package tezos-plonk
Plonk zero-knowledge proving system
Install
Dune Dependency
Authors
Maintainers
Sources
privacy-team-v1.0.0.tar.gz
md5=c9007a234fbacaddbc652c139cac56db
sha512=b67825a9259c27ccba51a4cb98056985c93f74f5211d422ce8ee8c35cda748c22bd1e59b3a584a79f96c1be21a409a12ee4b705346e1319c6d8bf45e81029f93
doc/src/tezos-plonk/polynomial_commitment.ml.html
Source file polynomial_commitment.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
(*****************************************************************************) (* *) (* MIT License *) (* Copyright (c) 2022 Nomadic Labs <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) (* Implements a batched version of the KZG10 scheme, described in Section 3 of the PlonK paper: https://eprint.iacr.org/2019/953.pdf *) module Kzg_impl = struct include Bls module Fr_generation = Fr_generation.Make (Scalar) module Polynomial = Bls12_381_polynomial module Poly = Bls12_381_polynomial.Polynomial module Srs_g1 = Bls12_381_polynomial.Srs.Srs_g1 module Srs_g2 = Bls12_381_polynomial.Srs.Srs_g2 module Scalar_map = Map.Make (Scalar) (* polynomials to be committed *) type secret = Poly.t SMap.t (* maps evaluation point names to evaluation point values *) type query = Scalar.t SMap.t [@@deriving repr] (* maps evaluation point names to (map from polynomial names to evaluations) *) type answer = Scalar.t SMap.t SMap.t [@@deriving repr] type transcript = Bytes.t let pippenger ?(start = 0) ?len ps ss = try G1.pippenger ~start ?len ps ss with Invalid_argument s -> raise (Invalid_argument (Printf.sprintf "KZG.pippenger : %s" s)) module Public_parameters = struct (* Structured Reference String - srs1 : [[1]₁, [x¹]₁, …, [x^(d-1)]₁] ; - encoding_1 : [1]₂; - encoding_x : [x]₂ *) type prover = { srs1 : Srs_g1.t; encoding_1 : G2.t; encoding_x : G2.t } [@@deriving repr] let to_bytes len srs = let open Utils.Hash in let st = init () in update st (G2.to_bytes srs.encoding_1); update st (G2.to_bytes srs.encoding_x); let srs1 = Srs_g1.to_array ~len srs.srs1 in Array.iter (fun key -> update st (G1.to_bytes key)) srs1; finish st type verifier = { encoding_1 : G2.t; encoding_x : G2.t } [@@deriving repr] type setup_params = int let setup_verifier srs_g2 = let encoding_1 = Srs_g2.get srs_g2 0 in let encoding_x = Srs_g2.get srs_g2 1 in { encoding_1; encoding_x } let setup_prover (srs_g1, srs_g2) = let { encoding_1; encoding_x } = setup_verifier srs_g2 in { srs1 = srs_g1; encoding_1; encoding_x } let setup _ (srs, _) = let prv = setup_prover srs in let vrf = setup_verifier (snd srs) in (prv, vrf) end module Commitment = struct type t = G1.t SMap.t [@@deriving repr] type prover_aux = unit [@@deriving repr] let commit_single srs p = let srs = Public_parameters.(srs.srs1) in let poly_size = Poly.degree p + 1 in let srs_size = Srs_g1.size srs in if poly_size = 0 then G1.zero else if poly_size > srs_size then raise (Failure (Printf.sprintf "Kzg.commit : Polynomial degree, %i, exceeds srs length, %i." poly_size srs_size)) else Srs_g1.pippenger srs p let commit ?all_keys:_ srs f_map = let cmt = SMap.map (commit_single srs) f_map in let prover_aux = () in (cmt, prover_aux) let cardinal cmt = SMap.cardinal cmt end type proof = G1.t SMap.t [@@deriving repr] let expand_with_proof = Utils.expand_transcript proof_t let expand_with_query = Utils.list_expand_transcript query_t let expand_with_answer = Utils.list_expand_transcript answer_t (* compute W := (f(x) - s) / (x - z), where x is the srs secret exponent, for every evaluation point [zname], key of the [query] map, where z := SMap.find zname query s := SMap.find zname batched_answer f := SMap.find zname batched_polys the computation is performed by first calculating polynomial (f(X) - s) / (X - z) and then committing to it using the srs. Here, f (respecitvely s) is a batched polynomial (respecively batched evaluation) of all polynomials (and their respective evaluations) that are evaluated at a common point z. They have been batched with the uniformly sampled randomness from [y_map], see {!sample_ymap} *) let compute_Ws srs batched_polys batched_answer query = SMap.mapi (fun x z -> let f = SMap.find x batched_polys in let s = SMap.find x batched_answer in (* WARNING: This modifies [batched_polys], but we won't use it again: *) Poly.sub_inplace f f @@ Poly.constant s; let h = fst @@ Poly.division_xn f 1 (Scalar.negate z) in Commitment.commit_single srs h) query (* verify the KZG equation: e(F - [s]₁ + z W, [1]₂) = e(W, [x]₂) for every evaluation point [zname], key of the [query] map, where z := SMap.find zname query s := SMap.find zname s_map W := SMap.find zname w_map and F is computed as a linear combination (determined by [coeffs]) of the commitments in [SMap.find zname cmt_map]. All verification equations are checked at once by batching them with fresh randomness sampled in [r_map]. The combination of [cmt_map] and other G1.mul is delayed as much as possible, in order to combine all of them with a single pippenger *) let verifier_check srs cmt_map coeffs query s_map w_map = let r_map = SMap.map (fun _ -> Scalar.random ()) w_map in let cmts = SMap.bindings cmt_map |> List.map snd in let exponents = SMap.fold (fun x r exponents -> let x_coeffs = SMap.find x coeffs in SMap.mapi (fun name exp -> match SMap.find_opt name x_coeffs with | None -> exp | Some c -> Scalar.(exp + (r * c))) exponents) r_map (SMap.map (fun _ -> Scalar.zero) cmt_map) |> SMap.bindings |> List.map snd in let s = SMap.fold (fun x r s -> Scalar.(sub s (r * SMap.find x s_map))) r_map Scalar.zero in let w_left_exps = List.map (fun (x, r) -> Scalar.mul r @@ SMap.find x query) @@ SMap.bindings r_map in let w_right_exps = (* We negate them before the pairing_check, which is done on the lhs *) SMap.bindings r_map |> List.map snd |> List.map Scalar.negate in let ws = SMap.bindings w_map |> List.map snd in let left = pippenger (Array.of_list @@ (G1.one :: ws) @ cmts) (Array.of_list @@ (s :: w_left_exps) @ exponents) in let right = pippenger (Array.of_list ws) (Array.of_list w_right_exps) in Public_parameters.[ (left, srs.encoding_1); (right, srs.encoding_x) ] |> Pairing.pairing_check (* return a map between evaluation point names (from [query]) and uniformly sampled scalars, used for batching; also return an updated transcript *) let sample_ys transcript query = let n = SMap.cardinal query in let ys, transcript = Fr_generation.random_fr_list transcript n in let y_map = SMap.of_list (List.map2 (fun y (name, _) -> (name, y)) ys @@ SMap.bindings query) in (y_map, transcript) (* On input a scalar map [y_map] and [answer], e.g., y_map := { 'x0' -> y₀; 'x1' -> y₁ } answer := { 'x0' -> { 'a' -> a(x₀); 'b' -> b(x₀); 'c' -> c(x₀); ... }; 'x1' -> { 'a' -> a(x₁); 'c' -> c(x₁); 'd' -> d(x₁); ... }; } outputs a map of batched evaluations: { 'x0' -> a(x₀) + y₀b(x0) + y₀²c(x₀) + ...); 'x1' -> a(x₁) + y₁c(x1) + y₁²d(x₁) + ...); } and a map of batching coefficients: { 'x0' -> { 'a' -> 1; 'b' -> y₀; 'c' -> y₀²; ... }; 'x1' -> { 'a' -> 1; 'c' -> y₁; 'd' -> y₁²; ... }; } *) let batch_answer y_map answer = let couples = SMap.mapi (fun x s_map -> let y = SMap.find x y_map in let s, coeffs, _yk = SMap.fold (fun name s (acc_s, coeffs, yk) -> let acc_s = Scalar.(add acc_s @@ mul yk s) in let coeffs = SMap.add name yk coeffs in let yk = Scalar.mul yk y in (acc_s, coeffs, yk)) s_map (Scalar.zero, SMap.empty, Scalar.one) in (s, coeffs)) answer in (SMap.map fst couples, SMap.map snd couples) (* On input batching coefficients [coeffs] and a map of polys [f_map], e.g., coeffs := { 'x0' -> { 'a' -> 1; 'b' -> y₀; 'c' -> y₀²; ... }; 'x1' -> { 'a' -> 1; 'c' -> y₁; 'd' -> y₁²; ... }; } f_map := { 'a' -> a(X); 'b' -> b(X); 'c' -> c(X); ... }, outputs a map of batched polynomials: { 'x0' -> a(X) + y₀b(X) + y₀²c(X) + ...); 'x1' -> a(X) + y₁c(X) + y₁²d(X) + ...); } *) let batch_polys coeffs f_map = let polys = SMap.bindings f_map in SMap.map (fun f_coeffs -> let coeffs, polys = List.filter_map (fun (name, p) -> Option.map (fun c -> (c, p)) @@ SMap.find_opt name f_coeffs) polys |> List.split in Poly.linear polys coeffs) coeffs let prove_single srs transcript f_map query answer = let y_map, transcript = sample_ys transcript query in let batched_answer, coeffs = batch_answer y_map answer in let batched_polys = batch_polys coeffs f_map in let proof = compute_Ws srs batched_polys batched_answer query in (proof, expand_with_proof proof transcript) let verify_single srs transcript cmt_map query answer proof = let y_map, transcript = sample_ys transcript query in let batched_answer, coeffs = batch_answer y_map answer in let b = verifier_check srs cmt_map coeffs query batched_answer proof in (b, expand_with_proof proof transcript) (* group functions allow [prove] and [verify] rely on [prove_single] and [verify_single] respectively *) let group_secrets : secret list -> secret = SMap.union_disjoint_list let group_cmts : Commitment.t list -> Commitment.t = SMap.union_disjoint_list let group_queries : query list -> query = fun query_list -> let union = SMap.union (fun _ z z' -> if Scalar.eq z z' then Some z else failwith "group_query: equal query names must map to equal values") in List.fold_left union (List.hd query_list) (List.tl query_list) let group_answers : answer list -> answer = fun answer_list -> List.fold_left (SMap.union (fun _ m1 m2 -> Some (SMap.union_disjoint m1 m2))) (List.hd answer_list) (List.tl answer_list) (* evaluate every polynomial in [f_map] at all evaluation points in [query] *) let evaluate : Poly.t SMap.t -> query -> answer = fun f_map query -> SMap.map (fun z -> SMap.map (fun f -> Poly.evaluate f z) f_map) query let prove srs transcript f_map_list _prover_aux_list query_list answer_list = let transcript = expand_with_query query_list transcript in let transcript = expand_with_answer answer_list transcript in let f_map = group_secrets f_map_list in let query = group_queries query_list in let answer = group_answers answer_list in prove_single srs transcript f_map query answer let verify srs transcript cmt_map_list query_list answer_list proof = let transcript = expand_with_query query_list transcript in let transcript = expand_with_answer answer_list transcript in let cmt_map = group_cmts cmt_map_list in let query = group_queries query_list in let answer = group_answers answer_list in verify_single srs transcript cmt_map query answer proof end module type Public_parameters_sig = sig type prover [@@deriving repr] type verifier [@@deriving repr] type setup_params = int val setup : setup_params -> Bls12_381_polynomial.Srs.t * Bls12_381_polynomial.Srs.t -> prover * verifier val to_bytes : int -> prover -> Bytes.t end module type Commitment_sig = sig type t [@@deriving repr] type prover_aux [@@deriving repr] type prover_public_parameters type secret (* [all_keys] is an optional argument that should only be used for partial commitments. It contains all the polynomial names that make up the full commitment. Note that [secret] may only contain a subset of [all_keys]. *) val commit : ?all_keys:string list -> prover_public_parameters -> secret -> t * prover_aux val cardinal : t -> int end module type S = sig module Scalar : Bls.Scalar_sig module Polynomial : Bls12_381_polynomial.S with type scalar = Scalar.t module Scalar_map : Map.S with type key = Scalar.t module Fr_generation : Fr_generation.S with type scalar = Scalar.t (* polynomials to be committed *) type secret = Polynomial.Polynomial.t SMap.t (* maps evaluation point names to evaluation point values *) type query = Scalar.t SMap.t [@@deriving repr] (* maps evaluation point names to (map from polynomial names to evaluations) *) type answer = Scalar.t SMap.t SMap.t [@@deriving repr] type proof [@@deriving repr] type transcript = Bytes.t module Public_parameters : Public_parameters_sig module Commitment : Commitment_sig with type prover_public_parameters := Public_parameters.prover and type secret := secret val evaluate : secret -> query -> answer val prove : Public_parameters.prover -> transcript -> secret list -> Commitment.prover_aux list -> query list -> answer list -> proof * transcript val verify : Public_parameters.verifier -> transcript -> Commitment.t list -> query list -> answer list -> proof -> bool * transcript end include ( Kzg_impl : S with type Scalar.t = Bls.Scalar.t and type Polynomial.Srs.Srs_g1.elt = Bls.G1.t and type Polynomial.Srs.Srs_g2.elt = Bls.G2.t)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>