Source file plookup_gate.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
module Plookup_gate_impl (PP : Polynomial_protocol.Polynomial_protocol_sig) =
struct
module PP = PP
module MP = PP.MP
module Poly = PP.PC.Polynomial.Polynomial
module Scalar = PP.PC.Scalar
module Scalar_map = PP.PC.Scalar_map
module Fr_generation = PP.PC.Fr_generation
module Evaluations = PP.Evaluations
exception Entry_not_in_table of string
let q_label = "q_plookup"
let q_table = "q_table"
let f = "f_plookup"
let fg = "fg_plookup"
let z = "z_plookup"
let t = "table"
let h1 = "h1"
let h2 = "h2"
let zg = "zg_plookup"
let tg = "tg_plookup"
let h1g = "h1g"
let h2g = "h2g"
let l1 = "L1"
let ln_p_1 = "L_n_plus_1"
let x_m_1 = "x_minus_1"
let x = "X"
type public_parameters =
(PP.prover_public_parameters * PP.verifier_public_parameters)
* PP.PC.Scalar.t array list
let zero = Scalar.zero
let one = Scalar.one
let mone = Scalar.negate one
let gate_identity ~prefix ~wires_name ~alpha ~beta ~gamma ~ultra =
let t = prefix ^ t in
let tg = prefix ^ tg in
let z = prefix ^ z in
let zg = prefix ^ zg in
let f = prefix ^ f in
let fg = prefix ^ fg in
let h1 = prefix ^ h1 in
let h2 = prefix ^ h2 in
let h1g = prefix ^ h1g in
let h2g = prefix ^ h2g in
let q_label = prefix ^ q_label in
let q_table = prefix ^ q_table in
let wires_name = Array.map (fun x -> prefix ^ x) wires_name in
let neg x = Scalar.negate x in
let mul x y = Scalar.mul x y in
let one_p_b = Scalar.(one + beta) in
let g_one_p_b = Scalar.(gamma * one_p_b) in
let g_one_p_b_2 = Scalar.square g_one_p_b in
let id_a = [ (one, [ l1; z ]); (mone, [ l1 ]) ] in
let id_c = [ (one, [ ln_p_1; h1 ]); (mone, [ ln_p_1; h2g ]) ] in
let id_d = [ (one, [ ln_p_1; z ]); (mone, [ ln_p_1 ]) ] in
let l_g_a = (g_one_p_b_2, [ x_m_1; z ]) in
let l_g_b = (g_one_p_b, [ x_m_1; t; z ]) in
let l_g_c = (mul beta g_one_p_b, [ x_m_1; z; tg ]) in
let l_f_a = (mul g_one_p_b one_p_b, [ x_m_1; z; f ]) in
let l_f_b = (one_p_b, [ x_m_1; t; z; f ]) in
let l_f_c = (mul beta one_p_b, [ x_m_1; z; f; tg ]) in
let ra_a_a = (neg g_one_p_b_2, [ x_m_1; zg ]) in
let ra_a_b = (neg g_one_p_b, [ x_m_1; h2; zg ]) in
let ra_a_c = (neg (mul g_one_p_b beta), [ x_m_1; zg; h2g ]) in
let ra_b_a = (neg g_one_p_b, [ x_m_1; h1; zg ]) in
let ra_b_b = (mone, [ x_m_1; h1; h2; zg ]) in
let ra_b_c = (neg beta, [ x_m_1; h1; zg; h2g ]) in
let ra_c_a = (neg (mul g_one_p_b beta), [ x_m_1; h1g; zg ]) in
let ra_c_b = (neg beta, [ x_m_1; h1g; h2; zg ]) in
let ra_c_c = (neg (Scalar.square beta), [ x_m_1; h1g; zg; h2g ]) in
let id_b =
[
l_g_a;
l_g_b;
l_g_c;
l_f_a;
l_f_b;
l_f_c;
ra_a_a;
ra_a_b;
ra_a_c;
ra_b_a;
ra_b_b;
ra_b_c;
ra_c_a;
ra_c_b;
ra_c_c;
]
in
let ids =
let monome str_list = SMap.monomial_of_list str_list in
let switch l = List.map (fun (a, b) -> (monome (q_label :: b), a)) l in
let base = List.map (fun id -> switch id) [ id_a; id_b; id_c; id_d ] in
let updated_base =
if ultra then
let _i, id_agg =
List.fold_left
(fun (i, l) fi ->
let alpha_i = Scalar.pow alpha (Z.of_int i) in
(i + 1, (monome [ q_label; fi ], alpha_i) :: l))
(0, [ (monome [ q_label; fg ], mone) ])
(q_table :: Array.to_list wires_name)
in
id_agg :: base
else base
in
List.map (fun id -> MP.Polynomial.of_list id) updated_base
in
let id_names =
let base =
[
prefix ^ "Plookup.a";
prefix ^ "Plookup.b";
prefix ^ "Plookup.c";
prefix ^ "Plookup.d";
]
in
if ultra then (prefix ^ "Plookup.ultra") :: base else base
in
SMap.of_list (List.combine id_names ids)
let v_map ~prefix generator ultra =
let map =
let g_poly = Poly.of_coefficients [ (generator, 1) ] in
SMap.of_list
[
(prefix ^ fg, (prefix ^ f, g_poly));
(prefix ^ zg, (prefix ^ z, g_poly));
(prefix ^ tg, (prefix ^ t, g_poly));
(prefix ^ h1g, (prefix ^ h1, g_poly));
(prefix ^ h2g, (prefix ^ h2, g_poly));
]
in
if ultra then SMap.remove l1 map else SMap.remove fg map
let precomputed_poly_contribution ~wires_name ~alpha ~beta ~gamma ~f_map
~ultra ~evaluations n =
let fs = if ultra then q_table :: Array.to_list wires_name else [] in
let evaluations =
if ultra then evaluations
else
let poly name = (name, SMap.find name f_map) in
let poly_map = SMap.of_list [ poly z; poly h1; poly h2; poly f ] in
Evaluations.compute_evaluations_update_map ~evaluations poly_map
in
let eval_z = Evaluations.find_evaluation evaluations z in
let eval_q_label = Evaluations.find_evaluation evaluations q_label in
let eval_l1 = Evaluations.find_evaluation evaluations l1 in
let eval_ln_p_1 = Evaluations.find_evaluation evaluations ln_p_1 in
let eval_length = Evaluations.length eval_q_label in
let id1_evaluation = Evaluations.create eval_length in
let id2_evaluation = Evaluations.create eval_length in
let id3_evaluation = Evaluations.create eval_length in
let id4_evaluation = Evaluations.create eval_length in
let tmp_evaluation = Evaluations.create eval_length in
let idb =
let one_p_b = Scalar.(one + beta) in
let g_one_p_b = Scalar.(gamma * one_p_b) in
let g_one_p_b_plus_e_plus_beta_p_eg res e =
Evaluations.linear ~res ~evaluations ~poly_names:[ e; e ]
~add_constant:g_one_p_b
~composition_gx:([ 0; 1 ], n)
~linear_coeffs:[ one; beta ] ()
in
let eval_x_mone =
Evaluations.linear ~res:id1_evaluation ~evaluations ~poly_names:[ x ]
~add_constant:mone ()
in
let eval_f_expr =
Evaluations.linear ~res:id2_evaluation ~evaluations ~poly_names:[ f ]
~linear_coeffs:[ one_p_b ] ~add_constant:g_one_p_b ()
in
let eval_t_expr = g_one_p_b_plus_e_plus_beta_p_eg id3_evaluation t in
let left_term =
Evaluations.mul_c ~res:id4_evaluation
~evaluations:[ eval_z; eval_x_mone; eval_f_expr; eval_t_expr ]
()
in
let eval_h1_expr = g_one_p_b_plus_e_plus_beta_p_eg id2_evaluation h1 in
let eval_h2_expr = g_one_p_b_plus_e_plus_beta_p_eg id3_evaluation h2 in
let right_term =
Evaluations.mul_c ~res:tmp_evaluation
~evaluations:[ eval_z; eval_x_mone; eval_h1_expr; eval_h2_expr ]
~composition_gx:([ 1; 0; 0; 0 ], n)
()
in
let eval_id_b =
Evaluations.linear_c ~res:id1_evaluation
~evaluations:[ left_term; right_term ] ~linear_coeffs:[ one; mone ] ()
in
Evaluations.mul_c ~res:id2_evaluation
~evaluations:[ eval_q_label; eval_id_b ]
()
in
let eval_z_mone =
Evaluations.linear_c ~res:tmp_evaluation ~evaluations:[ eval_z ]
~add_constant:mone ()
in
let ida =
Evaluations.mul_c ~res:id1_evaluation
~evaluations:[ eval_q_label; eval_l1; eval_z_mone ]
()
in
let idd =
Evaluations.mul_c ~res:id4_evaluation
~evaluations:[ eval_q_label; eval_ln_p_1; eval_z_mone ]
()
in
let idc =
let eval_h1_minus_h2g =
Evaluations.linear ~res:tmp_evaluation ~evaluations
~poly_names:[ h1; h2 ] ~linear_coeffs:[ one; mone ]
~composition_gx:([ 0; 1 ], n)
()
in
Evaluations.mul_c ~res:id3_evaluation
~evaluations:[ eval_q_label; eval_ln_p_1; eval_h1_minus_h2g ]
()
in
let base = [ ida; idb; idc; idd ] in
let ids =
if ultra then
let id_agg =
let id5_evaluation = Evaluations.create eval_length in
let eval_s =
let alpha_array = Fr_generation.powers (List.length fs) alpha in
Evaluations.linear ~res:id5_evaluation ~evaluations ~poly_names:fs
~linear_coeffs:(Array.to_list alpha_array)
()
in
let eval_s_minus_f =
let eval_f = Evaluations.find_evaluation evaluations f in
Evaluations.linear_c ~res:tmp_evaluation
~evaluations:[ eval_s; eval_f ] ~linear_coeffs:[ one; mone ]
~composition_gx:([ 0; 1 ], n)
()
in
Evaluations.mul_c ~res:id5_evaluation
~evaluations:[ eval_q_label; eval_s_minus_f ]
()
in
id_agg :: base
else base
in
let id_names =
let base = [ "Plookup.a"; "Plookup.b"; "Plookup.c"; "Plookup.d" ] in
if ultra then "Plookup.ultra" :: base else base
in
SMap.of_list (List.combine id_names ids)
module Plookup_poly = struct
let l1 n domain =
let scalar_list =
Array.(
append
Fr_generation.[| fr_of_int_safe 0; fr_of_int_safe 1 |]
(init (n - 2) (fun _ -> zero)))
in
Evaluations.interpolation_fft2 domain scalar_list
let ln_p_1 n domain =
let scalar_list =
Array.(
append
[| Fr_generation.fr_of_int_safe 1 |]
(init (n - 1) (fun _ -> zero)))
in
Evaluations.interpolation_fft2 domain scalar_list
let compute_aggregation array_list alpha =
let n = Array.length (List.hd array_list) in
let nb_wires = List.length array_list in
let alpha_array = Fr_generation.powers nb_wires alpha in
Array.init n (fun i ->
let fis = List.map (fun array -> array.(i)) array_list in
List.fold_left2
(fun acc alpha_j fij -> Scalar.(acc + (alpha_j * fij)))
Scalar.zero
(Array.to_list alpha_array)
fis)
let compute_f_aggregation gates wires alpha n =
let q = SMap.find q_label gates in
let nb_wires = SMap.cardinal wires in
let alpha_array = Fr_generation.powers nb_wires alpha in
let array_list = List.map snd @@ SMap.bindings wires in
let compute_aggregate qi fis =
List.fold_left2
(fun acc alpha_j fij -> Scalar.(acc + (alpha_j * qi * fij)))
Scalar.zero
(Array.to_list alpha_array)
fis
in
let previous_lookup =
let index =
List.find
(fun i -> not (Scalar.is_zero q.(i)))
(List.init n (fun i -> i))
in
let q0 = q.(index) in
let f0s = List.map (fun array -> array.(index)) array_list in
ref (compute_aggregate q0 f0s)
in
Array.init n (fun i ->
let qi = q.(i) in
if Scalar.is_zero qi then !previous_lookup
else
let fis = List.map (fun array -> array.(i)) array_list in
let lookup = compute_aggregate qi fis in
if not (Scalar.eq !previous_lookup lookup) then
previous_lookup := lookup;
lookup)
let sort_by f t =
let indexes_t, _ =
Array.fold_left
(fun (map, i) z -> (Scalar_map.add z i map, i + 1))
(Scalar_map.empty, 0) t
in
let my_compare a b =
let a_index_opt = Scalar_map.find_opt a indexes_t in
let b_index_opt = Scalar_map.find_opt b indexes_t in
match (a_index_opt, b_index_opt) with
| Some a_index, Some b_index -> a_index - b_index
| _ -> raise (Entry_not_in_table "Array f is not included in array t")
in
Array.sort my_compare f;
f
let switch t =
let k = Array.length t in
Array.init k (fun i -> if i = 0 then t.(k - 1) else t.(i - 1))
let t_poly_from_tables tables alpha domain =
let t = compute_aggregation tables alpha in
Evaluations.interpolation_fft2 domain (switch t)
let compute_s f t = sort_by (Array.concat [ f; t ]) t
let compute_h s domain n =
let compute_hi ~domain ~start s n =
Evaluations.interpolation_fft2 domain (switch (Array.sub s start n))
in
let h1 = compute_hi ~domain ~start:0 s n in
let h2 = compute_hi ~domain ~start:(n - 1) s n in
(h1, h2)
let compute_z beta gamma f t s n domain =
let one_p_beta = Scalar.(one + beta) in
let gamma_one_p_beta = Scalar.(gamma * one_p_beta) in
let tmp = Bls12_381.Fr.(copy one) in
let to_acc array i =
let beta_a = Scalar.mul beta array.(Int.succ i) in
Bls12_381.Fr.(
add_inplace tmp beta_a array.(i);
add_inplace beta_a tmp gamma_one_p_beta;
beta_a)
in
let z_array = Array.init n (fun _ -> Scalar.zero) in
z_array.(0) <- one;
z_array.(1) <- one;
for i = 0 to n - 3 do
let f_coeff = Scalar.(f.(i) + gamma) in
let t_coeff = to_acc t i in
Bls12_381.Fr.(
mul_inplace tmp f_coeff one_p_beta;
mul_inplace f_coeff tmp t_coeff);
let acc_i = to_acc s i in
let acc_n_i = to_acc s (n - 1 + i) in
Bls12_381.Fr.mul_inplace acc_i acc_i acc_n_i;
let z_coeff = Scalar.(f_coeff / acc_i) in
z_array.(i + 2) <- Scalar.mul z_array.(i + 1) z_coeff
done;
Evaluations.interpolation_fft2 domain z_array
end
let srs_size ~length_table =
let log = Z.(log2up (of_int length_table)) in
let length_padded = Int.shift_left 1 log in
length_padded
let polynomials_degree () = 4
let common_preprocessing ~n:nb_records ~domain =
let l_map =
SMap.of_list
[
(l1, Plookup_poly.l1 nb_records domain);
(ln_p_1, Plookup_poly.ln_p_1 nb_records domain);
]
in
l_map
let preprocessing ?(prefix = "") ~domain ~tables ~alpha () =
let t_poly = Plookup_poly.t_poly_from_tables tables alpha domain in
SMap.singleton (prefix ^ t) t_poly
let format_tables ~tables ~nb_columns ~length_not_padded ~length_padded =
let concatenated_table =
let corrected_tables =
List.mapi
(fun i t ->
let nb_subtable_columns = List.length t in
let sub_table_size = Array.length (List.hd t) in
let padding_columns =
List.init (nb_columns - nb_subtable_columns) (fun _ ->
Array.make sub_table_size zero)
in
let full_table = t @ padding_columns in
Array.make sub_table_size (Scalar.of_z (Z.of_int i)) :: full_table)
tables
in
let acc_n = List.init (nb_columns + 1) (fun _ -> [||]) in
List.fold_left
(fun aa ll -> List.map2 (fun a l -> Array.append a l) aa ll)
acc_n corrected_tables
in
List.map
(fun t ->
let last = t.(length_not_padded - 1) in
let padding = Array.make (length_padded - length_not_padded) last in
Array.append t padding)
concatenated_table
let setup ?(nb_pack = 64) ~nb_wires ~domain ~size_domain ~tables ~table_size
~alpha ~srsfiles () =
let tables =
format_tables ~tables ~nb_columns:nb_wires ~length_not_padded:table_size
~length_padded:size_domain
in
let map_preprocessed_poly =
SMap.union_disjoint
(common_preprocessing ~n:size_domain ~domain)
(preprocessing ~domain ~tables ~alpha ())
in
let prover_pp_parameters, verifier_pp_parameters =
PP.setup
~setup_params:((2 * size_domain) + 1, nb_pack)
map_preprocessed_poly ~subgroup_size:size_domain srsfiles
in
((prover_pp_parameters, verifier_pp_parameters), tables)
let prover_query ?(prefix = "") ~generator ~f_map ~wires_name ~alpha ~beta
~gamma ~ultra ~evaluations ~n () =
let precomputed_polys =
precomputed_poly_contribution ~wires_name ~alpha ~beta ~gamma ~f_map
~ultra ~evaluations n
in
let v_map = v_map ~prefix generator ultra in
PP.{ v_map; precomputed_polys }
type PP.not_committed += XmOne
let () =
PP.register_nc_eval_and_encoding
(function XmOne -> Some (fun x -> Scalar.(x.(0) + mone)) | _ -> None)
~title:"plookup" ~tag:2
Data_encoding.(obj1 (req "plookup" unit))
(function XmOne -> Some () | _ -> None)
(fun () -> XmOne)
let verifier_query ?(prefix = "") ~generator ~wires_name ~alpha ~beta ~gamma
~ultra () =
let v_map = v_map ~prefix generator ultra in
PP.
{
v_map;
identities =
gate_identity ~prefix ~wires_name ~alpha ~beta ~gamma ~ultra;
not_committed = SMap.singleton x_m_1 XmOne;
}
let f_map_contribution ~wires ~gates ~tables ~alpha ~beta ~gamma ~domain
~size_domain ~circuit_size:_ =
let t_agg = Plookup_poly.compute_aggregation tables alpha in
let wires_to_agg =
let table_selector = SMap.find q_table gates in
SMap.add ("_" ^ q_table) table_selector wires
in
let final_size = size_domain - 1 in
let padded_f_list =
SMap.map (fun w -> Utils.array_resize w final_size) wires_to_agg
in
let f_agg =
Plookup_poly.compute_f_aggregation gates padded_f_list alpha final_size
in
let f_poly =
Evaluations.interpolation_fft2 domain Array.(append [| zero |] f_agg)
in
let s = Plookup_poly.compute_s f_agg t_agg in
let h1_poly, h2_poly = Plookup_poly.compute_h s domain size_domain in
let z_poly =
Plookup_poly.compute_z beta gamma f_agg t_agg s size_domain domain
in
SMap.of_list [ (h1, h1_poly); (h2, h2_poly); (z, z_poly); (f, f_poly) ]
end
module type Plookup_gate_sig = sig
module PP : Polynomial_protocol.Polynomial_protocol_sig
exception Entry_not_in_table of string
type public_parameters =
(PP.prover_public_parameters * PP.verifier_public_parameters)
* PP.PC.Scalar.t array list
val srs_size : length_table:int -> int
val polynomials_degree : unit -> int
val format_tables :
tables:PP.PC.Scalar.t array list list ->
nb_columns:int ->
length_not_padded:int ->
length_padded:int ->
PP.PC.Scalar.t array list
val common_preprocessing :
n:int ->
domain:PP.PC.Polynomial.Domain.t ->
PP.PC.Polynomial.Polynomial.t SMap.t
val preprocessing :
?prefix:string ->
domain:PP.PC.Polynomial.Domain.t ->
tables:PP.PC.Scalar.t array list ->
alpha:PP.PC.Scalar.t ->
unit ->
PP.PC.Polynomial.Polynomial.t SMap.t
val setup :
?nb_pack:int ->
nb_wires:int ->
domain:PP.PC.Polynomial.Domain.t ->
size_domain:int ->
tables:PP.PC.Scalar.t array list list ->
table_size:int ->
alpha:PP.PC.Scalar.t ->
srsfiles:(string * string) * (string * string) ->
unit ->
public_parameters
val prover_query :
?prefix:string ->
generator:PP.PC.Scalar.t ->
f_map:PP.PC.Polynomial.Polynomial.t SMap.t ->
wires_name:string array ->
alpha:PP.PC.Scalar.t ->
beta:PP.PC.Scalar.t ->
gamma:PP.PC.Scalar.t ->
ultra:bool ->
evaluations:PP.Evaluations.t SMap.t ->
n:int ->
unit ->
PP.prover_query
val verifier_query :
?prefix:string ->
generator:PP.PC.Scalar.t ->
wires_name:string array ->
alpha:PP.PC.Scalar.t ->
beta:PP.PC.Scalar.t ->
gamma:PP.PC.Scalar.t ->
ultra:bool ->
unit ->
PP.verifier_query
val f_map_contribution :
wires:PP.PC.Scalar.t array SMap.t ->
gates:PP.PC.Scalar.t array SMap.t ->
tables:PP.PC.Scalar.t array list ->
alpha:PP.PC.Scalar.t ->
beta:PP.PC.Scalar.t ->
gamma:PP.PC.Scalar.t ->
domain:PP.PC.Polynomial.Domain.t ->
size_domain:int ->
circuit_size:int ->
PP.PC.secret
end
module Plookup_gate (PP : Polynomial_protocol.Polynomial_protocol_sig) :
Plookup_gate_sig with module PP = PP =
Plookup_gate_impl (PP)