat = cost_mul

    (* model N_IMul_natint *)
    (* Approximating 0.861823 x term *)
    let cost_N_IMul_natint = cost_mul

    (* model N_IMul_natnat *)
    (* Approximating 0.849870 x term *)
    let cost_N_IMul_natnat = cost_mul

    (* model N_IMul_nattez *)
    let cost_N_IMul_nattez = S.safe_int 100

    (* model N_IMul_teznat *)
    let cost_N_IMul_teznat = S.safe_int 100

    (* model N_INeg_bls12_381_fr *)
    let cost_N_INeg_bls12_381_fr = S.safe_int 120

    (* model N_INeg_bls12_381_g1 *)
    let cost_N_INeg_bls12_381_g1 = S.safe_int 290

    (* model N_INeg_bls12_381_g2 *)
    let cost_N_INeg_bls12_381_g2 = S.safe_int 555

    (* model N_INeg_int *)
    (* Approximating 0.065748 x term *)
    let cost_N_INeg_int size =
      let open S_syntax in
      S.safe_int 25 + (S.safe_int size lsr 4)

    (* model N_INeg_nat *)
    (* Approximating 0.066076 x term *)
    let cost_N_INeg_nat size =
      let open S_syntax in
      S.safe_int 25 + (S.safe_int size lsr 4)

    (* model N_INeq *)
    let cost_N_INeq = S.safe_int 15

    (* model N_INil *)
    let cost_N_INil = S.safe_int 15

    (* model N_INot *)
    let cost_N_INot = S.safe_int 10

    (* model N_INot_int *)
    (* Approximating 0.075541 x term *)
    let cost_N_INot_int size =
      let open S_syntax in
      let v0 = S.safe_int size in
      S.safe_int 25 + ((v0 lsr 4) + (v0 lsr 7))

    (* model N_INot_nat *)
    (* Approximating 0.074613 x term *)
    let cost_N_INot_nat size =
      let open S_syntax in
      let v0 = S.safe_int size in
      S.safe_int 25 + ((v0 lsr 4) + (v0 lsr 7))

    (* model N_INow *)
    let cost_N_INow = S.safe_int 25

    (* model N_IOr *)
    let cost_N_IOr = S.safe_int 15

    (* model N_IOr_nat *)
    (* Approximating 0.075758 x term *)
    let cost_N_IOr_nat = cost_linear_op_int

    (* model N_IPairing_check_bls12_381 *)
    let cost_N_IPairing_check_bls12_381 size =
      S.add
        (S.safe_int 1_396_550)
        (S.mul (S.safe_int 456_475) (S.safe_int size))

    (* model N_IRead_ticket *)
    let cost_N_IRead_ticket = S.safe_int 15

    (* model N_IRight *)
    let cost_N_IRight = S.safe_int 15

    (* model N_ISapling_empty_state *)
    let cost_N_ISapling_empty_state = S.safe_int 15

    (* model N_ISapling_verify_update *)
    (* Approximating 1.27167 x term *)
    (* Approximating 38.72115 x term *)
    let cost_N_ISapling_verify_update size1 size2 =
      let open S_syntax in
      let v1 = S.safe_int size1 in
      let v0 = S.safe_int size2 in
      S.safe_int 84_050 + (v1 + (v1 lsr 2)) + (S.safe_int 39 * v0)

    (* model N_ISelf_address *)
    let cost_N_ISelf_address = S.safe_int 15

    (* model N_ISelf *)
    let cost_N_ISelf = S.safe_int 15

    (* model N_ISender *)
    let cost_N_ISender = S.safe_int 15

    (* model N_ISet_delegate *)
    let cost_N_ISet_delegate = S.safe_int 40

    (* model N_ISet_iter *)
    (* Approximating 4.214099 x term *)
    let cost_N_ISet_iter size =
      let open S_syntax in
      let v0 = S.safe_int size in
      S.safe_int 60 + (S.safe_int 4 * v0) + (v0 lsr 2)

    (* model N_ISet_size *)
    let cost_N_ISet_size = S.safe_int 15

    (* model N_ISha256 *)
    (* Approximating 4.763264 x term *)
    let cost_N_ISha256 size =
      let open S_syntax in
      let v0 = S.safe_int size in
      S.safe_int 460 + ((S.safe_int 4 * v0) + (v0 lsr 1) + (v0 lsr 2))

    (* model N_ISha3 *)
    (* Approximating 32.739046325 x term *)
    let cost_N_ISha3 = cost_N_IKeccak

    (* model N_ISha512 *)
    (* Approximating 3.074641 x term *)
    let cost_N_ISha512 size =
      let open S_syntax in
      let v0 = S.safe_int size in
      S.safe_int 535 + (S.safe_int 3 * v0)

    (* model N_ISlice_bytes *)
    (* Approximating 0.065752 x term *)
    let cost_N_ISlice_bytes size =
      let open S_syntax in
      S.safe_int 30 + (S.safe_int size lsr 4)

    (* model N_ISlice_string *)
    (* Approximating 0.065688 x term *)
    let cost_N_ISlice_string size =
      let open S_syntax in
      S.safe_int 30 + (S.safe_int size lsr 4)

    (* model N_ISource *)
    let cost_N_ISource = S.safe_int 15

    (* model N_ISplit_ticket *)
    (* Approximating 0.132362 x term *)
    let cost_N_ISplit_ticket size1 size2 =
      let open S_syntax in
      let v1 = S.safe_int (Compare.Int.max size1 size2) in
      S.safe_int 70 + (v1 lsr 3)

    (* model N_IString_size *)
    let cost_N_IString_size = S.safe_int 15

    (* model N_ISub_int *)
    (* Approximating 0.077849 x term *)
    let cost_N_ISub_int = cost_linear_op_int

    (* model N_ISub_tez *)
    let cost_N_ISub_tez = S.safe_int 25

    (* model N_ISub_timestamp_seconds *)
    (* Approximating 0.077794 x term *)
    let cost_N_ISub_timestamp_seconds = cost_linear_op_int

    (* model N_ISwap *)
    let cost_N_ISwap = S.safe_int 10

    (* model N_ITicket *)
    let cost_N_ITicket = S.safe_int 15

    (* model N_ITotal_voting_power *)
    let cost_N_ITotal_voting_power = S.safe_int 300

    (* model N_ITransfer_tokens *)
    let cost_N_ITransfer_tokens = S.safe_int 30

    (* model N_IUncomb *)
    (* Approximating 3.772151 x term *)
    let cost_N_IUncomb size =
      let open S_syntax in
      let v0 = S.safe_int size in
      S.safe_int 25 + (S.safe_int 3 * v0) + (v0 lsr 1) + (v0 lsr 2)

    (* model N_IUnpair *)
    let cost_N_IUnpair = S.safe_int 10

    (* model N_IVoting_power *)
    let cost_N_IVoting_power = S.safe_int 400

    (* model N_IXor *)
    let cost_N_IXor = S.safe_int 20

    (* model N_IXor_nat *)
    (* Approximating 0.075601 x term *)
    let cost_N_IXor_nat = cost_linear_op_int

    (* model N_KCons *)
    let cost_N_KCons = S.safe_int 15

    (* model N_KIter *)
    let cost_N_KIter = S.safe_int 20

    (* model N_KList_enter_body *)
    (* Approximating 1.672196 x term *)
    let cost_N_KList_enter_body xs size_ys =
      match xs with
      | [] ->
          let open S_syntax in
          let v0 = S.safe_int size_ys in
          S.safe_int 40 + (v0 + (v0 lsr 1) + (v0 lsr 3))
      | _ :: _ ->
          S.safe_int 70

    (* model N_KList_exit_body *)
    let cost_N_KList_exit_body = S.safe_int 30

    (* model N_KLoop_in *)
    let cost_N_KLoop_in = S.safe_int 15

    (* model N_KLoop_in_left *)
    let cost_N_KLoop_in_left = S.safe_int 15

    (* model N_KMap_enter_body *)
    let cost_N_KMap_enter_body = S.safe_int 130

    (* model N_KNil *)
    let cost_N_KNil = S.safe_int 20

    (* model N_KReturn *)
    let cost_N_KReturn = S.safe_int 15

    (* model N_KUndip *)
    let cost_N_KUndip = S.safe_int 15

    (* model DECODING_BLS_FR *)
    let cost_DECODING_BLS_FR = S.safe_int 50

    (* model DECODING_BLS_G1 *)
    let cost_DECODING_BLS_G1 = S.safe_int 195_000

    (* model DECODING_BLS_G2 *)
    let cost_DECODING_BLS_G2 = S.safe_int 660_000

    (* model B58CHECK_DECODING_CHAIN_ID *)
    let cost_B58CHECK_DECODING_CHAIN_ID = S.safe_int 1_400

    (* model B58CHECK_DECODING_PUBLIC_KEY_HASH_ed25519 *)
    let cost_B58CHECK_DECODING_PUBLIC_KEY_HASH_ed25519 = S.safe_int 3_100

    (* model B58CHECK_DECODING_PUBLIC_KEY_HASH_p256 *)
    let cost_B58CHECK_DECODING_PUBLIC_KEY_HASH_p256 = S.safe_int 3_100

    (* model B58CHECK_DECODING_PUBLIC_KEY_HASH_secp256k1 *)
    let cost_B58CHECK_DECODING_PUBLIC_KEY_HASH_secp256k1 = S.safe_int 3_100

    (* model B58CHECK_DECODING_PUBLIC_KEY_ed25519 *)
    let cost_B58CHECK_DECODING_PUBLIC_KEY_ed25519 = S.safe_int 4_000

    (* model B58CHECK_DECODING_PUBLIC_KEY_p256 *)
    let cost_B58CHECK_DECODING_PUBLIC_KEY_p256 = S.safe_int 27_000

    (* model B58CHECK_DECODING_PUBLIC_KEY_secp256k1 *)
    let cost_B58CHECK_DECODING_PUBLIC_KEY_secp256k1 = S.safe_int 8_500

    (* model B58CHECK_DECODING_SIGNATURE_ed25519 *)
    let cost_B58CHECK_DECODING_SIGNATURE_ed25519 = S.safe_int 6_100

    (* model B58CHECK_DECODING_SIGNATURE_p256 *)
    let cost_B58CHECK_DECODING_SIGNATURE_p256 = S.safe_int 6_100

    (* model B58CHECK_DECODING_SIGNATURE_secp256k1 *)
    let cost_B58CHECK_DECODING_SIGNATURE_secp256k1 = S.safe_int 6_100

    (* model ENCODING_BLS_FR *)
    let cost_ENCODING_BLS_FR = S.safe_int 30

    (* model ENCODING_BLS_G1 *)
    let cost_ENCODING_BLS_G1 = S.safe_int 30

    (* model ENCODING_BLS_G2 *)
    let cost_ENCODING_BLS_G2 = S.safe_int 30

    (* model B58CHECK_ENCODING_CHAIN_ID *)
    let cost_B58CHECK_ENCODING_CHAIN_ID = S.safe_int 1_600

    (* model B58CHECK_ENCODING_PUBLIC_KEY_HASH_ed25519 *)
    let cost_B58CHECK_ENCODING_PUBLIC_KEY_HASH_ed25519 = S.safe_int 2_900

    (* model B58CHECK_ENCODING_PUBLIC_KEY_HASH_p256 *)
    let cost_B58CHECK_ENCODING_PUBLIC_KEY_HASH_p256 = S.safe_int 2_900

    (* model B58CHECK_ENCODING_PUBLIC_KEY_HASH_secp256k1 *)
    let cost_B58CHECK_ENCODING_PUBLIC_KEY_HASH_secp256k1 = S.safe_int 2_900

    (* model B58CHECK_ENCODING_PUBLIC_KEY_ed25519 *)
    let cost_B58CHECK_ENCODING_PUBLIC_KEY_ed25519 = S.safe_int 4_200

    (* model B58CHECK_ENCODING_PUBLIC_KEY_p256 *)
    let cost_B58CHECK_ENCODING_PUBLIC_KEY_p256 = S.safe_int 4_700

    (* model B58CHECK_ENCODING_PUBLIC_KEY_secp256k1 *)
    let cost_B58CHECK_ENCODING_PUBLIC_KEY_secp256k1 = S.safe_int 4_500

    (* model B58CHECK_ENCODING_SIGNATURE_ed25519 *)
    let cost_B58CHECK_ENCODING_SIGNATURE_ed25519 = S.safe_int 7_800

    (* model B58CHECK_ENCODING_SIGNATURE_p256 *)
    let cost_B58CHECK_ENCODING_SIGNATURE_p256 = S.safe_int 7_800

    (* model B58CHECK_ENCODING_SIGNATURE_secp256k1 *)
    let cost_B58CHECK_ENCODING_SIGNATURE_secp256k1 = S.safe_int 7_800

    (* model DECODING_CHAIN_ID *)
    let cost_DECODING_CHAIN_ID = S.safe_int 50

    (* model DECODING_PUBLIC_KEY_HASH_ed25519 *)
    let cost_DECODING_PUBLIC_KEY_HASH_ed25519 = S.safe_int 50

    (* model DECODING_PUBLIC_KEY_HASH_p256 *)
    let cost_DECODING_PUBLIC_KEY_HASH_p256 = S.safe_int 50

    (* model DECODING_PUBLIC_KEY_HASH_secp256k1 *)
    let cost_DECODING_PUBLIC_KEY_HASH_secp256k1 = S.safe_int 50

    (* model DECODING_PUBLIC_KEY_ed25519 *)
    let cost_DECODING_PUBLIC_KEY_ed25519 = S.safe_int 60

    (* model DECODING_PUBLIC_KEY_p256 *)
    let cost_DECODING_PUBLIC_KEY_p256 = S.safe_int 23_000

    (* model DECODING_PUBLIC_KEY_secp256k1 *)
    let cost_DECODING_PUBLIC_KEY_secp256k1 = S.safe_int 4_800

    (* model DECODING_SIGNATURE_ed25519 *)
    let cost_DECODING_SIGNATURE_ed25519 = S.safe_int 30

    (* model DECODING_SIGNATURE_p256 *)
    let cost_DECODING_SIGNATURE_p256 = S.safe_int 30

    (* model DECODING_SIGNATURE_secp256k1 *)
    let cost_DECODING_SIGNATURE_secp256k1 = S.safe_int 30

    (* model ENCODING_CHAIN_ID *)
    let cost_ENCODING_CHAIN_ID = S.safe_int 50

    (* model ENCODING_PUBLIC_KEY_HASH_ed25519 *)
    let cost_ENCODING_PUBLIC_KEY_HASH_ed25519 = S.safe_int 60

    (* model ENCODING_PUBLIC_KEY_HASH_p256 *)
    let cost_ENCODING_PUBLIC_KEY_HASH_p256 = S.safe_int 80

    (* model ENCODING_PUBLIC_KEY_HASH_secp256k1 *)
    let cost_ENCODING_PUBLIC_KEY_HASH_secp256k1 = S.safe_int 70

    (* model ENCODING_PUBLIC_KEY_ed25519 *)
    let cost_ENCODING_PUBLIC_KEY_ed25519 = S.safe_int 80

    (* model ENCODING_PUBLIC_KEY_p256 *)
    let cost_ENCODING_PUBLIC_KEY_p256 = S.safe_int 570

    (* model ENCODING_PUBLIC_KEY_secp256k1 *)
    let cost_ENCODING_PUBLIC_KEY_secp256k1 = S.safe_int 440

    (* model ENCODING_SIGNATURE_ed25519 *)
    let cost_ENCODING_SIGNATURE_ed25519 = S.safe_int 40

    (* model ENCODING_SIGNATURE_p256 *)
    let cost_ENCODING_SIGNATURE_p256 = S.safe_int 40

    (* model ENCODING_SIGNATURE_secp256k1 *)
    let cost_ENCODING_SIGNATURE_secp256k1 = S.safe_int 40

    (* model TIMESTAMP_READABLE_DECODING *)
    let cost_TIMESTAMP_READABLE_DECODING = S.safe_int 120

    (* model TIMESTAMP_READABLE_ENCODING *)
    let cost_TIMESTAMP_READABLE_ENCODING = S.safe_int 800

    (* model CHECK_PRINTABLE *)
    let cost_CHECK_PRINTABLE size =
      let open S_syntax in
      S.safe_int 14 + (S.safe_int 10 * S.safe_int size)

    (* model MERGE_TYPES
       This is the estimated cost of one iteration of merge_types, extracted
       and copied manually from the parameter fit for the MERGE_TYPES benchmark
       (the model is parametric on the size of the type, which we don't have
       access to in O(1)). *)
    let cost_MERGE_TYPES = S.safe_int 40

    (* model TYPECHECKING_CODE
       This is the cost of one iteration of parse_instr, extracted by hand from the
       parameter fit for the TYPECHECKING_CODE benchmark. *)
    let cost_TYPECHECKING_CODE = S.safe_int 220

    (* model UNPARSING_CODE
       This is the cost of one iteration of unparse_instr, extracted by hand from the
       parameter fit for the UNPARSING_CODE benchmark. *)
    let cost_UNPARSING_CODE = S.safe_int 115

    (* model TYPECHECKING_DATA
       This is the cost of one iteration of parse_data, extracted by hand from the
       parameter fit for the TYPECHECKING_DATA benchmark. *)
    let cost_TYPECHECKING_DATA = S.safe_int 100

    (* model UNPARSING_DATA
       This is the cost of one iteration of unparse_data, extracted by hand from the
       parameter fit for the UNPARSING_DATA benchmark. *)
    let cost_UNPARSING_DATA = S.safe_int 45

    (* model PARSE_TYPE
       This is the cost of one iteration of parse_ty, extracted by hand from the
       parameter fit for the PARSE_TYPE benchmark. *)
    let cost_PARSE_TYPE = S.safe_int 60

    (* model UNPARSE_TYPE
       This is the cost of one iteration of unparse_ty, extracted by hand from the
       parameter fit for the UNPARSE_TYPE benchmark. *)
    let cost_UNPARSE_TYPE = S.safe_int 20

    (* TODO: benchmark *)
    let cost_COMPARABLE_TY_OF_TY = S.safe_int 120

    (* model SAPLING_TRANSACTION_ENCODING *)
    let cost_SAPLING_TRANSACTION_ENCODING ~inputs ~outputs =
      S.safe_int (1500 + (inputs * 160) + (outputs * 320))

    (* model SAPLING_DIFF_ENCODING *)
    let cost_SAPLING_DIFF_ENCODING ~nfs ~cms =
      S.safe_int ((nfs * 22) + (cms * 215))
  end

  module Interpreter = struct
    open Generated_costs

    let drop = atomic_step_cost cost_N_IDrop

    let dup = atomic_step_cost cost_N_IDup

    let swap = atomic_step_cost cost_N_ISwap

    let cons_some = atomic_step_cost cost_N_ICons_some

    let cons_none = atomic_step_cost cost_N_ICons_none

    let if_none = atomic_step_cost cost_N_IIf_none

    let cons_pair = atomic_step_cost cost_N_ICons_pair

    let unpair = atomic_step_cost cost_N_IUnpair

    let car = atomic_step_cost cost_N_ICar

    let cdr = atomic_step_cost cost_N_ICdr

    let cons_left = atomic_step_cost cost_N_ILeft

    let cons_right = atomic_step_cost cost_N_IRight

    let if_left = atomic_step_cost cost_N_IIf_left

    let cons_list = atomic_step_cost cost_N_ICons_list

    let nil = atomic_step_cost cost_N_INil

    let if_cons = atomic_step_cost cost_N_IIf_cons

    let list_map : 'a Script_typed_ir.boxed_list -> Gas.cost =
     fun {length; _} -> atomic_step_cost (cost_N_IList_map length)

    let list_size = atomic_step_cost cost_N_IList_size

    let list_iter : 'a Script_typed_ir.boxed_list -> Gas.cost =
     fun {length; _} -> atomic_step_cost (cost_N_IList_iter length)

    let empty_set = atomic_step_cost cost_N_IEmpty_set

    let set_iter (type a) ((module Box) : a Script_typed_ir.set) =
      atomic_step_cost (cost_N_ISet_iter Box.size)

    let set_size = atomic_step_cost cost_N_ISet_size

    let empty_map = atomic_step_cost cost_N_IEmpty_map

    let map_map (type k v) ((module Box) : (k, v) Script_typed_ir.map) =
      atomic_step_cost (cost_N_IMap_map (snd Box.boxed))

    let map_iter (type k v) ((module Box) : (k, v) Script_typed_ir.map) =
      atomic_step_cost (cost_N_IMap_iter (snd Box.boxed))

    let map_size = atomic_step_cost cost_N_IMap_size

    let big_map_elt_size = S.safe_int Script_expr_hash.size

    let big_map_mem ({size; _} : _ Script_typed_ir.big_map_overlay) =
      atomic_step_cost (cost_N_IMap_mem big_map_elt_size (S.safe_int size))

    let big_map_get ({size; _} : _ Script_typed_ir.big_map_overlay) =
      atomic_step_cost (cost_N_IMap_get big_map_elt_size (S.safe_int size))

    let big_map_update ({size; _} : _ Script_typed_ir.big_map_overlay) =
      atomic_step_cost (cost_N_IMap_update big_map_elt_size (S.safe_int size))

    let big_map_get_and_update ({size; _} : _ Script_typed_ir.big_map_overlay)
        =
      atomic_step_cost
        (cost_N_IMap_get_and_update big_map_elt_size (S.safe_int size))

    let add_seconds_timestamp :
        'a Script_int.num -> Script_timestamp.t -> Gas.cost =
     fun seconds timestamp ->
      let seconds_bytes = int_bytes seconds in
      let timestamp_bytes = z_bytes (Script_timestamp.to_zint timestamp) in
      atomic_step_cost
        (cost_N_IAdd_seconds_to_timestamp seconds_bytes timestamp_bytes)

    let add_timestamp_seconds :
        Script_timestamp.t -> 'a Script_int.num -> Gas.cost =
     fun timestamp seconds ->
      let seconds_bytes = int_bytes seconds in
      let timestamp_bytes = z_bytes (Script_timestamp.to_zint timestamp) in
      atomic_step_cost
        (cost_N_IAdd_timestamp_to_seconds timestamp_bytes seconds_bytes)

    let sub_timestamp_seconds :
        Script_timestamp.t -> 'a Script_int.num -> Gas.cost =
     fun timestamp seconds ->
      let seconds_bytes = int_bytes seconds in
      let timestamp_bytes = z_bytes (Script_timestamp.to_zint timestamp) in
      atomic_step_cost
        (cost_N_ISub_timestamp_seconds timestamp_bytes seconds_bytes)

    let diff_timestamps t1 t2 =
      let t1_bytes = z_bytes (Script_timestamp.to_zint t1) in
      let t2_bytes = z_bytes (Script_timestamp.to_zint t2) in
      atomic_step_cost (cost_N_IDiff_timestamps t1_bytes t2_bytes)

    let concat_string_pair s1 s2 =
      atomic_step_cost
        (cost_N_IConcat_string_pair (String.length s1) (String.length s2))

    let slice_string s =
      atomic_step_cost (cost_N_ISlice_string (String.length s))

    let string_size = atomic_step_cost cost_N_IString_size

    let concat_bytes_pair b1 b2 =
      atomic_step_cost
        (cost_N_IConcat_bytes_pair (Bytes.length b1) (Bytes.length b2))

    let slice_bytes b = atomic_step_cost (cost_N_ISlice_bytes (Bytes.length b))

    let bytes_size = atomic_step_cost cost_N_IBytes_size

    let add_tez = atomic_step_cost cost_N_IAdd_tez

    let sub_tez = atomic_step_cost cost_N_ISub_tez

    let mul_teznat = atomic_step_cost cost_N_IMul_teznat

    let mul_nattez = atomic_step_cost cost_N_IMul_nattez

    let bool_or = atomic_step_cost cost_N_IOr

    let bool_and = atomic_step_cost cost_N_IAnd

    let bool_xor = atomic_step_cost cost_N_IXor

    let bool_not = atomic_step_cost cost_N_INot

    let is_nat = atomic_step_cost cost_N_IIs_nat

    let abs_int i = atomic_step_cost (cost_N_IAbs_int (int_bytes i))

    let int_nat = atomic_step_cost cost_N_IInt_nat

    let neg_int i = atomic_step_cost (cost_N_INeg_int (int_bytes i))

    let neg_nat n = atomic_step_cost (cost_N_INeg_nat (int_bytes n))

    let add_intint i1 i2 =
      atomic_step_cost (cost_N_IAdd_intint (int_bytes i1) (int_bytes i2))

    let add_intnat i1 i2 =
      atomic_step_cost (cost_N_IAdd_intnat (int_bytes i1) (int_bytes i2))

    let add_natint i1 i2 =
      atomic_step_cost (cost_N_IAdd_natint (int_bytes i1) (int_bytes i2))

    let add_natnat i1 i2 =
      atomic_step_cost (cost_N_IAdd_natnat (int_bytes i1) (int_bytes i2))

    let sub_int i1 i2 =
      atomic_step_cost (cost_N_ISub_int (int_bytes i1) (int_bytes i2))

    let mul_intint i1 i2 =
      atomic_step_cost (cost_N_IMul_intint (int_bytes i1) (int_bytes i2))

    let mul_intnat i1 i2 =
      atomic_step_cost (cost_N_IMul_intnat (int_bytes i1) (int_bytes i2))

    let mul_natint i1 i2 =
      atomic_step_cost (cost_N_IMul_natint (int_bytes i1) (int_bytes i2))

    let mul_natnat i1 i2 =
      atomic_step_cost (cost_N_IMul_natnat (int_bytes i1) (int_bytes i2))

    let ediv_teznat _tez _n = atomic_step_cost cost_N_IEdiv_teznat

    let ediv_tez = atomic_step_cost cost_N_IEdiv_tez

    let ediv_intint i1 i2 =
      atomic_step_cost (cost_N_IEdiv_intint (int_bytes i1) (int_bytes i2))

    let ediv_intnat i1 i2 =
      atomic_step_cost (cost_N_IEdiv_intnat (int_bytes i1) (int_bytes i2))

    let ediv_natint i1 i2 =
      atomic_step_cost (cost_N_IEdiv_natint (int_bytes i1) (int_bytes i2))

    let ediv_natnat i1 i2 =
      atomic_step_cost (cost_N_IEdiv_natnat (int_bytes i1) (int_bytes i2))

    let eq = atomic_step_cost cost_N_IEq

    let lsl_nat shifted =
      atomic_step_cost (cost_N_ILsl_nat (int_bytes shifted))

    let lsr_nat shifted =
      atomic_step_cost (cost_N_ILsr_nat (int_bytes shifted))

    let or_nat n1 n2 =
      atomic_step_cost (cost_N_IOr_nat (int_bytes n1) (int_bytes n2))

    let and_nat n1 n2 =
      atomic_step_cost (cost_N_IAnd_nat (int_bytes n1) (int_bytes n2))

    let and_int_nat n1 n2 =
      atomic_step_cost (cost_N_IAnd_int_nat (int_bytes n1) (int_bytes n2))

    let xor_nat n1 n2 =
      atomic_step_cost (cost_N_IXor_nat (int_bytes n1) (int_bytes n2))

    let not_int i = atomic_step_cost (cost_N_INot_int (int_bytes i))

    let not_nat i = atomic_step_cost (cost_N_INot_nat (int_bytes i))

    let if_ = atomic_step_cost cost_N_IIf

    let loop = atomic_step_cost cost_N_ILoop

    let loop_left = atomic_step_cost cost_N_ILoop_left

    let dip = atomic_step_cost cost_N_IDip

    let check_signature (pkey : Signature.public_key) b =
      let cost =
        match pkey with
        | Ed25519 _ ->
            cost_N_ICheck_signature_ed25519 (Bytes.length b)
        | Secp256k1 _ ->
            cost_N_ICheck_signature_secp256k1 (Bytes.length b)
        | P256 _ ->
            cost_N_ICheck_signature_p256 (Bytes.length b)
      in
      atomic_step_cost cost

    let blake2b b = atomic_step_cost (cost_N_IBlake2b (Bytes.length b))

    let sha256 b = atomic_step_cost (cost_N_ISha256 (Bytes.length b))

    let sha512 b = atomic_step_cost (cost_N_ISha512 (Bytes.length b))

    let dign n = atomic_step_cost (cost_N_IDig n)

    let dugn n = atomic_step_cost (cost_N_IDug n)

    let dipn n = atomic_step_cost (cost_N_IDipN n)

    let dropn n = atomic_step_cost (cost_N_IDropN n)

    let voting_power = atomic_step_cost cost_N_IVoting_power

    let total_voting_power = atomic_step_cost cost_N_ITotal_voting_power

    let keccak b = atomic_step_cost (cost_N_IKeccak (Bytes.length b))

    let sha3 b = atomic_step_cost (cost_N_ISha3 (Bytes.length b))

    let add_bls12_381_g1 = atomic_step_cost cost_N_IAdd_bls12_381_g1

    let add_bls12_381_g2 = atomic_step_cost cost_N_IAdd_bls12_381_g2

    let add_bls12_381_fr = atomic_step_cost cost_N_IAdd_bls12_381_fr

    let mul_bls12_381_g1 = atomic_step_cost cost_N_IMul_bls12_381_g1

    let mul_bls12_381_g2 = atomic_step_cost cost_N_IMul_bls12_381_g2

    let mul_bls12_381_fr = atomic_step_cost cost_N_IMul_bls12_381_fr

    let mul_bls12_381_fr_z z =
      atomic_step_cost (cost_N_IMul_bls12_381_fr_z (int_bytes z))

    let mul_bls12_381_z_fr z =
      atomic_step_cost (cost_N_IMul_bls12_381_z_fr (int_bytes z))

    let int_bls12_381_fr = atomic_step_cost cost_N_IInt_bls12_381_z_fr

    let neg_bls12_381_g1 = atomic_step_cost cost_N_INeg_bls12_381_g1

    let neg_bls12_381_g2 = atomic_step_cost cost_N_INeg_bls12_381_g2

    let neg_bls12_381_fr = atomic_step_cost cost_N_INeg_bls12_381_fr

    let neq = atomic_step_cost cost_N_INeq

    let pairing_check_bls12_381 (l : 'a Script_typed_ir.boxed_list) =
      atomic_step_cost (cost_N_IPairing_check_bls12_381 l.length)

    let comb n = atomic_step_cost (cost_N_IComb n)

    let uncomb n = atomic_step_cost (cost_N_IUncomb n)

    let comb_get n = atomic_step_cost (cost_N_IComb_get n)

    let comb_set n = atomic_step_cost (cost_N_IComb_set n)

    let dupn n = atomic_step_cost (cost_N_IDupN n)

    let sapling_verify_update ~inputs ~outputs =
      atomic_step_cost (cost_N_ISapling_verify_update inputs outputs)

    let sapling_empty_state = atomic_step_cost cost_N_ISapling_empty_state

    let halt = atomic_step_cost cost_N_IHalt

    let const = atomic_step_cost cost_N_IConst

    let empty_big_map = atomic_step_cost cost_N_IEmpty_big_map

    let lt = atomic_step_cost cost_N_ILt

    let le = atomic_step_cost cost_N_ILe

    let gt = atomic_step_cost cost_N_IGt

    let ge = atomic_step_cost cost_N_IGe

    let exec = atomic_step_cost cost_N_IExec

    let apply = atomic_step_cost cost_N_IApply

    let lambda = atomic_step_cost cost_N_ILambda

    let address = atomic_step_cost cost_N_IAddress

    let contract = atomic_step_cost cost_N_IContract

    let transfer_tokens = atomic_step_cost cost_N_ITransfer_tokens

    let implicit_account = atomic_step_cost cost_N_IImplicit_account

    let create_contract = atomic_step_cost cost_N_ICreate_contract

    let set_delegate = atomic_step_cost cost_N_ISet_delegate

    let level = atomic_step_cost cost_N_ILevel

    let now = atomic_step_cost cost_N_INow

    let source = atomic_step_cost cost_N_ISource

    let sender = atomic_step_cost cost_N_ISender

    let self = atomic_step_cost cost_N_ISelf

    let self_address = atomic_step_cost cost_N_ISelf_address

    let amount = atomic_step_cost cost_N_IAmount

    let chain_id = atomic_step_cost cost_N_IChainId

    let ticket = atomic_step_cost cost_N_ITicket

    let read_ticket = atomic_step_cost cost_N_IRead_ticket

    let hash_key _ = atomic_step_cost cost_N_IHash_key

    let split_ticket _ amount_a amount_b =
      atomic_step_cost
        (cost_N_ISplit_ticket (int_bytes amount_a) (int_bytes amount_b))

    (* --------------------------------------------------------------------- *)
    (* Semi-hand-crafted models *)

    let compare_unit = atomic_step_cost (S.safe_int 10)

    let compare_pair_tag = atomic_step_cost (S.safe_int 10)

    let compare_union_tag = atomic_step_cost (S.safe_int 10)

    let compare_option_tag = atomic_step_cost (S.safe_int 10)

    let compare_bool = atomic_step_cost (cost_N_ICompare 1 1)

    let compare_signature = atomic_step_cost (S.safe_int 92)

    let compare_string s1 s2 =
      atomic_step_cost (cost_N_ICompare (String.length s1) (String.length s2))

    let compare_bytes b1 b2 =
      atomic_step_cost (cost_N_ICompare (Bytes.length b1) (Bytes.length b2))

    let compare_mutez = atomic_step_cost (cost_N_ICompare 8 8)

    let compare_int i1 i2 =
      atomic_step_cost (cost_N_ICompare (int_bytes i1) (int_bytes i2))

    let compare_nat n1 n2 =
      atomic_step_cost (cost_N_ICompare (int_bytes n1) (int_bytes n2))

    let compare_key_hash =
      let sz = Signature.Public_key_hash.size in
      atomic_step_cost (cost_N_ICompare sz sz)

    let compare_key = atomic_step_cost (S.safe_int 92)

    let compare_timestamp t1 t2 =
      atomic_step_cost
        (cost_N_ICompare
           (z_bytes (Script_timestamp.to_zint t1))
           (z_bytes (Script_timestamp.to_zint t2)))

    (* Maximum size of an entrypoint in bytes *)
    let entrypoint_size = 31

    let compare_address =
      let sz = Signature.Public_key_hash.size + entrypoint_size in
      atomic_step_cost (cost_N_ICompare sz sz)

    let compare_chain_id = atomic_step_cost (S.safe_int 30)

    (* Defunctionalized CPS *)
    type cont =
      | Compare : 'a Script_typed_ir.comparable_ty * 'a * 'a * cont -> cont
      | Return : cont

    let compare : type a. a Script_typed_ir.comparable_ty -> a -> a -> cost =
     fun ty x y ->
      let[@coq_axiom_with_reason "gadt"] rec compare :
          type a.
          a Script_typed_ir.comparable_ty -> a -> a -> cost -> cont -> cost =
       fun ty x y acc k ->
        match ty with
        | Unit_key _ ->
            (apply [@tailcall]) Gas.(acc +@ compare_unit) k
        | Never_key _ -> (
          match x with _ -> . )
        | Bool_key _ ->
            (apply [@tailcall]) Gas.(acc +@ compare_bool) k
        | String_key _ ->
            (apply [@tailcall]) Gas.(acc +@ compare_string x y) k
        | Signature_key _ ->
            (apply [@tailcall]) Gas.(acc +@ compare_signature) k
        | Bytes_key _ ->
            (apply [@tailcall]) Gas.(acc +@ compare_bytes x y) k
        | Mutez_key _ ->
            (apply [@tailcall]) Gas.(acc +@ compare_mutez) k
        | Int_key _ ->
            (apply [@tailcall]) Gas.(acc +@ compare_int x y) k
        | Nat_key _ ->
            (apply [@tailcall]) Gas.(acc +@ compare_nat x y) k
        | Key_hash_key _ ->
            (apply [@tailcall]) Gas.(acc +@ compare_key_hash) k
        | Key_key _ ->
            (apply [@tailcall]) Gas.(acc +@ compare_key) k
        | Timestamp_key _ ->
            (apply [@tailcall]) Gas.(acc +@ compare_timestamp x y) k
        | Address_key _ ->
            (apply [@tailcall]) Gas.(acc +@ compare_address) k
        | Chain_id_key _ ->
            (apply [@tailcall]) Gas.(acc +@ compare_chain_id) k
        | Pair_key ((tl, _), (tr, _), _) ->
            (* Reasonable over-approximation of the cost of lexicographic comparison. *)
            let (xl, xr) = x in
            let (yl, yr) = y in
            (compare [@tailcall])
              tl
              xl
              yl
              Gas.(acc +@ compare_pair_tag)
              (Compare (tr, xr, yr, k))
        | Union_key ((tl, _), (tr, _), _) -> (
          match (x, y) with
          | (L x, L y) ->
              (compare [@tailcall]) tl x y Gas.(acc +@ compare_union_tag) k
          | (L _, R _) ->
              (apply [@tailcall]) Gas.(acc +@ compare_union_tag) k
          | (R _, L _) ->
              (apply [@tailcall]) Gas.(acc +@ compare_union_tag) k
          | (R x, R y) ->
              (compare [@tailcall]) tr x y Gas.(acc +@ compare_union_tag) k )
        | Option_key (t, _) -> (
          match (x, y) with
          | (None, None) ->
              (apply [@tailcall]) Gas.(acc +@ compare_option_tag) k
          | (None, Some _) ->
              (apply [@tailcall]) Gas.(acc +@ compare_option_tag) k
          | (Some _, None) ->
              (apply [@tailcall]) Gas.(acc +@ compare_option_tag) k
          | (Some x, Some y) ->
              (compare [@tailcall]) t x y Gas.(acc +@ compare_option_tag) k )
      and apply cost k =
        match k with
        | Compare (ty, x, y, k) ->
            (compare [@tailcall]) ty x y cost k
        | Return ->
            cost
      in
      compare ty x y Gas.free Return

    let set_mem (type a) (elt : a) ((module Box) : a Script_typed_ir.set) =
      let open S_syntax in
      let per_elt_cost = compare Box.elt_ty elt elt in
      let size = S.safe_int Box.size in
      let intercept = atomic_step_cost (S.safe_int 80) in
      Gas.(intercept +@ (log2 size *@ per_elt_cost))

    let set_update (type a) (elt : a) ((module Box) : a Script_typed_ir.set) =
      let open S_syntax in
      let per_elt_cost = compare Box.elt_ty elt elt in
      let size = S.safe_int Box.size in
      let intercept = atomic_step_cost (S.safe_int 80) in
      (* The 2 factor reflects the update vs mem overhead as benchmarked
         on non-structured data *)
      Gas.(intercept +@ (S.safe_int 2 * log2 size *@ per_elt_cost))

    let map_mem (type k v) (elt : k)
        ((module Box) : (k, v) Script_typed_ir.map) =
      let open S_syntax in
      let per_elt_cost = compare Box.key_ty elt elt in
      let size = S.safe_int (snd Box.boxed) in
      let intercept = atomic_step_cost (S.safe_int 80) in
      Gas.(intercept +@ (log2 size *@ per_elt_cost))

    let map_get = map_mem

    let map_update (type k v) (elt : k)
        ((module Box) : (k, v) Script_typed_ir.map) =
      let open S_syntax in
      let per_elt_cost = compare Box.key_ty elt elt in
      let size = S.safe_int (snd Box.boxed) in
      let intercept = atomic_step_cost (S.safe_int 80) in
      (* The 2 factor reflects the update vs mem overhead as benchmarked
         on non-structured data *)
      Gas.(intercept +@ (S.safe_int 2 * log2 size *@ per_elt_cost))

    let map_get_and_update (type k v) (elt : k)
        ((module Box) : (k, v) Script_typed_ir.map) =
      let open S_syntax in
      let per_elt_cost = compare Box.key_ty elt elt in
      let size = S.safe_int (snd Box.boxed) in
      let intercept = atomic_step_cost (S.safe_int 80) in
      (* The 3 factor reflects the update vs mem overhead as benchmarked
         on non-structured data *)
      Gas.(intercept +@ (S.safe_int 3 * log2 size *@ per_elt_cost))

    let join_tickets :
        'a Script_typed_ir.comparable_ty ->
        'a Script_typed_ir.ticket ->
        'a Script_typed_ir.ticket ->
        Gas.cost =
     fun ty ticket_a ticket_b ->
      let contents_comparison =
        compare ty ticket_a.contents ticket_b.contents
      in
      Gas.(
        contents_comparison +@ compare_address
        +@ add_natnat ticket_a.amount ticket_b.amount)

    (* Continuations *)
    module Control = struct
      let nil = atomic_step_cost cost_N_KNil

      let cons = atomic_step_cost cost_N_KCons

      let return = atomic_step_cost cost_N_KReturn

      let undip = atomic_step_cost cost_N_KUndip

      let loop_in = atomic_step_cost cost_N_KLoop_in

      let loop_in_left = atomic_step_cost cost_N_KLoop_in_left

      let iter = atomic_step_cost cost_N_KIter

      let list_enter_body xs ys_len =
        atomic_step_cost (cost_N_KList_enter_body xs ys_len)

      let list_exit_body = atomic_step_cost cost_N_KList_exit_body

      let map_enter_body = atomic_step_cost cost_N_KMap_enter_body

      let map_exit_body (type k v) (key : k) (map : (k, v) Script_typed_ir.map)
          =
        map_update key map
    end

    (* --------------------------------------------------------------------- *)
    (* Hand-crafted models *)

    (* The cost functions below where not benchmarked, a cost model was derived
       from looking at similar instructions. *)

    (* Cost for Concat_string is paid in two steps: when entering the interpreter,
       the user pays for the cost of computing the information necessary to compute
       the actual gas (so it's meta-gas): indeed, one needs to run through the
       list of strings to compute the total allocated cost.
       [concat_string_precheck] corresponds to the meta-gas cost of this computation.
     *)
    let concat_string_precheck (l : 'a Script_typed_ir.boxed_list) =
      (* we set the precheck to be slightly more expensive than cost_N_IList_iter *)
      atomic_step_cost (S.mul (S.safe_int l.length) (S.safe_int 10))

    (* This is the cost of allocating a string and blitting existing ones into it. *)
    let concat_string total_bytes =
      atomic_step_cost
        S.(add (S.safe_int 100) (S.ediv total_bytes (S.safe_int 10)))

    (* Same story as Concat_string. *)
    let concat_bytes total_bytes =
      atomic_step_cost
        S.(add (S.safe_int 100) (S.ediv total_bytes (S.safe_int 10)))

    (* Cost of access taken care of in Contract_storage.get_balance_carbonated *)
    let balance = Gas.free

    (* Cost of Unpack pays two integer comparisons, and a Bytes slice *)
    let unpack bytes =
      let blen = Bytes.length bytes in
      let open S_syntax in
      atomic_step_cost (S.safe_int 100 + (S.safe_int blen lsr 3))

    (* TODO benchmark *)
    (* FIXME: imported from 006, needs proper benchmarks *)
    let unpack_failed bytes =
      (* We cannot instrument failed deserialization,
         so we take worst case fees: a set of size 1 bytes values. *)
      let blen = Bytes.length bytes in
      let len = S.safe_int blen in
      let d = Z.numbits (Z.of_int blen) in
      (len *@ alloc_mbytes_cost 1)
      +@ len
         *@ (S.safe_int d *@ (alloc_cost (S.safe_int 3) +@ step_cost S.one))
  end

  module Typechecking = struct
    open Generated_costs

    let public_key_optimized =
      atomic_step_cost
      @@ S.(
           max
             cost_DECODING_PUBLIC_KEY_ed25519
             (max
                cost_DECODING_PUBLIC_KEY_secp256k1
                cost_DECODING_PUBLIC_KEY_p256))

    let public_key_readable =
      atomic_step_cost
      @@ S.(
           max
             cost_B58CHECK_DECODING_PUBLIC_KEY_ed25519
             (max
                cost_B58CHECK_DECODING_PUBLIC_KEY_secp256k1
                cost_B58CHECK_DECODING_PUBLIC_KEY_p256))

    let key_hash_optimized =
      atomic_step_cost
      @@ S.(
           max
             cost_DECODING_PUBLIC_KEY_HASH_ed25519
             (max
                cost_DECODING_PUBLIC_KEY_HASH_secp256k1
                cost_DECODING_PUBLIC_KEY_HASH_p256))

    let key_hash_readable =
      atomic_step_cost
      @@ S.(
           max
             cost_B58CHECK_DECODING_PUBLIC_KEY_HASH_ed25519
             (max
                cost_B58CHECK_DECODING_PUBLIC_KEY_HASH_secp256k1
                cost_B58CHECK_DECODING_PUBLIC_KEY_HASH_p256))

    let signature_optimized =
      atomic_step_cost
      @@ S.(
           max
             cost_DECODING_SIGNATURE_ed25519
             (max
                cost_DECODING_SIGNATURE_secp256k1
                cost_DECODING_SIGNATURE_p256))

    let signature_readable =
      atomic_step_cost
      @@ S.(
           max
             cost_B58CHECK_DECODING_SIGNATURE_ed25519
             (max
                cost_B58CHECK_DECODING_SIGNATURE_secp256k1
                cost_B58CHECK_DECODING_SIGNATURE_p256))

    let chain_id_optimized = atomic_step_cost cost_DECODING_CHAIN_ID

    let chain_id_readable = atomic_step_cost cost_B58CHECK_DECODING_CHAIN_ID

    (* Reasonable approximation *)
    let address_optimized = key_hash_optimized

    (* Reasonable approximation *)
    let contract_optimized = key_hash_optimized

    (* Reasonable approximation *)
    let contract_readable = key_hash_readable

    let bls12_381_g1 = atomic_step_cost cost_DECODING_BLS_G1

    let bls12_381_g2 = atomic_step_cost cost_DECODING_BLS_G2

    let bls12_381_fr = atomic_step_cost cost_DECODING_BLS_FR

    let check_printable s =
      atomic_step_cost (cost_CHECK_PRINTABLE (String.length s))

    let merge_cycle = atomic_step_cost cost_MERGE_TYPES

    let parse_type_cycle = atomic_step_cost cost_PARSE_TYPE

    let parse_instr_cycle = atomic_step_cost cost_TYPECHECKING_CODE

    let parse_data_cycle = atomic_step_cost cost_TYPECHECKING_DATA

    let comparable_ty_of_ty_cycle = atomic_step_cost cost_COMPARABLE_TY_OF_TY

    (* Cost of a cycle of checking that a type is dupable *)
    (* TODO: bench *)
    let check_dupable_cycle = atomic_step_cost cost_TYPECHECKING_DATA

    let bool = free

    let unit = free

    let timestamp_readable = atomic_step_cost cost_TIMESTAMP_READABLE_DECODING

    (* Reasonable estimate. *)
    let contract = Gas.(S.safe_int 2 *@ public_key_readable)

    (* Assuming unflattened storage: /contracts/hash1/.../hash6/key/balance,
       balance stored on 64 bits *)
    let contract_exists =
      Gas.cost_of_repr
      @@ Storage_costs.read_access ~path_length:9 ~read_bytes:8

    (* Constructing proof arguments consists in a decreasing loop in the result
       monad, allocating at each step. We charge a reasonable overapproximation. *)
    let proof_argument n =
      atomic_step_cost (S.mul (S.safe_int n) (S.safe_int 50))
  end

  module Unparsing = struct
    open Generated_costs

    let public_key_optimized =
      atomic_step_cost
      @@ S.(
           max
             cost_ENCODING_PUBLIC_KEY_ed25519
             (max
                cost_ENCODING_PUBLIC_KEY_secp256k1
                cost_ENCODING_PUBLIC_KEY_p256))

    let public_key_readable =
      atomic_step_cost
      @@ S.(
           max
             cost_B58CHECK_ENCODING_PUBLIC_KEY_ed25519
             (max
                cost_B58CHECK_ENCODING_PUBLIC_KEY_secp256k1
                cost_B58CHECK_ENCODING_PUBLIC_KEY_p256))

    let key_hash_optimized =
      atomic_step_cost
      @@ S.(
           max
             cost_ENCODING_PUBLIC_KEY_HASH_ed25519
             (max
                cost_ENCODING_PUBLIC_KEY_HASH_secp256k1
                cost_ENCODING_PUBLIC_KEY_HASH_p256))

    let key_hash_readable =
      atomic_step_cost
      @@ S.(
           max
             cost_B58CHECK_ENCODING_PUBLIC_KEY_HASH_ed25519
             (max
                cost_B58CHECK_ENCODING_PUBLIC_KEY_HASH_secp256k1
                cost_B58CHECK_ENCODING_PUBLIC_KEY_HASH_p256))

    let signature_optimized =
      atomic_step_cost
      @@ S.(
           max
             cost_ENCODING_SIGNATURE_ed25519
             (max
                cost_ENCODING_SIGNATURE_secp256k1
                cost_ENCODING_SIGNATURE_p256))

    let signature_readable =
      atomic_step_cost
      @@ S.(
           max
             cost_B58CHECK_ENCODING_SIGNATURE_ed25519
             (max
                cost_B58CHECK_ENCODING_SIGNATURE_secp256k1
                cost_B58CHECK_ENCODING_SIGNATURE_p256))

    let chain_id_optimized = atomic_step_cost cost_ENCODING_CHAIN_ID

    let chain_id_readable = atomic_step_cost cost_B58CHECK_ENCODING_CHAIN_ID

    let timestamp_readable = atomic_step_cost cost_TIMESTAMP_READABLE_ENCODING

    (* Reasonable approximation *)
    let address_optimized = key_hash_optimized

    (* Reasonable approximation *)
    let contract_optimized = key_hash_optimized

    (* Reasonable approximation *)
    let contract_readable = key_hash_readable

    let bls12_381_g1 = atomic_step_cost cost_ENCODING_BLS_G1

    let bls12_381_g2 = atomic_step_cost cost_ENCODING_BLS_G2

    let bls12_381_fr = atomic_step_cost cost_ENCODING_BLS_FR

    let unparse_type_cycle = atomic_step_cost cost_UNPARSE_TYPE

    let unparse_instr_cycle = atomic_step_cost cost_UNPARSING_CODE

    let unparse_data_cycle = atomic_step_cost cost_UNPARSING_DATA

    let unit = Gas.free

    (* Reasonable estimate. *)
    let contract = Gas.(S.safe_int 2 *@ public_key_readable)

    (* Reuse 006 costs. *)
    let operation bytes = Script.bytes_node_cost bytes

    let sapling_transaction (t : Sapling.transaction) =
      let inputs = List.length t.inputs in
      let outputs = List.length t.outputs in
      atomic_step_cost (cost_SAPLING_TRANSACTION_ENCODING ~inputs ~outputs)

    let sapling_diff (d : Sapling.diff) =
      let nfs = List.length d.nullifiers in
      let cms = List.length d.commitments_and_ciphertexts in
      atomic_step_cost (cost_SAPLING_DIFF_ENCODING ~nfs ~cms)
  end
end
OCaml

Innovation. Community. Security.