package tezos-plonk

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file pack.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
(*****************************************************************************)
(*                                                                           *)
(* MIT License                                                               *)
(* Copyright (c) 2022 Nomadic Labs <contact@nomadic-labs.com>                *)
(*                                                                           *)
(* Permission is hereby granted, free of charge, to any person obtaining a   *)
(* copy of this software and associated documentation files (the "Software"),*)
(* to deal in the Software without restriction, including without limitation *)
(* the rights to use, copy, modify, merge, publish, distribute, sublicense,  *)
(* and/or sell copies of the Software, and to permit persons to whom the     *)
(* Software is furnished to do so, subject to the following conditions:      *)
(*                                                                           *)
(* The above copyright notice and this permission notice shall be included   *)
(* in all copies or substantial portions of the Software.                    *)
(*                                                                           *)
(* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*)
(* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,  *)
(* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL   *)
(* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*)
(* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING   *)
(* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER       *)
(* DEALINGS IN THE SOFTWARE.                                                 *)
(*                                                                           *)
(*****************************************************************************)

open Plonk

(* Our version of SnarkPack for PLONK *)

module type Aggregator = sig
  type scalar
  type g1
  type g2
  type gt

  (* Public parameters *)
  type prover_public_parameters [@@deriving repr]
  type verifier_public_parameters [@@deriving repr]

  (* Data to be aggregated *)
  type data = g1

  (* Commitment to the data *)
  type commitment = { cmt_t : gt; cmt_len : int } [@@deriving repr]

  (* Randomness used to pack the data, usually derived from a commitment to it *)
  type randomness = scalar

  (* Packed/aggregated data *)
  type packed = g1 [@@deriving repr]

  (* Proof that the data was correctly aggregated *)
  type proof [@@deriving repr]
  type transcript = Bytes.t
  type setup_params

  val setup :
    int ->
    Bls12_381_polynomial.Srs.t ->
    prover_public_parameters * verifier_public_parameters

  val get_setup_params : prover_public_parameters -> setup_params
  val public_parameters_to_bytes : prover_public_parameters -> Bytes.t
  val commit : prover_public_parameters -> data array -> commitment
  val commitment_cardinal : commitment -> int

  val partial_commit :
    relevant_positions:int list ->
    prover_public_parameters ->
    data array ->
    commitment

  val empty_commitment : commitment
  val combine : commitment -> commitment -> commitment

  val prove_single :
    prover_public_parameters ->
    transcript ->
    randomness ->
    data array ->
    (packed * proof) * transcript

  val prove :
    prover_public_parameters ->
    transcript ->
    randomness ->
    data array list ->
    (packed list * proof) * transcript

  val verify_single :
    verifier_public_parameters ->
    transcript ->
    commitment ->
    randomness ->
    packed * proof ->
    bool * transcript

  val verify :
    verifier_public_parameters ->
    transcript ->
    commitment list ->
    randomness ->
    packed list * proof ->
    bool * transcript
end

module Pack_impl = struct
  include Bls
  module Fr_generation = Fr_generation.Make (Scalar)
  module Polynomial = Bls12_381_polynomial.Polynomial
  module Poly = Bls12_381_polynomial.Polynomial
  module Srs_g1 = Bls12_381_polynomial.Srs.Srs_g1
  module Srs_g2 = Bls12_381_polynomial.Srs.Srs_g2

  type scalar = Scalar.t
  type g1 = G1.t
  type g2 = G2.t
  type gt = GT.t

  type prover_public_parameters = {
    length : int;
    srs2_t : G2.t array;
    g1_t : G1.t;
  }
  [@@deriving repr]

  type verifier_public_parameters = G1.t [@@deriving repr]
  type data = G1.t
  type commitment = { cmt_t : GT.t; cmt_len : int } [@@deriving repr]
  type randomness = Scalar.t
  type packed = G1.t [@@deriving repr]

  type ipa_proof = {
    t_Ls : GT.t array;
    t_Rs : GT.t array;
    r_Ls : G1.t array;
    r_Rs : G1.t array;
    a0 : G1.t;
    t0 : G2.t;
  }
  [@@deriving repr]

  let empty_ipa_proof len =
    {
      t_Ls = Array.init len (fun _i -> GT.zero);
      t_Rs = Array.init len (fun _i -> GT.zero);
      r_Ls = Array.init len (fun _i -> G1.zero);
      r_Rs = Array.init len (fun _i -> G1.zero);
      a0 = G1.zero;
      t0 = G2.zero;
    }

  type kzg_proof = G2.t [@@deriving repr]
  type proof = ipa_proof * kzg_proof [@@deriving repr]
  type transcript = Bytes.t
  type setup_params = int

  let powers ~one ~mul d x = Utils.build_array one (fun g -> mul g x) d

  let hash ~transcript ~random ?(g1s = [ [||] ]) ?(g2s = [ [||] ])
      ?(gts = [ [||] ]) ?(scalars = [ [||] ]) () =
    let transcript =
      let open Utils.Hash in
      let st = init () in
      update st transcript;
      List.iter (Array.iter (fun key -> update st (G1.to_bytes key))) g1s;
      List.iter (Array.iter (fun key -> update st (G2.to_bytes key))) g2s;
      List.iter (Array.iter (fun key -> update st (GT.to_bytes key))) gts;
      List.iter
        (Array.iter (fun key -> update st (Scalar.to_bytes key)))
        scalars;
      finish st
    in
    let seed, _ = Utils.Hash.bytes_to_seed transcript in
    let state = Some (Random.State.make seed) in
    (random ?state (), transcript)

  let ip_pairing array1 array2 =
    if Array.length array1 = 0 then GT.zero
    else
      let min_length = min (Array.length array1) (Array.length array2) in
      let list_combined =
        List.init min_length (fun i -> (array1.(i), array2.(i)))
      in
      Pairing.(miller_loop list_combined |> final_exponentiation_exn)

  let setup_verifier srs_g1_t = Srs_g1.get srs_g1_t 1

  let setup_prover d (srs_g1_t, srs_g2_t) =
    let srs2_t = Srs_g2.to_array ~len:d srs_g2_t in
    let g1_t = setup_verifier srs_g1_t in
    { length = d; srs2_t; g1_t }

  let setup d srs_t =
    let prv = setup_prover d srs_t in
    let vrf = setup_verifier (fst srs_t) in
    (prv, vrf)

  let get_setup_params public_parameters = public_parameters.length

  let public_parameters_to_bytes { srs2_t; g1_t; _ } =
    hash ~transcript:Bytes.empty ~random:Scalar.random ~g1s:[ [| g1_t |] ]
      ~g2s:[ srs2_t ] ()
    |> fst |> Scalar.to_bytes

  let commit pp data =
    { cmt_t = ip_pairing data pp.srs2_t; cmt_len = Array.length data }

  let commitment_cardinal cmt = cmt.cmt_len

  let partial_commit ~relevant_positions pp data =
    let filter_srs : G2.t array -> G2.t array =
      let module ISet = Set.Make (Int) in
      let pos_set = ISet.of_list relevant_positions in
      fun srs ->
        List.filteri (fun i _proof -> ISet.mem i pos_set) (Array.to_list srs)
        |> Array.of_list
    in
    {
      cmt_t = ip_pairing data (filter_srs pp.srs2_t);
      cmt_len = Array.length data;
    }

  let bytes_of_commitment cmt =
    Bytes.cat
      (Bytes.of_string (string_of_int cmt.cmt_len))
      (GT.to_bytes cmt.cmt_t)

  let empty_commitment = { cmt_t = GT.zero; cmt_len = 0 }

  let combine c0 c1 =
    let cmt_t = GT.add c0.cmt_t c1.cmt_t in
    let cmt_len = Int.add c0.cmt_len c1.cmt_len in
    { cmt_t; cmt_len }

  let pack rs data =
    if Array.length data = 0 then G1.zero
    else
      (* rs can be longer than needed *)
      let rs = Array.sub rs 0 (Array.length data) in
      let packed = G1.pippenger data rs in
      packed

  let array_split_in_half a =
    let len = Array.length a in
    let len2 = len / 2 in
    match len mod 2 with
    | 0 -> (Array.sub a 0 len2, Array.sub a len2 len2)
    | _ ->
        raise
          (Invalid_argument
             (Printf.sprintf "split_in_half: length %d not even." len))

  let array_padded_with_zero src dst_len zero =
    let src_len = Array.length src in
    assert (src_len <= dst_len);
    if src_len = dst_len then src
    else
      let dst = Array.init dst_len (fun _i -> zero) in
      Array.blit src 0 dst 0 src_len;
      dst

  let prove_but_not_pack pp transcript r data packed =
    (* Assert that the data length is a power of 2 *)
    let data_length = Array.length data in
    if data_length = 0 then
      raise @@ Invalid_argument "[Array.length data] cannot be 0";
    let nb_iter = Z.(log2up @@ of_int data_length) in
    let next_2power = Int.shift_left 1 nb_iter in
    let diff_from_2power = next_2power - data_length in
    let data =
      if diff_from_2power = 0 then data
      else (
        Format.printf
          "\nWARNING: [Array.length data] is %d, not a power of 2, we pad it\n"
          data_length;
        array_padded_with_zero data next_2power G1.zero)
    in
    let data_length = next_2power in
    let rs = Scalar.(powers ~one ~mul data_length r) in
    let transcript = Bytes.cat transcript @@ G1.to_bytes packed in

    let rec loop transcript g_poly ipa_proof a b t i =
      if i = nb_iter then
        match (a, b, t) with
        | [| a0 |], [| _ |], [| t0 |] ->
            (g_poly, { ipa_proof with a0; t0 }, transcript)
        | _ -> raise @@ Invalid_argument "Aggregation: IPA loop"
      else
        let a_left, a_right = array_split_in_half a in
        let b_left, b_right = array_split_in_half b in
        let t_left, t_right = array_split_in_half t in

        let t_L = ip_pairing a_left t_right in
        let t_R = ip_pairing a_right t_left in

        let r_L = G1.pippenger a_left b_right in
        let r_R = G1.pippenger a_right b_left in

        let u, transcript =
          let g1s = [ [| r_L; r_R |] ] in
          let gts = [ [| t_L; t_R |] ] in
          Scalar.(hash ~transcript ~random ~g1s ~gts ())
        in
        let u_inv = Scalar.inverse_exn u in

        let merge ~add ~mul x y = add (mul x u) (mul y u_inv) in
        let a' = Array.map2 G1.(merge ~add ~mul) a_left a_right in
        let b' = Array.map2 Scalar.(merge ~add ~mul) b_right b_left in
        let t' = Array.map2 G2.(merge ~add ~mul) t_right t_left in

        ipa_proof.t_Ls.(i) <- t_L;
        ipa_proof.t_Rs.(i) <- t_R;
        ipa_proof.r_Ls.(i) <- r_L;
        ipa_proof.r_Rs.(i) <- r_R;

        let xn = Int.shift_left 1 (nb_iter - 1 - i) in
        let g'_poly = Poly.(g_poly * of_coefficients [ (u_inv, 0); (u, xn) ]) in

        loop transcript g'_poly ipa_proof a' b' t' (i + 1)
    in

    let srs2_t = Array.sub pp.srs2_t 0 data_length in
    let g, ipa_proof, transcript =
      loop transcript Poly.one (empty_ipa_proof nb_iter) data rs srs2_t 0
    in

    let gts = [ ipa_proof.t_Ls; ipa_proof.t_Rs ] in
    let g1s = [ [| ipa_proof.a0 |]; ipa_proof.r_Ls; ipa_proof.r_Rs ] in
    let g2s = [ [| ipa_proof.t0 |] ] in
    let rho, transcript = Scalar.(hash ~transcript ~random ~g1s ~g2s ~gts ()) in
    let h =
      fst
      @@ Poly.(
           division_xn (g - (constant @@ evaluate g rho)) 1 (Scalar.negate rho))
    in
    let h_coeffs = Poly.to_dense_coefficients h in
    let kzg_proof_t = G2.pippenger srs2_t h_coeffs in

    let proof = (ipa_proof, kzg_proof_t) in
    (proof, transcript)

  let prove_single pp transcript r data =
    let rs = Scalar.(powers ~one ~mul (Array.length data) r) in
    let packed = pack rs data in
    let proof, transcript = prove_but_not_pack pp transcript r data packed in
    ((packed, proof), transcript)

  let prove pp transcript r data_list =
    let n = List.length data_list in
    if n = 0 then raise @@ Failure "data_list cannot be empty";

    let max_length_datas =
      List.fold_left max 0 @@ List.map Array.length data_list
    in

    (* Pad with zeros at the tail so that all datas have the same length *)
    let padded_datas =
      List.map
        (fun l -> array_padded_with_zero l max_length_datas G1.zero)
        data_list
    in
    let delta, transcript = Scalar.(hash ~transcript ~random ()) in
    let deltas = Scalar.(powers ~one ~mul n delta) |> Array.to_list in
    let data =
      (* data = delta^0·padded_datas.(0) +...+ delta^(n-1)·padded_datas.(n-1) *)
      let safe_tl = function _ :: tl -> tl | _ -> [] in
      List.fold_left2
        (fun acc padded_data d ->
          Array.map2 (fun a b -> G1.(add a (mul b d))) acc padded_data)
        (List.hd padded_datas) (safe_tl padded_datas) (safe_tl deltas)
    in
    let rs = Scalar.(powers ~one ~mul max_length_datas r) in
    let packed = pack rs data in
    let packed_list = List.map (pack rs) data_list in
    let proof, transcript = prove_but_not_pack pp transcript r data packed in
    ((packed_list, proof), transcript)

  let verify_single pp transcript cmt r (packed, (ipa_proof, kzg_proof)) =
    let transcript = Bytes.cat transcript @@ G1.to_bytes packed in
    (* FIXME: assert that the length of these six arrays (or at least one of them)
       equals the log2 of cmt.cmt_len *)
    let us, transcript =
      let len = Array.length ipa_proof.t_Ls in
      let us = Array.init len (fun _i -> Scalar.zero) in
      let transcript_i = ref transcript in
      for i = 0 to len - 1 do
        let u, transcript =
          let g1s = [ [| ipa_proof.r_Ls.(i); ipa_proof.r_Rs.(i) |] ] in
          let gts = [ [| ipa_proof.t_Ls.(i); ipa_proof.t_Rs.(i) |] ] in
          Scalar.(hash ~transcript:!transcript_i ~random ~g1s ~gts ())
        in
        us.(i) <- u;
        transcript_i := transcript
      done;
      (us, !transcript_i)
    in

    (* g(X) := (u₁⁻¹ + u₁ X^{2ᵏ⁻¹}) · (u₂⁻¹ + u₂ X^{2ᵏ⁻²}) ··· (uₖ⁻¹ + uₖ X) *)
    let eval_g x =
      let len = Array.length us in
      let acc = ref Scalar.one in
      let x_power = ref x in
      for i = 0 to len - 1 do
        let u = us.(len - 1 - i) in
        let term = Scalar.(inverse_exn u + (u * !x_power)) in
        acc := Scalar.mul !acc term;
        x_power := Scalar.square !x_power
      done;
      !acc
    in

    (* Verify the IPA proof *)
    let r0 = eval_g r in

    (* Computes [init + sum_j (u_j^2 L_j + u_j^{-2} R_j)] *)
    let rhs ~init ~add ~mul us gLs gRs =
      let len = Array.length us in
      let acc = ref init in
      for i = 0 to len - 1 do
        let u2 = Scalar.square us.(i) in
        let u2_inv = Scalar.inverse_exn u2 in
        acc := add !acc @@ add (mul gLs.(i) u2) (mul gRs.(i) u2_inv)
      done;
      !acc
    in

    let lhs_t = Pairing.pairing ipa_proof.a0 ipa_proof.t0 in
    let rhs_t =
      GT.(rhs ~init:cmt.cmt_t ~add ~mul us ipa_proof.t_Ls ipa_proof.t_Rs)
    in

    let lhs_r = G1.mul ipa_proof.a0 r0 in
    let rhs_r =
      G1.(rhs ~init:packed ~add ~mul us ipa_proof.r_Ls ipa_proof.r_Rs)
    in

    let ipa_ok = GT.eq lhs_t rhs_t && G1.eq lhs_r rhs_r in

    (* Verify the KZG proof *)
    let gts = [ ipa_proof.t_Ls; ipa_proof.t_Rs ] in
    let g1s = [ [| ipa_proof.a0 |]; ipa_proof.r_Ls; ipa_proof.r_Rs ] in
    let g2s = [ [| ipa_proof.t0 |] ] in
    let rho, transcript = Scalar.(hash ~transcript ~random ~g1s ~g2s ~gts ()) in
    let m_v = eval_g rho |> Scalar.negate |> G2.(mul one) in
    let st0 = ipa_proof.t0 in
    let rho_g1 = G1.mul G1.one @@ Scalar.negate rho in

    let rhs =
      ip_pairing
        G1.[| negate one; add pp rho_g1 |]
        G2.[| add st0 m_v; kzg_proof |]
    in
    let kzg_ok = GT.is_zero rhs in

    (ipa_ok && kzg_ok, transcript)

  let verify pp transcript cmt_list r (packed_list, proof) =
    let delta, transcript = Scalar.(hash ~transcript ~random ()) in

    let combine_cmt d c1 c2 =
      {
        cmt_t = GT.add c1.cmt_t (GT.mul c2.cmt_t d);
        cmt_len = max c1.cmt_len c2.cmt_len;
      }
    in

    let combine_packed d p1 p2 = G1.add p1 (G1.mul p2 d) in

    let cmt, packed, _ =
      List.fold_left2
        (fun (cmt, packed, d) c p ->
          (combine_cmt d cmt c, combine_packed d packed p, Scalar.mul d delta))
        ({ cmt_t = GT.zero; cmt_len = 0 }, G1.zero, Scalar.one)
        cmt_list packed_list
    in
    verify_single pp transcript cmt r (packed, proof)
end

include (
  Pack_impl :
    Aggregator
      with type scalar = Bls.Scalar.t
       and type g1 = Bls.G1.t
       and type g2 = Bls.G2.t
       and type gt = Bls.GT.t)
OCaml

Innovation. Community. Security.