package tezos-protocol-001-PtCJ7pwo

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file script_interpreter.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
(*****************************************************************************)
(*                                                                           *)
(* Open Source License                                                       *)
(* Copyright (c) 2018 Dynamic Ledger Solutions, Inc. <contact@tezos.com>     *)
(*                                                                           *)
(* Permission is hereby granted, free of charge, to any person obtaining a   *)
(* copy of this software and associated documentation files (the "Software"),*)
(* to deal in the Software without restriction, including without limitation *)
(* the rights to use, copy, modify, merge, publish, distribute, sublicense,  *)
(* and/or sell copies of the Software, and to permit persons to whom the     *)
(* Software is furnished to do so, subject to the following conditions:      *)
(*                                                                           *)
(* The above copyright notice and this permission notice shall be included   *)
(* in all copies or substantial portions of the Software.                    *)
(*                                                                           *)
(* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*)
(* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,  *)
(* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL   *)
(* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*)
(* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING   *)
(* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER       *)
(* DEALINGS IN THE SOFTWARE.                                                 *)
(*                                                                           *)
(*****************************************************************************)

open Alpha_context
open Script
open Script_typed_ir
open Script_ir_translator

(* ---- Run-time errors -----------------------------------------------------*)

type execution_trace =
  (Script.location * Gas.t * (Script.expr * string option) list) list

type error += Reject of Script.location * Script.expr * execution_trace option
type error += Overflow of Script.location * execution_trace option
type error += Runtime_contract_error : Contract.t * Script.expr -> error
type error += Bad_contract_parameter of Contract.t (* `Permanent *)
type error += Cannot_serialize_log
type error += Cannot_serialize_failure
type error += Cannot_serialize_storage

let () =
  let open Data_encoding in
  let trace_encoding =
    (list @@ obj3
       (req "location" Script.location_encoding)
       (req "gas" Gas.encoding)
       (req "stack"
          (list
             (obj2
                (req "item" (Script.expr_encoding))
                (opt "annot" string))))) in
  (* Reject *)
  register_error_kind
    `Temporary
    ~id:"scriptRejectedRuntimeError"
    ~title: "Script failed (runtime script error)"
    ~description: "A FAILWITH instruction was reached"
    (obj3
       (req "location" Script.location_encoding)
       (req "with" Script.expr_encoding)
       (opt "trace" trace_encoding))
    (function Reject (loc, v, trace) -> Some (loc, v, trace) | _ -> None)
    (fun (loc, v, trace) -> Reject (loc, v, trace));
  (* Overflow *)
  register_error_kind
    `Temporary
    ~id:"scriptOverflowRuntimeError"
    ~title: "Script failed (overflow error)"
    ~description: "A FAIL instruction was reached due to the detection of an overflow"
    (obj2
       (req "location" Script.location_encoding)
       (opt "trace" trace_encoding))
    (function Overflow (loc, trace) -> Some (loc, trace) | _ -> None)
    (fun (loc, trace) -> Overflow (loc, trace));
  (* Runtime contract error *)
  register_error_kind
    `Temporary
    ~id:"scriptRuntimeError"
    ~title: "Script runtime error"
    ~description: "Toplevel error for all runtime script errors"
    (obj2
       (req "contractHandle" Contract.encoding)
       (req "contractCode" Script.expr_encoding))
    (function
      | Runtime_contract_error (contract, expr) ->
          Some (contract, expr)
      | _ -> None)
    (fun (contract, expr) ->
       Runtime_contract_error (contract, expr)) ;
  (* Bad contract parameter *)
  register_error_kind
    `Permanent
    ~id:"badContractParameter"
    ~title:"Contract supplied an invalid parameter"
    ~description:"Either no parameter was supplied to a contract with \
                  a non-unit parameter type, a non-unit parameter was \
                  passed to an account, or a parameter was supplied of \
                  the wrong type"
    Data_encoding.(obj1 (req "contract" Contract.encoding))
    (function Bad_contract_parameter c -> Some c | _ -> None)
    (fun c -> Bad_contract_parameter c) ;
  (* Cannot serialize log *)
  register_error_kind
    `Temporary
    ~id:"cannotSerializeLog"
    ~title:"Not enough gas to serialize execution trace"
    ~description:"Execution trace with stacks was to big to be serialized with \
                  the provided gas"
    Data_encoding.empty
    (function Cannot_serialize_log -> Some () | _ -> None)
    (fun () -> Cannot_serialize_log) ;
  (* Cannot serialize failure *)
  register_error_kind
    `Temporary
    ~id:"cannotSerializeFailure"
    ~title:"Not enough gas to serialize argument of FAILWITH"
    ~description:"Argument of FAILWITH was too big to be serialized with \
                  the provided gas"
    Data_encoding.empty
    (function Cannot_serialize_failure -> Some () | _ -> None)
    (fun () -> Cannot_serialize_failure) ;
  (* Cannot serialize storage *)
  register_error_kind
    `Temporary
    ~id:"cannotSerializeStorage"
    ~title:"Not enough gas to serialize execution storage"
    ~description:"The returned storage was too big to be serialized with \
                  the provided gas"
    Data_encoding.empty
    (function Cannot_serialize_storage -> Some () | _ -> None)
    (fun () -> Cannot_serialize_storage)

(* ---- interpreter ---------------------------------------------------------*)

type 'tys stack =
  | Item : 'ty * 'rest stack -> ('ty * 'rest) stack
  | Empty : end_of_stack stack

let unparse_stack ctxt (stack, stack_ty) =
  (* We drop the gas limit as this function is only used for debugging/errors. *)
  let ctxt = Gas.set_unlimited ctxt in
  let rec unparse_stack
    : type a. a stack * a stack_ty -> (Script.expr * string option) list tzresult Lwt.t
    = function
      | Empty, Empty_t -> return_nil
      | Item (v, rest), Item_t (ty, rest_ty, annot) ->
          unparse_data ctxt Readable ty v >>=? fun (data, _ctxt) ->
          unparse_stack (rest, rest_ty) >>=? fun rest ->
          let annot = match Script_ir_annot.unparse_var_annot annot with
            | [] -> None
            | [ a ] -> Some a
            | _ -> assert false in
          let data = Micheline.strip_locations data in
          return ((data, annot) :: rest) in
  unparse_stack (stack, stack_ty)

module Interp_costs = Michelson_v1_gas.Cost_of

let rec interp
  : type p r.
    (?log: execution_trace ref ->
     context ->
     source: Contract.t -> payer:Contract.t -> self: Contract.t -> Tez.t ->
     (p, r) lambda -> p ->
     (r * context) tzresult Lwt.t)
  = fun ?log ctxt ~source ~payer ~self amount (Lam (code, _)) arg ->
    let rec step
      : type b a.
        context -> (b, a) descr -> b stack ->
        (a stack * context) tzresult Lwt.t =
      fun ctxt ({ instr ; loc ; _ } as descr) stack ->
        Lwt.return (Gas.consume ctxt Interp_costs.cycle) >>=? fun ctxt ->
        let logged_return : type a b.
          (b, a) descr ->
          a stack * context ->
          (a stack * context) tzresult Lwt.t =
          fun descr (ret, ctxt) ->
            match log with
            | None -> return (ret, ctxt)
            | Some log ->
                trace
                  Cannot_serialize_log
                  (unparse_stack ctxt (ret, descr.aft)) >>=? fun stack ->
                log := (descr.loc, Gas.level ctxt, stack) :: !log ;
                return (ret, ctxt) in
        let get_log (log : execution_trace ref option) =
          Option.map ~f:(!) log in
        let consume_gas_terop : type ret arg1 arg2 arg3 rest.
          (_ * (_ * (_ * rest)), ret * rest) descr ->
          ((arg1 -> arg2 -> arg3 -> ret) * arg1 * arg2 * arg3) ->
          (arg1 -> arg2 -> arg3 -> Gas.cost) ->
          rest stack ->
          ((ret * rest) stack * context) tzresult Lwt.t =
          fun descr (op, x1, x2, x3) cost_func rest ->
            Lwt.return (Gas.consume ctxt (cost_func x1 x2 x3)) >>=? fun ctxt ->
            logged_return descr (Item (op x1 x2 x3, rest), ctxt) in
        let consume_gas_binop : type ret arg1 arg2 rest.
          (_ * (_ * rest), ret * rest) descr ->
          ((arg1 -> arg2 -> ret) * arg1 * arg2) ->
          (arg1 -> arg2 -> Gas.cost) ->
          rest stack ->
          context ->
          ((ret * rest) stack * context) tzresult Lwt.t =
          fun descr (op, x1, x2) cost_func rest ctxt ->
            Lwt.return (Gas.consume ctxt (cost_func x1 x2)) >>=? fun ctxt ->
            logged_return descr (Item (op x1 x2, rest), ctxt) in
        let consume_gas_unop : type ret arg rest.
          (_ * rest, ret * rest) descr ->
          ((arg -> ret) * arg) ->
          (arg -> Gas.cost) ->
          rest stack ->
          context ->
          ((ret * rest) stack * context) tzresult Lwt.t =
          fun descr (op, arg) cost_func rest ctxt ->
            Lwt.return (Gas.consume ctxt (cost_func arg)) >>=? fun ctxt ->
            logged_return descr (Item (op arg, rest), ctxt) in
        let consume_gaz_comparison :
          type t rest.
          (t * (t * rest), Script_int.z Script_int.num * rest) descr ->
          (t -> t -> int) ->
          (t -> t -> Gas.cost) ->
          t -> t ->
          rest stack ->
          ((Script_int.z Script_int.num * rest) stack * context) tzresult Lwt.t =
          fun descr op cost x1 x2 rest ->
            Lwt.return (Gas.consume ctxt (cost x1 x2)) >>=? fun ctxt ->
            logged_return descr (Item (Script_int.of_int @@ op x1 x2, rest), ctxt) in
        let logged_return :
          a stack * context ->
          (a stack * context) tzresult Lwt.t =
          logged_return descr in
        match instr, stack with
        (* stack ops *)
        | Drop, Item (_, rest) ->
            Lwt.return (Gas.consume ctxt Interp_costs.stack_op) >>=? fun ctxt ->
            logged_return (rest, ctxt)
        | Dup, Item (v, rest) ->
            Lwt.return (Gas.consume ctxt Interp_costs.stack_op) >>=? fun ctxt ->
            logged_return (Item (v, Item (v, rest)), ctxt)
        | Swap, Item (vi, Item (vo, rest)) ->
            Lwt.return (Gas.consume ctxt Interp_costs.stack_op) >>=? fun ctxt ->
            logged_return (Item (vo, Item (vi, rest)), ctxt)
        | Const v, rest ->
            Lwt.return (Gas.consume ctxt Interp_costs.push) >>=? fun ctxt ->
            logged_return (Item (v, rest), ctxt)
        (* options *)
        | Cons_some, Item (v, rest) ->
            Lwt.return (Gas.consume ctxt Interp_costs.wrap) >>=? fun ctxt ->
            logged_return (Item (Some v, rest), ctxt)
        | Cons_none _, rest ->
            Lwt.return (Gas.consume ctxt Interp_costs.variant_no_data) >>=? fun ctxt ->
            logged_return (Item (None, rest), ctxt)
        | If_none (bt, _), Item (None, rest) ->
            Lwt.return (Gas.consume ctxt Interp_costs.branch) >>=? fun ctxt ->
            step ctxt bt rest
        | If_none (_, bf), Item (Some v, rest) ->
            Lwt.return (Gas.consume ctxt Interp_costs.branch) >>=? fun ctxt ->
            step ctxt bf (Item (v, rest))
        (* pairs *)
        | Cons_pair, Item (a, Item (b, rest)) ->
            Lwt.return (Gas.consume ctxt Interp_costs.pair) >>=? fun ctxt ->
            logged_return (Item ((a, b), rest), ctxt)
        | Car, Item ((a, _), rest) ->
            Lwt.return (Gas.consume ctxt Interp_costs.pair_access) >>=? fun ctxt ->
            logged_return (Item (a, rest), ctxt)
        | Cdr, Item ((_, b), rest) ->
            Lwt.return (Gas.consume ctxt Interp_costs.pair_access) >>=? fun ctxt ->
            logged_return (Item (b, rest), ctxt)
        (* unions *)
        | Left, Item (v, rest) ->
            Lwt.return (Gas.consume ctxt Interp_costs.wrap) >>=? fun ctxt ->
            logged_return (Item (L v, rest), ctxt)
        | Right, Item (v, rest) ->
            Lwt.return (Gas.consume ctxt Interp_costs.wrap) >>=? fun ctxt ->
            logged_return (Item (R v, rest), ctxt)
        | If_left (bt, _), Item (L v, rest) ->
            Lwt.return (Gas.consume ctxt Interp_costs.branch) >>=? fun ctxt ->
            step ctxt bt (Item (v, rest))
        | If_left (_, bf), Item (R v, rest) ->
            Lwt.return (Gas.consume ctxt Interp_costs.branch) >>=? fun ctxt ->
            step ctxt bf (Item (v, rest))
        (* lists *)
        | Cons_list, Item (hd, Item (tl, rest)) ->
            Lwt.return (Gas.consume ctxt Interp_costs.cons) >>=? fun ctxt ->
            logged_return (Item (hd :: tl, rest), ctxt)
        | Nil, rest ->
            Lwt.return (Gas.consume ctxt Interp_costs.variant_no_data) >>=? fun ctxt ->
            logged_return (Item ([], rest), ctxt)
        | If_cons (_, bf), Item ([], rest) ->
            Lwt.return (Gas.consume ctxt Interp_costs.branch) >>=? fun ctxt ->
            step ctxt bf rest
        | If_cons (bt, _), Item (hd :: tl, rest) ->
            Lwt.return (Gas.consume ctxt Interp_costs.branch) >>=? fun ctxt ->
            step ctxt bt (Item (hd, Item (tl, rest)))
        | List_map body, Item (l, rest) ->
            let rec loop rest ctxt l acc =
              Lwt.return (Gas.consume ctxt Interp_costs.loop_cycle) >>=? fun ctxt ->
              match l with
              | [] -> return (Item (List.rev acc, rest), ctxt)
              | hd :: tl ->
                  step ctxt body (Item (hd, rest))
                  >>=? fun (Item (hd, rest), ctxt) ->
                  loop rest ctxt tl (hd :: acc)
            in loop rest ctxt l [] >>=? fun (res, ctxt) ->
            logged_return (res, ctxt)
        | List_size, Item (list, rest) ->
            Lwt.return
              (List.fold_left
                 (fun acc _ ->
                    acc >>? fun (size, ctxt) ->
                    Gas.consume ctxt Interp_costs.list_size >>? fun ctxt ->
                    ok (size + 1 (* FIXME: overflow *), ctxt))
                 (ok (0, ctxt)) list) >>=? fun (len, ctxt) ->
            logged_return (Item (Script_int.(abs (of_int len)), rest), ctxt)
        | List_iter body, Item (l, init) ->
            let rec loop ctxt l stack =
              Lwt.return (Gas.consume ctxt Interp_costs.loop_cycle) >>=? fun ctxt ->
              match l with
              | [] -> return (stack, ctxt)
              | hd :: tl ->
                  step ctxt body (Item (hd, stack))
                  >>=? fun (stack, ctxt) ->
                  loop ctxt tl stack
            in loop ctxt l init >>=? fun (res, ctxt) ->
            logged_return (res, ctxt)
        (* sets *)
        | Empty_set t, rest ->
            Lwt.return (Gas.consume ctxt Interp_costs.empty_set) >>=? fun ctxt ->
            logged_return (Item (empty_set t, rest), ctxt)
        | Set_iter body, Item (set, init) ->
            Lwt.return (Gas.consume ctxt (Interp_costs.set_to_list set)) >>=? fun ctxt ->
            let l = List.rev (set_fold (fun e acc -> e :: acc) set []) in
            let rec loop ctxt l stack =
              Lwt.return (Gas.consume ctxt Interp_costs.loop_cycle) >>=? fun ctxt ->
              match l with
              | [] -> return (stack, ctxt)
              | hd :: tl ->
                  step ctxt body (Item (hd, stack))
                  >>=? fun (stack, ctxt) ->
                  loop ctxt tl stack
            in loop ctxt l init >>=? fun (res, ctxt) ->
            logged_return (res, ctxt)
        | Set_mem, Item (v, Item (set, rest)) ->
            consume_gas_binop descr (set_mem, v, set) Interp_costs.set_mem rest ctxt
        | Set_update, Item (v, Item (presence, Item (set, rest))) ->
            consume_gas_terop descr (set_update, v, presence, set) Interp_costs.set_update rest
        | Set_size, Item (set, rest) ->
            consume_gas_unop descr (set_size, set) (fun _ -> Interp_costs.set_size) rest ctxt
        (* maps *)
        | Empty_map (t, _), rest ->
            Lwt.return (Gas.consume ctxt Interp_costs.empty_map) >>=? fun ctxt ->
            logged_return (Item (empty_map t, rest), ctxt)
        | Map_map body, Item (map, rest) ->
            Lwt.return (Gas.consume ctxt (Interp_costs.map_to_list map)) >>=? fun ctxt ->
            let l = List.rev (map_fold (fun k v acc -> (k, v) :: acc) map []) in
            let rec loop rest ctxt l acc =
              Lwt.return (Gas.consume ctxt Interp_costs.loop_cycle) >>=? fun ctxt ->
              match l with
              | [] -> return (acc, ctxt)
              | (k, _) as hd :: tl ->
                  step ctxt body (Item (hd, rest))
                  >>=? fun (Item (hd, rest), ctxt) ->
                  loop rest ctxt tl (map_update k (Some hd) acc)
            in loop rest ctxt l (empty_map (map_key_ty map)) >>=? fun (res, ctxt) ->
            logged_return (Item (res, rest), ctxt)
        | Map_iter body, Item (map, init) ->
            Lwt.return (Gas.consume ctxt (Interp_costs.map_to_list map)) >>=? fun ctxt ->
            let l = List.rev (map_fold (fun k v acc -> (k, v) :: acc) map []) in
            let rec loop ctxt l stack =
              Lwt.return (Gas.consume ctxt Interp_costs.loop_cycle) >>=? fun ctxt ->
              match l with
              | [] -> return (stack, ctxt)
              | hd :: tl ->
                  step ctxt body (Item (hd, stack))
                  >>=? fun (stack, ctxt) ->
                  loop ctxt tl stack
            in loop ctxt l init >>=? fun (res, ctxt) ->
            logged_return (res, ctxt)
        | Map_mem, Item (v, Item (map, rest)) ->
            consume_gas_binop descr (map_mem, v, map) Interp_costs.map_mem rest ctxt
        | Map_get, Item (v, Item (map, rest)) ->
            consume_gas_binop descr (map_get, v, map) Interp_costs.map_get rest ctxt
        | Map_update, Item (k, Item (v, Item (map, rest))) ->
            consume_gas_terop descr (map_update, k, v, map) Interp_costs.map_update rest
        | Map_size, Item (map, rest) ->
            consume_gas_unop descr (map_size, map) (fun _ -> Interp_costs.map_size) rest ctxt
        (* Big map operations *)
        | Big_map_mem, Item (key, Item (map, rest)) ->
            Lwt.return (Gas.consume ctxt (Interp_costs.big_map_mem key map)) >>=? fun ctxt ->
            Script_ir_translator.big_map_mem ctxt self key map >>=? fun (res, ctxt) ->
            logged_return (Item (res, rest), ctxt)
        | Big_map_get, Item (key, Item (map, rest)) ->
            Lwt.return (Gas.consume ctxt (Interp_costs.big_map_get key map)) >>=? fun ctxt ->
            Script_ir_translator.big_map_get ctxt self key map >>=? fun (res, ctxt) ->
            logged_return (Item (res, rest), ctxt)
        | Big_map_update, Item (key, Item (maybe_value, Item (map, rest))) ->
            consume_gas_terop descr
              (Script_ir_translator.big_map_update, key, maybe_value, map)
              Interp_costs.big_map_update rest
        (* timestamp operations *)
        | Add_seconds_to_timestamp, Item (n, Item (t, rest)) ->
            consume_gas_binop descr
              (Script_timestamp.add_delta, t, n)
              Interp_costs.add_timestamp rest ctxt
        | Add_timestamp_to_seconds, Item (t, Item (n, rest)) ->
            consume_gas_binop descr (Script_timestamp.add_delta, t, n)
              Interp_costs.add_timestamp rest ctxt
        | Sub_timestamp_seconds, Item (t, Item (s, rest)) ->
            consume_gas_binop descr (Script_timestamp.sub_delta, t, s)
              Interp_costs.sub_timestamp rest ctxt
        | Diff_timestamps, Item (t1, Item (t2, rest)) ->
            consume_gas_binop descr (Script_timestamp.diff, t1, t2)
              Interp_costs.diff_timestamps rest ctxt
        (* string operations *)
        | Concat, Item (x, Item (y, rest)) ->
            consume_gas_binop descr ((^), x, y) Interp_costs.concat rest ctxt
        (* currency operations *)
        | Add_tez, Item (x, Item (y, rest)) ->
            Lwt.return (Gas.consume ctxt Interp_costs.int64_op) >>=? fun ctxt ->
            Lwt.return Tez.(x +? y) >>=? fun res ->
            logged_return (Item (res, rest), ctxt)
        | Sub_tez, Item (x, Item (y, rest)) ->
            Lwt.return (Gas.consume ctxt Interp_costs.int64_op) >>=? fun ctxt ->
            Lwt.return Tez.(x -? y) >>=? fun res ->
            logged_return (Item (res, rest), ctxt)
        | Mul_teznat, Item (x, Item (y, rest)) ->
            Lwt.return (Gas.consume ctxt Interp_costs.int64_op) >>=? fun ctxt ->
            Lwt.return (Gas.consume ctxt Interp_costs.z_to_int64) >>=? fun ctxt ->
            begin
              match Script_int.to_int64 y with
              | None -> fail (Overflow (loc, get_log log))
              | Some y ->
                  Lwt.return Tez.(x *? y) >>=? fun res ->
                  logged_return (Item (res, rest), ctxt)
            end
        | Mul_nattez, Item (y, Item (x, rest)) ->
            Lwt.return (Gas.consume ctxt Interp_costs.int64_op) >>=? fun ctxt ->
            Lwt.return (Gas.consume ctxt Interp_costs.z_to_int64) >>=? fun ctxt ->
            begin
              match Script_int.to_int64 y with
              | None -> fail (Overflow (loc, get_log log))
              | Some y ->
                  Lwt.return Tez.(x *? y) >>=? fun res ->
                  logged_return (Item (res, rest), ctxt)
            end
        (* boolean operations *)
        | Or, Item (x, Item (y, rest)) ->
            consume_gas_binop descr ((||), x, y) Interp_costs.bool_binop rest ctxt
        | And, Item (x, Item (y, rest)) ->
            consume_gas_binop descr ((&&), x, y) Interp_costs.bool_binop rest ctxt
        | Xor, Item (x, Item (y, rest)) ->
            consume_gas_binop descr (Compare.Bool.(<>), x, y) Interp_costs.bool_binop rest ctxt
        | Not, Item (x, rest) ->
            consume_gas_unop descr (not, x) Interp_costs.bool_unop rest ctxt
        (* integer operations *)
        | Is_nat, Item (x, rest) ->
            consume_gas_unop descr (Script_int.is_nat, x) Interp_costs.abs rest ctxt
        | Abs_int, Item (x, rest) ->
            consume_gas_unop descr (Script_int.abs, x) Interp_costs.abs rest ctxt
        | Int_nat, Item (x, rest) ->
            consume_gas_unop descr (Script_int.int, x) Interp_costs.int rest ctxt
        | Neg_int, Item (x, rest) ->
            consume_gas_unop descr (Script_int.neg, x) Interp_costs.neg rest ctxt
        | Neg_nat, Item (x, rest) ->
            consume_gas_unop descr (Script_int.neg, x) Interp_costs.neg rest ctxt
        | Add_intint, Item (x, Item (y, rest)) ->
            consume_gas_binop descr (Script_int.add, x, y) Interp_costs.add rest ctxt
        | Add_intnat, Item (x, Item (y, rest)) ->
            consume_gas_binop descr (Script_int.add, x, y) Interp_costs.add rest ctxt
        | Add_natint, Item (x, Item (y, rest)) ->
            consume_gas_binop descr (Script_int.add, x, y) Interp_costs.add rest ctxt
        | Add_natnat, Item (x, Item (y, rest)) ->
            consume_gas_binop descr (Script_int.add_n, x, y) Interp_costs.add rest ctxt
        | Sub_int, Item (x, Item (y, rest)) ->
            consume_gas_binop descr (Script_int.sub, x, y) Interp_costs.sub rest ctxt
        | Mul_intint, Item (x, Item (y, rest)) ->
            consume_gas_binop descr (Script_int.mul, x, y) Interp_costs.mul rest ctxt
        | Mul_intnat, Item (x, Item (y, rest)) ->
            consume_gas_binop descr (Script_int.mul, x, y) Interp_costs.mul rest ctxt
        | Mul_natint, Item (x, Item (y, rest)) ->
            consume_gas_binop descr (Script_int.mul, x, y) Interp_costs.mul rest ctxt
        | Mul_natnat, Item (x, Item (y, rest)) ->
            consume_gas_binop descr (Script_int.mul_n, x, y) Interp_costs.mul rest ctxt
        | Ediv_teznat, Item (x, Item (y, rest)) ->
            Lwt.return (Gas.consume ctxt Interp_costs.int64_to_z) >>=? fun ctxt ->
            let x = Script_int.of_int64 (Tez.to_mutez x) in
            consume_gas_binop descr
              ((fun x y ->
                  match Script_int.ediv x y with
                  | None -> None
                  | Some (q, r) ->
                      match Script_int.to_int64 q,
                            Script_int.to_int64 r with
                      | Some q, Some r ->
                          begin
                            match Tez.of_mutez q, Tez.of_mutez r with
                            | Some q, Some r -> Some (q,r)
                            (* Cannot overflow *)
                            | _ -> assert false
                          end
                      (* Cannot overflow *)
                      | _ -> assert false),
               x, y)
              Interp_costs.div
              rest
              ctxt
        | Ediv_tez, Item (x, Item (y, rest)) ->
            Lwt.return (Gas.consume ctxt Interp_costs.int64_to_z) >>=? fun ctxt ->
            Lwt.return (Gas.consume ctxt Interp_costs.int64_to_z) >>=? fun ctxt ->
            let x = Script_int.abs (Script_int.of_int64 (Tez.to_mutez x)) in
            let y = Script_int.abs (Script_int.of_int64 (Tez.to_mutez y)) in
            consume_gas_binop descr
              ((fun x y -> match Script_int.ediv_n x y with
                  | None -> None
                  | Some (q, r) ->
                      match Script_int.to_int64 r with
                      | None -> assert false (* Cannot overflow *)
                      | Some r ->
                          match Tez.of_mutez r with
                          | None -> assert false (* Cannot overflow *)
                          | Some r -> Some (q, r)),
               x, y)
              Interp_costs.div
              rest
              ctxt
        | Ediv_intint, Item (x, Item (y, rest)) ->
            consume_gas_binop descr (Script_int.ediv, x, y) Interp_costs.div rest ctxt
        | Ediv_intnat, Item (x, Item (y, rest)) ->
            consume_gas_binop descr (Script_int.ediv, x, y) Interp_costs.div rest ctxt
        | Ediv_natint, Item (x, Item (y, rest)) ->
            consume_gas_binop descr (Script_int.ediv, x, y) Interp_costs.div rest ctxt
        | Ediv_natnat, Item (x, Item (y, rest)) ->
            consume_gas_binop descr (Script_int.ediv_n, x, y) Interp_costs.div rest ctxt
        | Lsl_nat, Item (x, Item (y, rest)) ->
            Lwt.return (Gas.consume ctxt (Interp_costs.shift_left x y)) >>=? fun ctxt ->
            begin
              match Script_int.shift_left_n x y with
              | None -> fail (Overflow (loc, get_log log))
              | Some x -> logged_return (Item (x, rest), ctxt)
            end
        | Lsr_nat, Item (x, Item (y, rest)) ->
            Lwt.return (Gas.consume ctxt (Interp_costs.shift_right x y)) >>=? fun ctxt ->
            begin
              match Script_int.shift_right_n x y with
              | None -> fail (Overflow (loc, get_log log))
              | Some r -> logged_return (Item (r, rest), ctxt)
            end
        | Or_nat, Item (x, Item (y, rest)) ->
            consume_gas_binop descr (Script_int.logor, x, y) Interp_costs.logor rest ctxt
        | And_nat, Item (x, Item (y, rest)) ->
            consume_gas_binop descr (Script_int.logand, x, y) Interp_costs.logand rest ctxt
        | And_int_nat, Item (x, Item (y, rest)) ->
            consume_gas_binop descr (Script_int.logand, x, y) Interp_costs.logand rest ctxt
        | Xor_nat, Item (x, Item (y, rest)) ->
            consume_gas_binop descr (Script_int.logxor, x, y) Interp_costs.logxor rest ctxt
        | Not_int, Item (x, rest) ->
            consume_gas_unop descr (Script_int.lognot, x) Interp_costs.lognot rest ctxt
        | Not_nat, Item (x, rest) ->
            consume_gas_unop descr (Script_int.lognot, x) Interp_costs.lognot rest ctxt
        (* control *)
        | Seq (hd, tl), stack ->
            step ctxt hd stack >>=? fun (trans, ctxt) ->
            step ctxt tl trans
        | If (bt, _), Item (true, rest) ->
            Lwt.return (Gas.consume ctxt Interp_costs.branch) >>=? fun ctxt ->
            step ctxt bt rest
        | If (_, bf), Item (false, rest) ->
            Lwt.return (Gas.consume ctxt Interp_costs.branch) >>=? fun ctxt ->
            step ctxt bf rest
        | Loop body, Item (true, rest) ->
            Lwt.return (Gas.consume ctxt Interp_costs.loop_cycle) >>=? fun ctxt ->
            step ctxt body rest >>=? fun (trans, ctxt) ->
            step ctxt descr trans
        | Loop _, Item (false, rest) ->
            logged_return (rest, ctxt)
        | Loop_left body, Item (L v, rest) ->
            Lwt.return (Gas.consume ctxt Interp_costs.loop_cycle) >>=? fun ctxt ->
            step ctxt body (Item (v, rest)) >>=? fun (trans, ctxt) ->
            step ctxt descr trans
        | Loop_left _, Item (R v, rest) ->
            Lwt.return (Gas.consume ctxt Interp_costs.loop_cycle) >>=? fun ctxt ->
            logged_return (Item (v, rest), ctxt)
        | Dip b, Item (ign, rest) ->
            Lwt.return (Gas.consume ctxt Interp_costs.stack_op) >>=? fun ctxt ->
            step ctxt b rest >>=? fun (res, ctxt) ->
            logged_return (Item (ign, res), ctxt)
        | Exec, Item (arg, Item (lam, rest)) ->
            Lwt.return (Gas.consume ctxt Interp_costs.exec) >>=? fun ctxt ->
            interp ?log ctxt ~source ~payer ~self amount lam arg >>=? fun (res, ctxt) ->
            logged_return (Item (res, rest), ctxt)
        | Lambda lam, rest ->
            Lwt.return (Gas.consume ctxt Interp_costs.push) >>=? fun ctxt ->
            logged_return (Item (lam, rest), ctxt)
        | Failwith tv, Item (v, _) ->
            trace Cannot_serialize_failure
              (unparse_data ctxt Optimized tv v) >>=? fun (v, _ctxt) ->
            let v = Micheline.strip_locations v in
            fail (Reject (loc, v, get_log log))
        | Nop, stack ->
            logged_return (stack, ctxt)
        (* comparison *)
        | Compare (Bool_key _), Item (a, Item (b, rest)) ->
            consume_gaz_comparison descr Compare.Bool.compare Interp_costs.compare_bool a b rest
        | Compare (String_key _), Item (a, Item (b, rest)) ->
            consume_gaz_comparison descr Compare.String.compare Interp_costs.compare_string a b rest
        | Compare (Bytes_key _), Item (a, Item (b, rest)) ->
            consume_gaz_comparison descr MBytes.compare Interp_costs.compare_bytes a b rest
        | Compare (Mutez_key _), Item (a, Item (b, rest)) ->
            consume_gaz_comparison descr Tez.compare Interp_costs.compare_tez a b rest
        | Compare (Int_key _), Item (a, Item (b, rest)) ->
            consume_gaz_comparison descr Script_int.compare Interp_costs.compare_int a b rest
        | Compare (Nat_key _), Item (a, Item (b, rest)) ->
            consume_gaz_comparison descr Script_int.compare Interp_costs.compare_nat a b rest
        | Compare (Key_hash_key _), Item (a, Item (b, rest)) ->
            consume_gaz_comparison descr Signature.Public_key_hash.compare
              Interp_costs.compare_key_hash a b rest
        | Compare (Timestamp_key _), Item (a, Item (b, rest)) ->
            consume_gaz_comparison descr Script_timestamp.compare Interp_costs.compare_timestamp a b rest
        | Compare (Address_key _), Item (a, Item (b, rest)) ->
            consume_gaz_comparison descr Contract.compare Interp_costs.compare_address a b rest
        (* comparators *)
        | Eq, Item (cmpres, rest) ->
            let cmpres = Script_int.compare cmpres Script_int.zero in
            let cmpres = Compare.Int.(cmpres = 0) in
            Lwt.return (Gas.consume ctxt Interp_costs.compare_res) >>=? fun ctxt ->
            logged_return (Item (cmpres, rest), ctxt)
        | Neq, Item (cmpres, rest) ->
            let cmpres = Script_int.compare cmpres Script_int.zero in
            let cmpres = Compare.Int.(cmpres <> 0) in
            Lwt.return (Gas.consume ctxt Interp_costs.compare_res) >>=? fun ctxt ->
            logged_return (Item (cmpres, rest), ctxt)
        | Lt, Item (cmpres, rest) ->
            let cmpres = Script_int.compare cmpres Script_int.zero in
            let cmpres = Compare.Int.(cmpres < 0) in
            Lwt.return (Gas.consume ctxt Interp_costs.compare_res) >>=? fun ctxt ->
            logged_return (Item (cmpres, rest), ctxt)
        | Le, Item (cmpres, rest) ->
            let cmpres = Script_int.compare cmpres Script_int.zero in
            let cmpres = Compare.Int.(cmpres <= 0) in
            Lwt.return (Gas.consume ctxt Interp_costs.compare_res) >>=? fun ctxt ->
            logged_return (Item (cmpres, rest), ctxt)
        | Gt, Item (cmpres, rest) ->
            let cmpres = Script_int.compare cmpres Script_int.zero in
            let cmpres = Compare.Int.(cmpres > 0) in
            Lwt.return (Gas.consume ctxt Interp_costs.compare_res) >>=? fun ctxt ->
            logged_return (Item (cmpres, rest), ctxt)
        | Ge, Item (cmpres, rest) ->
            let cmpres = Script_int.compare cmpres Script_int.zero in
            let cmpres = Compare.Int.(cmpres >= 0) in
            Lwt.return (Gas.consume ctxt Interp_costs.compare_res) >>=? fun ctxt ->
            logged_return (Item (cmpres, rest), ctxt)
        (* packing *)
        | Pack t, Item (value, rest) ->
            Script_ir_translator.pack_data ctxt t value >>=? fun (bytes, ctxt) ->
            logged_return (Item (bytes, rest), ctxt)
        | Unpack t, Item (bytes, rest) ->
            Lwt.return (Gas.check_enough ctxt (Script.serialized_cost bytes)) >>=? fun () ->
            if Compare.Int.(MBytes.length bytes >= 1) &&
               Compare.Int.(MBytes.get_uint8 bytes 0 = 0x05) then
              let bytes = MBytes.sub bytes 1 (MBytes.length bytes - 1) in
              match Data_encoding.Binary.of_bytes Script.expr_encoding bytes with
              | None ->
                  Lwt.return (Gas.consume ctxt (Interp_costs.unpack_failed bytes)) >>=? fun ctxt ->
                  logged_return (Item (None, rest), ctxt)
              | Some expr ->
                  Lwt.return (Gas.consume ctxt (Script.deserialized_cost expr)) >>=? fun ctxt ->
                  parse_data ctxt t (Micheline.root expr) >>= function
                  | Ok (value, ctxt) ->
                      logged_return (Item (Some value, rest), ctxt)
                  | Error _ignored ->
                      Lwt.return (Gas.consume ctxt (Interp_costs.unpack_failed bytes)) >>=? fun ctxt ->
                      logged_return (Item (None, rest), ctxt)
            else
              logged_return (Item (None, rest), ctxt)
        (* protocol *)
        | Address, Item ((_, contract), rest) ->
            Lwt.return (Gas.consume ctxt Interp_costs.address) >>=? fun ctxt ->
            logged_return (Item (contract, rest), ctxt)
        | Contract t, Item (contract, rest) ->
            Lwt.return (Gas.consume ctxt Interp_costs.contract) >>=? fun ctxt ->
            Script_ir_translator.parse_contract_for_script ctxt loc t contract >>=? fun (ctxt, maybe_contract) ->
            logged_return (Item (maybe_contract, rest), ctxt)
        | Transfer_tokens,
          Item (p, Item (amount, Item ((tp, destination), rest))) ->
            Lwt.return (Gas.consume ctxt Interp_costs.transfer) >>=? fun ctxt ->
            unparse_data ctxt Optimized tp p >>=? fun (p, ctxt) ->
            let operation =
              Transaction
                { amount ; destination ;
                  parameters = Some (Script.lazy_expr (Micheline.strip_locations p)) } in
            Lwt.return (fresh_internal_nonce ctxt) >>=? fun (ctxt, nonce) ->
            logged_return (Item (Internal_operation { source = self ; operation ; nonce }, rest), ctxt)
        | Create_account,
          Item (manager, Item (delegate, Item (delegatable, Item (credit, rest)))) ->
            Lwt.return (Gas.consume ctxt Interp_costs.create_account) >>=? fun ctxt ->
            Contract.fresh_contract_from_current_nonce ctxt >>=? fun (ctxt, contract) ->
            let operation =
              Origination
                { credit ; manager ; delegate ; preorigination = Some contract ;
                  delegatable ; script = None ; spendable = true } in
            Lwt.return (fresh_internal_nonce ctxt) >>=? fun (ctxt, nonce) ->
            logged_return (Item (Internal_operation { source = self ; operation ; nonce },
                                 Item (contract, rest)), ctxt)
        | Implicit_account, Item (key, rest) ->
            Lwt.return (Gas.consume ctxt Interp_costs.implicit_account) >>=? fun ctxt ->
            let contract = Contract.implicit_contract key in
            logged_return (Item ((Unit_t None, contract), rest), ctxt)
        | Create_contract (storage_type, param_type, Lam (_, code)),
          Item (manager, Item
                  (delegate, Item
                     (spendable, Item
                        (delegatable, Item
                           (credit, Item
                              (init, rest)))))) ->
            Lwt.return (Gas.consume ctxt Interp_costs.create_contract) >>=? fun ctxt ->
            unparse_ty ctxt param_type >>=? fun (unparsed_param_type, ctxt) ->
            unparse_ty ctxt storage_type >>=? fun (unparsed_storage_type, ctxt) ->
            let code =
              Micheline.strip_locations
                (Seq (0, [ Prim (0, K_parameter, [ unparsed_param_type ], []) ;
                           Prim (0, K_storage, [ unparsed_storage_type ], []) ;
                           Prim (0, K_code, [ Micheline.root code ], []) ])) in
            unparse_data ctxt Optimized storage_type init >>=? fun (storage, ctxt) ->
            let storage = Micheline.strip_locations storage in
            Contract.spend_from_script ctxt self credit >>=? fun ctxt ->
            Contract.fresh_contract_from_current_nonce ctxt >>=? fun (ctxt, contract) ->
            let operation =
              Origination
                { credit ; manager ; delegate ; preorigination = Some contract ;
                  delegatable ; spendable ;
                  script = Some { code = Script.lazy_expr code ;
                                  storage = Script.lazy_expr storage } } in
            Lwt.return (fresh_internal_nonce ctxt) >>=? fun (ctxt, nonce) ->
            logged_return
              (Item (Internal_operation { source = self ; operation ; nonce },
                     Item (contract, rest)), ctxt)
        | Set_delegate,
          Item (delegate, rest) ->
            Lwt.return (Gas.consume ctxt Interp_costs.create_account) >>=? fun ctxt ->
            let operation = Delegation delegate in
            Lwt.return (fresh_internal_nonce ctxt) >>=? fun (ctxt, nonce) ->
            logged_return (Item (Internal_operation { source = self ; operation ; nonce }, rest), ctxt)
        | Balance, rest ->
            Lwt.return (Gas.consume ctxt Interp_costs.balance) >>=? fun ctxt ->
            Contract.get_balance ctxt self >>=? fun balance ->
            logged_return (Item (balance, rest), ctxt)
        | Now, rest ->
            Lwt.return (Gas.consume ctxt Interp_costs.now) >>=? fun ctxt ->
            let now = Script_timestamp.now ctxt in
            logged_return (Item (now, rest), ctxt)
        | Check_signature, Item (key, Item (signature, Item (message, rest))) ->
            Lwt.return (Gas.consume ctxt Interp_costs.check_signature) >>=? fun ctxt ->
            let res = Signature.check key signature message in
            logged_return (Item (res, rest), ctxt)
        | Hash_key, Item (key, rest) ->
            Lwt.return (Gas.consume ctxt Interp_costs.hash_key) >>=? fun ctxt ->
            logged_return (Item (Signature.Public_key.hash key, rest), ctxt)
        | Blake2b, Item (bytes, rest) ->
            Lwt.return (Gas.consume ctxt (Interp_costs.hash bytes 32)) >>=? fun ctxt ->
            let hash = Raw_hashes.blake2b bytes in
            logged_return (Item (hash, rest), ctxt)
        | Sha256, Item (bytes, rest) ->
            Lwt.return (Gas.consume ctxt (Interp_costs.hash bytes 32)) >>=? fun ctxt ->
            let hash = Raw_hashes.sha256 bytes in
            logged_return (Item (hash, rest), ctxt)
        | Sha512, Item (bytes, rest) ->
            Lwt.return (Gas.consume ctxt (Interp_costs.hash bytes 64)) >>=? fun ctxt ->
            let hash = Raw_hashes.sha512 bytes in
            logged_return (Item (hash, rest), ctxt)
        | Steps_to_quota, rest ->
            Lwt.return (Gas.consume ctxt Interp_costs.steps_to_quota) >>=? fun ctxt ->
            let steps = match Gas.level ctxt with
              | Limited { remaining } -> remaining
              | Unaccounted -> Z.of_string "99999999" in
            logged_return (Item (Script_int.(abs (of_zint steps)), rest), ctxt)
        | Source, rest ->
            Lwt.return (Gas.consume ctxt Interp_costs.source) >>=? fun ctxt ->
            logged_return (Item (payer, rest), ctxt)
        | Sender, rest ->
            Lwt.return (Gas.consume ctxt Interp_costs.source) >>=? fun ctxt ->
            logged_return (Item (source, rest), ctxt)
        | Self t, rest ->
            Lwt.return (Gas.consume ctxt Interp_costs.self) >>=? fun ctxt ->
            logged_return (Item ((t,self), rest), ctxt)
        | Amount, rest ->
            Lwt.return (Gas.consume ctxt Interp_costs.amount) >>=? fun ctxt ->
            logged_return (Item (amount, rest), ctxt) in
    let stack = (Item (arg, Empty)) in
    begin match log with
      | None -> return_unit
      | Some log ->
          trace Cannot_serialize_log
            (unparse_stack ctxt (stack, code.bef)) >>=? fun stack ->
          log := (code.loc, Gas.level ctxt, stack) :: !log ;
          return_unit
    end >>=? fun () ->
    step ctxt code stack >>=? fun (Item (ret, Empty), ctxt) ->
    return (ret, ctxt)

(* ---- contract handling ---------------------------------------------------*)

and execute ?log ctxt mode ~source ~payer ~self script amount arg :
  (Script.expr * packed_internal_operation list * context *
   Script_typed_ir.ex_big_map option) tzresult Lwt.t =
  parse_script ctxt script
  >>=? fun ((Ex_script { code ; arg_type ; storage ; storage_type }), ctxt) ->
  trace
    (Bad_contract_parameter self)
    (parse_data ctxt arg_type arg) >>=? fun (arg, ctxt) ->
  Script.force_decode ctxt script.code >>=? fun (script_code, ctxt) ->
  trace
    (Runtime_contract_error (self, script_code))
    (interp ?log ctxt ~source ~payer ~self amount code (arg, storage))
  >>=? fun ((ops, sto), ctxt) ->
  trace Cannot_serialize_storage
    (unparse_data ctxt mode storage_type sto) >>=? fun (storage, ctxt) ->
  return (Micheline.strip_locations storage, ops, ctxt,
          Script_ir_translator.extract_big_map storage_type sto)

type execution_result =
  { ctxt : context ;
    storage : Script.expr ;
    big_map_diff : Contract.big_map_diff option ;
    operations : packed_internal_operation list }

let trace ctxt mode ~source ~payer ~self:(self, script) ~parameter ~amount =
  let log = ref [] in
  execute ~log ctxt mode ~source ~payer ~self script amount (Micheline.root parameter)
  >>=? fun (storage, operations, ctxt, big_map) ->
  begin match big_map with
    | None -> return (None, ctxt)
    | Some big_map ->
        Script_ir_translator.diff_of_big_map ctxt mode big_map >>=? fun (big_map_diff, ctxt) ->
        return (Some big_map_diff, ctxt)
  end >>=? fun (big_map_diff, ctxt) ->
  let trace = List.rev !log in
  return ({ ctxt ; storage ; big_map_diff ; operations }, trace)

let execute ctxt mode ~source ~payer ~self:(self, script) ~parameter ~amount =
  execute ctxt mode ~source ~payer ~self script amount (Micheline.root parameter)
  >>=? fun (storage, operations, ctxt, big_map) ->
  begin match big_map with
    | None -> return (None, ctxt)
    | Some big_map ->
        Script_ir_translator.diff_of_big_map ctxt mode big_map >>=? fun (big_map_diff, ctxt) ->
        return (Some big_map_diff, ctxt)
  end >>=? fun (big_map_diff, ctxt) ->
  return { ctxt ; storage ; big_map_diff ; operations }
OCaml

Innovation. Community. Security.