package tezos-plonk
Plonk zero-knowledge proving system
Install
Dune Dependency
Authors
Maintainers
Sources
privacy-team-v1.0.0.tar.gz
md5=c9007a234fbacaddbc652c139cac56db
sha512=b67825a9259c27ccba51a4cb98056985c93f74f5211d422ce8ee8c35cda748c22bd1e59b3a584a79f96c1be21a409a12ee4b705346e1319c6d8bf45e81029f93
doc/src/tezos-plonk.aggregation/polynomial_commitment.ml.html
Source file polynomial_commitment.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
(*****************************************************************************) (* *) (* MIT License *) (* Copyright (c) 2022 Nomadic Labs <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) open Plonk module Make_impl (Pack : Pack.Aggregator) (PC : Polynomial_commitment.S with type Scalar.t = Pack.scalar and type Commitment.t = Pack.g1 SMap.t) = struct module Scalar = PC.Scalar module Fr_generation = PC.Fr_generation module Polynomial = PC.Polynomial module Domain = PC.Polynomial.Domain module Poly = PC.Polynomial.Polynomial module Scalar_map = PC.Scalar_map type secret = PC.secret type query = PC.query [@@deriving repr] type answer = PC.answer [@@deriving repr] type transcript = PC.transcript module Public_parameters = struct type prover = { pp_pc_prover : PC.Public_parameters.prover; pp_pack_prover : Pack.prover_public_parameters; } [@@deriving repr] type verifier = { pp_pc_verifier : PC.Public_parameters.verifier; pp_pack_verifier : Pack.verifier_public_parameters; } [@@deriving repr] type setup_params = int let setup setup_params srs = let pp_pc_prover, pp_pc_verifier = PC.Public_parameters.setup setup_params srs in let pp_pack_prover, pp_pack_verifier = Pack.setup setup_params (snd srs) in let pp_prover = { pp_pc_prover; pp_pack_prover } in let pp_verifier = { pp_pc_verifier; pp_pack_verifier } in (pp_prover, pp_verifier) let to_bytes d ({ pp_pc_prover; pp_pack_prover } : prover) = Utils.Hash.hash_bytes [ PC.Public_parameters.to_bytes d pp_pc_prover; Pack.public_parameters_to_bytes pp_pack_prover; ] end module Commitment = struct type t = Pack.commitment [@@deriving repr] (* [PC.Commitment.t] is required to be [Bls12_381.G1.t SMap.t], containing all the commitments that were packed *) type prover_aux = PC.Commitment.t * PC.Commitment.prover_aux [@@deriving repr] let commit ?all_keys (pp : Public_parameters.prover) f_map = let relevant_positions = match all_keys with | None -> List.init (SMap.cardinal f_map) Fun.id | Some ks -> List.mapi (fun i x -> (i, x)) ks |> List.filter_map (fun (i, x) -> Option.map (Fun.const i) (SMap.find_opt x f_map)) in let prover_aux = PC.Commitment.commit pp.pp_pc_prover f_map in let cm_list = List.map snd @@ SMap.bindings (fst prover_aux) in let pack_cmt = Pack.partial_commit ~relevant_positions pp.pp_pack_prover (Array.of_list cm_list) in (pack_cmt, prover_aux) let cardinal = Pack.commitment_cardinal end type proof = { pc_proof : PC.proof; packed_values : Pack.packed list; pack_proof : Pack.proof; } [@@deriving repr] type prover_aux = { r : Scalar.t; s_list : Scalar.t SMap.t list; cm_answers : Scalar.t; } let expand_with_proof = Utils.expand_transcript proof_t let expand_with_query = Utils.list_expand_transcript query_t let expand_with_answer = Utils.list_expand_transcript answer_t let batch_p ~zero ~add ~mul r map = SMap.fold (fun _ x (acc, rk) -> (add acc (mul rk x), Scalar.mul r rk)) map (zero, Scalar.one) |> fst let batch ~zero ~add ~mul r map = SMap.fold (fun _ x (acc, rk) -> (add acc (mul rk x), Scalar.mul r rk)) map (zero, Scalar.one) |> fst let batch_polys r map = let polys = SMap.bindings map |> List.map snd in Poly.linear_with_powers polys r let batch_answers r = SMap.map Scalar.(batch ~zero ~add ~mul r) let evaluate = PC.evaluate let poseidon array = let module Poseidon = Mec.Hash.Poseidon128.Make (Scalar) in Poseidon.Hash.(get (digest (init ()) array)) let poseidon_answers answers = answers |> List.map (fun a -> SMap.bindings a |> List.map (fun (_, m) -> SMap.bindings m |> List.map snd) |> List.flatten) |> List.flatten |> Array.of_list |> poseidon (* compute P := cmt₀ + r cmt₁ + r² cmt₂ + ... for every group of commitments in the list [prover_aux_list], and common randomness r (freshly sampled); such P values are returned as [packed_values], together with a proof [packed_proof] of their correctness; also, on input a list of evaluations [answer_list], at the requested points in [query_list], produce a proof of their validity: such proof is a PC proof (for every group) on the aggregatted commitment P with respect to the corresponding aggregated evaluations (we thus batch [answer_list] with [r] similarly) *) let prove_pack (pp : Public_parameters.prover) transcript f_map_list (prover_aux_list : Commitment.prover_aux list) query_list answer_list = let r, transcript = Fr_generation.random_fr transcript in let f_list = List.map (batch_polys r) f_map_list in let s_list = List.map (batch_answers r) answer_list in (* [cmts_list] is a list of G1.t SMap.t, containing the PC commitments to every polynomial (note that PC.Commitment.t = Bls12_381.G1.t SMap.t) *) let cmts_list = List.map (fun (cmts, _prover_aux) -> List.map snd @@ SMap.bindings cmts |> Array.of_list) prover_aux_list in (* [packed_values] has type [G1.t list] and it is the result of batching each map in [cmt_list] with powers of [r]. [pack_proof] asserts that [packed_values] was correctly computed. *) let (packed_values, pack_proof), transcript = Pack.prove pp.pp_pack_prover transcript r cmts_list in (* prepare [f_list] and [s_list], the batched version of [f_map_list] polys and [answer_list] (using randomness [r]) by selecting a dummy name for them [string_of_int i] in order to call the underlying PC *) let f_map_list = List.mapi (fun i l -> SMap.singleton (string_of_int i) l) f_list in let s_map_list = List.mapi (fun i m -> SMap.map (fun s -> SMap.singleton (string_of_int i) s) m) s_list in let prover_aux_list = List.map snd prover_aux_list in (* call the underlying PC prover on the batched polynomials/evaluations the verifier will verify such proof using [packed_values] as the commitments *) let pc_proof, transcript = PC.prove pp.pp_pc_prover transcript f_map_list prover_aux_list query_list s_map_list in let proof = { pc_proof; packed_values; pack_proof } in let transcript = expand_with_proof proof transcript in (proof, transcript, r, s_list) let prove (pp : Public_parameters.prover) transcript f_map_list (prover_aux_list : Commitment.prover_aux list) query_list answer_list = let transcript = expand_with_query query_list transcript in let transcript = expand_with_answer answer_list transcript in let proof, transcript, _, _ = prove_pack pp transcript f_map_list prover_aux_list query_list answer_list in (proof, transcript) let prove_super_aggregation (pp : Public_parameters.prover) transcript f_map_list (prover_aux_list : Commitment.prover_aux list) query_list answer_list = let transcript = expand_with_query query_list transcript in let cm_answers = poseidon_answers answer_list in let transcript = Utils.expand_transcript Scalar.t cm_answers transcript in let proof, transcript, r, s_list = prove_pack pp transcript f_map_list prover_aux_list query_list answer_list in ((proof, { r; s_list; cm_answers }), transcript) let verify_pack (pp : Public_parameters.verifier) r transcript cmt_list query_list s_list proof = (* verify that the [packed_values] are correct, they will be used as the commitments for the PC proof of (batched) evaluations *) let pack_ok, transcript = Pack.verify pp.pp_pack_verifier transcript cmt_list r (proof.packed_values, proof.pack_proof) in (* batch the evaluations using [r] and prepare the query to the PC verifier by selecting the default dummy names [string_of_int i] names *) let s_map_list = List.mapi (fun i m -> SMap.map (fun s -> SMap.singleton (string_of_int i) s) m) s_list in let cmt_map_list = List.mapi (fun i l -> SMap.singleton (string_of_int i) l) proof.packed_values in (* verify that the batched evaluations are correct *) let pc_ok, transcript = PC.verify pp.pp_pc_verifier transcript cmt_map_list query_list s_map_list proof.pc_proof in (pack_ok && pc_ok, expand_with_proof proof transcript) let verify (pp : Public_parameters.verifier) transcript cmt_list query_list s_map_list proof = let transcript = expand_with_query query_list transcript in let transcript = expand_with_answer s_map_list transcript in let r, transcript = Fr_generation.random_fr transcript in let s_list = List.map (batch_answers r) s_map_list in verify_pack pp r transcript cmt_list query_list s_list proof let verify_super_aggregation (pp : Public_parameters.verifier) transcript cmt_list query_list s_list cm_answers proof = let transcript = expand_with_query query_list transcript in let transcript = Utils.expand_transcript Scalar.t cm_answers transcript in let r, transcript = Fr_generation.random_fr transcript in let ok, transcript = verify_pack pp r transcript cmt_list query_list s_list proof in (ok, r, transcript) end module type S = sig include Polynomial_commitment.S type prover_aux = { r : Scalar.t; s_list : Scalar.t SMap.t list; cm_answers : Scalar.t; } val poseidon : Scalar.t array -> Scalar.t val prove_super_aggregation : Public_parameters.prover -> transcript -> Polynomial.Polynomial.t SMap.t list -> Commitment.prover_aux list -> query list -> Scalar.t SMap.t SMap.t list -> (proof * prover_aux) * transcript val verify_super_aggregation : Public_parameters.verifier -> transcript -> Commitment.t list -> query list -> Scalar.t SMap.t list -> Scalar.t -> proof -> bool * Scalar.t * transcript end module Make : functor (Pack : Pack.Aggregator) (PC : Polynomial_commitment.S with type Scalar.t = Pack.scalar and type Commitment.t = Pack.g1 SMap.t) -> S with module Scalar = PC.Scalar = Make_impl include Make (Pack) (Polynomial_commitment.Kzg_impl)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>