package tezos-plonk

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file permutation_gate.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
(*****************************************************************************)
(*                                                                           *)
(* MIT License                                                               *)
(* Copyright (c) 2022 Nomadic Labs <contact@nomadic-labs.com>                *)
(*                                                                           *)
(* Permission is hereby granted, free of charge, to any person obtaining a   *)
(* copy of this software and associated documentation files (the "Software"),*)
(* to deal in the Software without restriction, including without limitation *)
(* the rights to use, copy, modify, merge, publish, distribute, sublicense,  *)
(* and/or sell copies of the Software, and to permit persons to whom the     *)
(* Software is furnished to do so, subject to the following conditions:      *)
(*                                                                           *)
(* The above copyright notice and this permission notice shall be included   *)
(* in all copies or substantial portions of the Software.                    *)
(*                                                                           *)
(* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*)
(* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,  *)
(* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL   *)
(* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*)
(* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING   *)
(* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER       *)
(* DEALINGS IN THE SOFTWARE.                                                 *)
(*                                                                           *)
(*****************************************************************************)

module Permutation_gate_impl (PP : Polynomial_protocol.Polynomial_protocol_sig) =
struct
  module PP = PP
  module MP = PP.MP
  module Domain = PP.PC.Polynomial.Domain
  module Poly = PP.PC.Polynomial.Polynomial
  module Scalar = PP.PC.Scalar
  module Commitment = PP.PC.Commitment
  module Fr_generation = PP.PC.Fr_generation
  module Evaluations = PP.Evaluations

  let monomial_of_list = SMap.monomial_of_list
  let z = "Z"

  (* element preprocessed and known by both prover and verifier *)
  type public_parameters = {
    g_map_perm_PP : Poly.t SMap.t;
    cm_g_map_perm_PP : Commitment.t SMap.t;
    s_poly_map : Poly.t SMap.t;
    cm_s_poly_map : Commitment.t SMap.t;
    permutation : int array;
  }

  let srs_size ~zero_knowledge ~n = if zero_knowledge then n + 9 else n
  let one = Scalar.one
  let zero = Scalar.zero
  let mone = Scalar.negate one
  let quadratic_non_residues = Fr_generation.build_quadratic_non_residues 8

  let get_k k =
    if k < 8 then quadratic_non_residues.(k)
    else raise (Invalid_argument "Permutation.get_k : k must be lower than 8.")

  (* prime n-th roots of unity (g_2_i^(2^i)=1)
     n is of form 2^i
      generator is an nth root of unity
      permutations = array ; permutations.(i) = σ(i)
  *)

  (* Returns the list of monomial corresponding to the permutation identity*)
  let gate_identity ~prefix wires_name beta gamma =
    let wires_name = Array.map (fun x -> prefix ^ x) wires_name in
    (* Returns for a given tbit and position the labels for the permutation identity, as well as the gamma and beta coefficient *)
    let choose_list wires_name nb n =
      let index = string_of_int (n + 1) in
      match nb with
      | 0 ->
          let f = wires_name.(n) in
          (true, f, f, 0, 0)
      | 1 -> (true, "Si" ^ index, prefix ^ "Ss" ^ index, 1, 0)
      | 2 -> (false, "", "", 0, 1)
      | _ -> raise (Failure "choose_list: Error in ternary decomposition")
    in
    (* Returns the ternary decomposition of a number $nb$ as a $length_array$-element long int list*)
    let ternary nb length_array =
      let rec cpt_three acc length n =
        match n with
        | 0 -> (acc, length)
        | _ -> cpt_three ((n mod 3) :: acc) (length + 1) (n / 3)
      in
      let suffix, suffix_length = cpt_three [] 0 nb in
      List.rev_append
        (List.init (length_array - suffix_length) (fun _ -> 0))
        suffix
    in
    let nb_wires = Array.length wires_name in
    let array_betas = Fr_generation.powers (nb_wires + 1) beta in
    let array_gammas = Fr_generation.powers (nb_wires + 1) gamma in
    let size_identity = Z.(to_int (pow (of_int 3) nb_wires)) in
    let rec compute_identity_zfg acc size =
      let rec cpt_mnmls (acc_z, acc_zg, acc_b, acc_g) base3 ctr =
        match base3 with
        | t :: sub3 ->
            let add, item_z, item_zg, b, g = choose_list wires_name t ctr in
            let acc_b = acc_b + b in
            let acc_g = acc_g + g in
            let acc_z = if add then item_z :: acc_z else acc_z in
            let acc_zg = if add then item_zg :: acc_zg else acc_zg in
            cpt_mnmls (acc_z, acc_zg, acc_b, acc_g) sub3 (ctr + 1)
        | [] ->
            let coeff = Scalar.mul array_betas.(acc_b) array_gammas.(acc_g) in
            ( (SMap.monomial_of_list acc_z, coeff),
              (SMap.monomial_of_list acc_zg, Scalar.negate coeff) )
      in
      if size = size_identity then acc
      else
        let i_base3 = ternary size nb_wires in
        let mnml_z, mnml_zg =
          cpt_mnmls ([ prefix ^ "Z" ], [ prefix ^ "Zg" ], 0, 0) i_base3 0
        in
        compute_identity_zfg (mnml_z :: mnml_zg :: acc) (size + 1)
    in
    let identity_zfg = MP.Polynomial.of_list (compute_identity_zfg [] 0) in
    let identity_l1_z =
      MP.Polynomial.of_list
        [
          (SMap.monomial_of_list [ "L1"; prefix ^ "Z" ], one);
          (SMap.monomial_of_list [ "L1" ], mone);
        ]
    in
    SMap.of_list
      [ (prefix ^ "Perm.a", identity_l1_z); (prefix ^ "Perm.b", identity_zfg) ]

  (* v_map must contain all polynomials that are not involved in permutation checking ;
     those involved in permutation checking are fl, fr, fo *)
  let v_map ~prefix generator =
    let g_poly = Poly.of_coefficients [ (generator, 1) ] in
    (* (name of h∘v, (name of h, value of v))
       h∘v name will be used in identities
       h name is the name of the polynomial in g_map or f_map to compose with v
    *)
    SMap.singleton (prefix ^ "Zg") (prefix ^ "Z", g_poly)

  module Preprocessing = struct
    (* returns l1 polynomial such that l1(generator) = 1 & l1(a) = 0 for all a != generator in H *)
    let l1 domain =
      let size_domain = Domain.length domain in
      let scalar_list =
        Array.append
          Fr_generation.[| fr_of_int_safe 0; fr_of_int_safe 1 |]
          Array.(init (size_domain - 2) (fun _ -> zero))
      in
      Evaluations.interpolation_fft2 domain scalar_list

    (* returns [sid_0, …, sid_k] *)
    let sid_list_non_quadratic_residues size =
      if size > 8 then
        raise (Failure "sid_list_non_quadratic_residues: sid list too long")
      else List.init size (fun i -> Poly.of_coefficients [ (get_k i, 1) ])

    let sid_map_non_quadratic_residues_prover size =
      if size > 8 then
        raise (Failure "sid_map_non_quadratic_residues: sid map too long")
      else
        SMap.of_list
          (List.init size (fun i ->
               let k = get_k i in
               ("Si" ^ string_of_int (i + 1), Poly.of_coefficients [ (k, 1) ])))

    (* Add a [not_committed] variant to represent Scalar.mul k x.(0) *)
    type PP.not_committed += MulK of Evaluations.scalar

    let () =
      (* NB: do not change tag, it will break the encoding *)
      let open Encodings in
      PP.register_nc_eval_and_encoding
        (function
          | MulK k -> Some (fun x_array -> Scalar.mul k x_array.(0)) | _ -> None)
        ~title:"permutation" ~tag:1
        Data_encoding.(obj1 (req "permutation" fr_encoding))
        (function MulK k -> Some k | _ -> None)
        (fun k -> MulK k)

    let sid_map_non_quadratic_residues_verifier size =
      if size > 8 then
        raise (Failure "sid_map_non_quadratic_residues: sid map too long")
      else
        SMap.of_list
          (List.init size (fun i ->
               let k = get_k i in
               ("Si" ^ string_of_int (i + 1), MulK k)))

    let evaluations_sid size domain_evals =
      SMap.of_list
        (List.init size (fun i ->
             let k = get_k i in
             let evals =
               Evaluations.mul_by_scalar k (Evaluations.of_domain domain_evals)
             in
             ("Si" ^ string_of_int (i + 1), evals)))

    let ssigma_map_non_quadratic_residues ~prefix permutation domain size =
      let n = Domain.length domain in
      let ssigma_map =
        SMap.of_list
          (List.init size (fun i ->
               let offset = i * n in
               let coeff_list =
                 Array.init n (fun j ->
                     let s_ij = permutation.(offset + j) in
                     let coeff = get_k (s_ij / n) in
                     let index = s_ij mod n in
                     Scalar.mul coeff (Domain.get domain index))
               in
               ( prefix ^ "Ss" ^ string_of_int (i + 1),
                 Evaluations.interpolation_fft2 domain coeff_list )))
      in
      ssigma_map
  end

  module Permutation_poly = struct
    (* compute f' & g' = (f + β×Sid + γ) & (g + β×Sσ + γ) products with Z *)
    (* compute_prime computes the following
       z_name * (w_1 + beta * s_1 + gamma) * ... * (w_n + beta * s_n + gamma)
       - z_name could be either "Z" or "Zg"
       - evaluations contains "Z" but not "Zg"
       - if z_name = "Zg", we compute "Zg" as composition_gx of "Z" with 1 *)
    let compute_prime res_evaluation tmp_evaluation beta gamma evaluations
        wires_names s_names z_name n =
      let wires_names = Array.to_list wires_names in
      let z_evaluation = Evaluations.find_evaluation evaluations "Z" in

      let _i, res_evaluation =
        let f_fold (i, acc_evaluation) wire_name s_name =
          let comp = if i = 0 && z_name = "Zg" then 1 else 0 in
          let res_evaluation =
            let evaluation_linear_i =
              Evaluations.linear ~res:tmp_evaluation ~evaluations
                ~poly_names:[ wire_name; s_name ] ~linear_coeffs:[ one; beta ]
                ~add_constant:gamma ()
            in
            Evaluations.mul_c ~res:res_evaluation
              ~evaluations:[ evaluation_linear_i; acc_evaluation ]
              ~composition_gx:([ 0; comp ], n)
              ()
          in
          (i + 1, res_evaluation)
        in
        List.fold_left2 f_fold (0, z_evaluation) wires_names s_names
      in
      res_evaluation

    (* evaluations must contain z’s evaluation *)
    let precompute_perm_identity_poly wires_name beta gamma evaluations n =
      let z_evaluation = Evaluations.find_evaluation evaluations "Z" in
      let z_evaluation_len = Evaluations.length z_evaluation in
      let tmp_evaluation = Evaluations.find_evaluation evaluations "tmp_eval" in
      let id1_evaluation = Evaluations.create z_evaluation_len in
      let id2_evaluation = Evaluations.create z_evaluation_len in

      let identity_zfg =
        let nb_wires = Array.length wires_name in

        (* changes f (resp g) array to f'(resp g') array, and multiply them together
            and with z (resp zg) *)
        let f_evaluation =
          let sid_names =
            List.init nb_wires (fun i -> "Si" ^ string_of_int (i + 1))
          in
          compute_prime tmp_evaluation id2_evaluation beta gamma evaluations
            wires_name sid_names "Z" n
        in
        let g_evaluation =
          let ss_names =
            List.init nb_wires (fun i -> "Ss" ^ string_of_int (i + 1))
          in
          compute_prime id2_evaluation id1_evaluation beta gamma evaluations
            wires_name ss_names "Zg" n
        in
        Evaluations.linear_c ~res:id1_evaluation
          ~evaluations:[ f_evaluation; g_evaluation ]
          ~linear_coeffs:[ one; mone ] ()
      in
      let identity_l1_z =
        let l1_evaluation = Evaluations.find_evaluation evaluations "L1" in
        let z_mone_evaluation =
          Evaluations.linear_c ~res:tmp_evaluation ~evaluations:[ z_evaluation ]
            ~add_constant:mone ()
        in

        Evaluations.mul_c ~res:id2_evaluation
          ~evaluations:[ l1_evaluation; z_mone_evaluation ]
          ()
      in
      SMap.of_list [ ("Perm.a", identity_l1_z); ("Perm.b", identity_zfg) ]

    (* compute_Z performs the following steps in the two loops.
       ----------------------
       | f_11 f_21 ... f_k1 | -> f_prod_1 (no need to compute as Z(g) is always one)
       | f_12 f_22 ... f_k2 | -> f_prod_2 = f_12 * f_22 * ... * f_k2
       |     ...........    | -> ...
       | f_1n f_2n ... f_kn | -> f_prod_n = f_1n * f_2n * ... * f_kn
        --------------------
       1. compute f_res = [ f_prod_1; f_prod_2; ...; f_prod_n ]
       2. compute g_res = [ g_prod_1; g_prod_2; ...; g_prod_n ]
       3. compute f_over_g = [ f_prod_1 / g_prod_1; ...; f_prod_n / g_prod_n ]
       4. apply fold_mul_array to f_over_g:
          [f_over_g_1; f_over_g_1 * f_over_g_2; ..; f_over_g_1 * f_over_g_2 * .. * f_over_n ]
       5. as step 4 computes [Z(g); Z(g^2); ..; Z(g^n)], we need to do a rotate right by 1
          (i.e., composition_gx with n - 1): [Z(g^n); Z(g); Z(g^2); ..; Z(g^{n-1})]
    *)
    let compute_Z s domain beta gamma values indices blinds =
      let size_domain = Domain.length domain in
      let scalar_array_Z =
        let indices = Array.of_list (List.map snd (SMap.bindings indices)) in
        let size_res = Array.length indices.(0) in
        assert (size_res = size_domain);
        let g_res = Array.init size_res (fun _ -> Scalar.zero) in
        let f_prev = ref Scalar.one in
        let f_res = ref Scalar.one in
        let tmp = Bls12_381.Fr.(copy one) in
        (* the first element of scalar_array_Z is always one *)
        for i = 1 to size_res - 1 do
          for j = 0 to Array.length indices - 1 do
            let indices_list_j_i = indices.(j).(i) in
            let v_gamma = Scalar.(values.(indices_list_j_i) + gamma) in
            let f_coeff =
              let gi = Domain.get domain i in
              Bls12_381.Fr.(
                mul_inplace tmp gi (get_k j);
                mul_inplace gi tmp beta;
                add_inplace gi gi v_gamma;
                gi)
            in
            let g_coeff =
              let sj = s.((j * size_domain) + i) in
              let gj = Domain.get domain (sj mod size_domain) in
              Bls12_381.Fr.(
                mul_inplace tmp gj (get_k (Int.div sj size_domain));
                mul_inplace gj tmp beta;
                add_inplace gj gj v_gamma;
                gj)
            in
            if j = 0 then (
              f_res := f_coeff;
              g_res.(i) <- g_coeff)
            else
              Bls12_381.Fr.(
                mul_inplace !f_res !f_res f_coeff;
                mul_inplace g_res.(i) g_res.(i) g_coeff)
          done;
          let f_over_g = Scalar.div_exn !f_res g_res.(i) in
          Bls12_381.Fr.(
            mul_inplace f_over_g f_over_g !f_prev;
            g_res.(i) <- !f_prev;
            f_prev := f_over_g)
        done;

        g_res.(0) <- !f_prev;
        g_res
      in

      let z_poly = Evaluations.interpolation_fft2 domain scalar_array_Z in
      match blinds with
      | None -> z_poly
      | Some b ->
          let p_poly =
            Poly.of_coefficients [ (b.(0), 2); (b.(1), 1); (b.(2), 0) ]
          in
          let zs_poly =
            Poly.of_coefficients [ (one, size_domain); (mone, 0) ]
          in
          Poly.(add (mul zs_poly p_poly) z_poly)
  end

  (* max degree needed is the degree of Perm.b, which is sum of wire’s degree plus z degree *)
  let polynomials_degree ~nb_wires = nb_wires + 1

  (* d = polynomials’ max degree
     n = generator’s order
     Returns SRS of decent size, preprocessed polynomials for permutation and
     their commitments (g_map_perm, cm_g_map_perm (="L1" -> L₁, preprocessed
     polynomial for verify perm’s identity), s_poly_map, cm_s_poly_map) & those
     for PP (g_map_PP, cm_g_map_PP)
     permutation for ssigma_list computation is deducted of cycles
     Details for SRS size :
       max size needed is deg(T)+1
       v polynomials all have degree 1
       according to identities_list_perm[0], t has max degree of Z×fL×fR×fO ;
       interpolation makes polynomials of degree n-1, so Z has degree of X²×Zh =
       X²×(X^n - 1) which is n+2, and each f has degree of X×Zh so n+1
       As a consequence, deg(T)-deg(Zs) = (n+2)+3(n+1) - n = 3n+5
       (for gates’ identity verification, max degree is degree of qM×fL×fR which
       is (n-1)+(n+1)+(n+1) < 3n+5)
  *)
  let preprocessing ?(prefix = "") ~domain ~permutation ~nb_wires () =
    Preprocessing.ssigma_map_non_quadratic_residues ~prefix permutation domain
      nb_wires

  let sid_not_committed = Preprocessing.sid_map_non_quadratic_residues_verifier

  let common_preprocessing ~compute_l1 ~domain ~nb_wires ~domain_evals =
    let sid_evals = Preprocessing.evaluations_sid nb_wires domain_evals in
    let sid_query =
      let sid_func =
        Preprocessing.sid_map_non_quadratic_residues_verifier nb_wires
      in
      PP.{ empty_verifier_query with not_committed = sid_func }
    in
    let g_map_perm_PP =
      if not compute_l1 then SMap.empty
      else SMap.singleton "L1" (Preprocessing.l1 domain)
    in
    (g_map_perm_PP, sid_evals, sid_query)

  let prover_query ?(prefix = "") ~wires_name ~generator ~beta ~gamma
      ~evaluations ~n () =
    PP.
      {
        v_map = v_map ~prefix generator;
        precomputed_polys =
          Permutation_poly.precompute_perm_identity_poly wires_name beta gamma
            evaluations n;
      }

  let verifier_query ?(compute_sid = true) ?(prefix = "") ~wires_name ~generator
      ~beta ~gamma ~nb_wires () =
    PP.
      {
        v_map = v_map ~prefix generator;
        identities = gate_identity ~prefix wires_name beta gamma;
        not_committed =
          (if compute_sid then
           Preprocessing.sid_map_non_quadratic_residues_verifier nb_wires
          else SMap.empty);
      }

  let f_map_contribution ~permutation ~values ~indices ~blinds ~beta ~gamma
      ~domain =
    let z_poly =
      Permutation_poly.compute_Z permutation domain beta gamma values indices
        blinds
    in
    SMap.of_list [ (z, z_poly) ]
end

module type Permutation_gate_sig = sig
  module PP : Polynomial_protocol.Polynomial_protocol_sig

  val srs_size : zero_knowledge:bool -> n:int -> int
  val polynomials_degree : nb_wires:int -> int

  val common_preprocessing :
    compute_l1:bool ->
    domain:PP.PC.Polynomial.Domain.t ->
    nb_wires:int ->
    domain_evals:PP.Evaluations.domain ->
    PP.PC.Polynomial.Polynomial.t SMap.t
    * PP.Evaluations.t SMap.t
    * PP.verifier_query

  val preprocessing :
    ?prefix:string ->
    domain:PP.PC.Polynomial.Domain.t ->
    permutation:int array ->
    nb_wires:int ->
    unit ->
    PP.PC.Polynomial.Polynomial.t SMap.t

  val prover_query :
    ?prefix:string ->
    wires_name:string array ->
    generator:PP.PC.Scalar.t ->
    beta:PP.PC.Scalar.t ->
    gamma:PP.PC.Scalar.t ->
    evaluations:PP.Evaluations.t SMap.t ->
    n:int ->
    unit ->
    PP.prover_query

  val verifier_query :
    ?compute_sid:bool ->
    ?prefix:string ->
    wires_name:string array ->
    generator:PP.PC.Scalar.t ->
    beta:PP.PC.Scalar.t ->
    gamma:PP.PC.Scalar.t ->
    nb_wires:int ->
    unit ->
    PP.verifier_query

  val f_map_contribution :
    permutation:int array ->
    values:PP.PC.Scalar.t array ->
    indices:int array SMap.t ->
    blinds:PP.PC.Scalar.t array option ->
    beta:PP.PC.Scalar.t ->
    gamma:PP.PC.Scalar.t ->
    domain:PP.PC.Polynomial.Domain.t ->
    PP.PC.Polynomial.Polynomial.t SMap.t
end

module Permutation_gate (PP : Polynomial_protocol.Polynomial_protocol_sig) :
  Permutation_gate_sig with module PP = PP =
  Permutation_gate_impl (PP)
OCaml

Innovation. Community. Security.