Source file csir.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
module Scalar = struct
include Bls12_381.Fr
type scalar = t
let mone = negate one
let string_of_scalar x =
if eq x (of_string "-1") then "-1"
else if eq x (of_string "-2") then "-2"
else
let s = to_string x in
if String.length s > 3 then "h" ^ string_of_int (Z.hash (to_z x)) else s
let equal a b = Bytes.equal (to_bytes a) (to_bytes b)
let encoding =
Data_encoding.(conv to_bytes of_bytes_exn (Fixed.bytes size_in_bytes))
end
module Table : sig
type t
val empty : t
val size : t -> int
type entry = { a : Scalar.t; b : Scalar.t; c : Scalar.t }
type partial_entry = {
a : Scalar.t option;
b : Scalar.t option;
c : Scalar.t option;
}
val mem : entry -> t -> bool
val find : partial_entry -> t -> entry option
val to_list : t -> Scalar.t array list
val of_list : Scalar.t array list -> t
end = struct
type entry = { a : Scalar.t; b : Scalar.t; c : Scalar.t }
type partial_entry = {
a : Scalar.t option;
b : Scalar.t option;
c : Scalar.t option;
}
type t = Scalar.t array array
let empty = [||]
let size table = Array.length table.(0)
let find_entry_i : partial_entry -> t -> int -> entry option =
fun pe table i ->
let match_partial_entry o s =
Option.(value ~default:true @@ map (Scalar.eq s) o)
in
if
match_partial_entry pe.a table.(0).(i)
&& match_partial_entry pe.b table.(1).(i)
&& match_partial_entry pe.c table.(2).(i)
then Some { a = table.(0).(i); b = table.(1).(i); c = table.(2).(i) }
else None
let find pe table =
let sz = size table in
let rec aux i =
match i with
| 0 -> find_entry_i pe table 0
| _ ->
let o = find_entry_i pe table i in
if Option.is_some o then o else aux (i - 1)
in
aux (sz - 1)
let mem : entry -> t -> bool =
fun e table ->
match find { a = Some e.a; b = Some e.b; c = Some e.c } table with
| Some _ -> true
| None -> false
let to_list table =
Format.printf "\n%i %i\n" (Array.length table) (Array.length table.(0));
Array.to_list table
let of_list table = Array.of_list table
end
let table_or =
Table.of_list
Scalar.
[
[| zero; zero; one; one |];
[| zero; one; zero; one |];
[| zero; one; one; one |];
]
module Tables = Map.Make (String)
let table_registry = Tables.add "or" table_or Tables.empty
module CS = struct
let q_list ?q_table ~qc ~ql ~qr ~qo ~qlg ~qrg ~qog ~qm ~qx5 ~qecc_ws_add
~qecc_ed_add ~q_plookup () =
let base =
[
("qc", qc);
("ql", ql);
("qr", qr);
("qo", qo);
("qlg", qlg);
("qrg", qrg);
("qog", qog);
("qm", qm);
("qx5", qx5);
("qecc_ws_add", qecc_ws_add);
("qecc_ed_add", qecc_ed_add);
("q_plookup", q_plookup);
]
in
Option.(map (fun q -> ("q_table", q)) q_table |> to_list) @ base
type selector_tag = Linear | ThisConstr | NextConstr | WireA | WireB | WireC
let all_selectors =
q_list ~qc:[ ThisConstr ]
~ql:[ ThisConstr; Linear; WireA ]
~qr:[ ThisConstr; Linear; WireB ]
~qo:[ ThisConstr; Linear; WireC ]
~qlg:[ NextConstr; Linear; WireA ]
~qrg:[ NextConstr; Linear; WireB ]
~qog:[ NextConstr; Linear; WireC ]
~qm:[ ThisConstr; WireA; WireB ]
~qx5:[ ThisConstr; WireA ]
~qecc_ws_add:[ ThisConstr; NextConstr; WireA; WireB; WireC ]
~qecc_ed_add:[ ThisConstr; NextConstr; WireA; WireB; WireC ]
~q_plookup:[ ThisConstr; WireA; WireB; WireC ]
~q_table:[ ThisConstr; WireA; WireB; WireC ]
()
let selectors_with_tags tags =
List.filter
(fun (_, sel_tags) -> List.for_all (fun t -> List.mem t sel_tags) tags)
all_selectors
|> List.map fst
let this_constr_selectors = selectors_with_tags [ ThisConstr ]
let next_constr_selectors = selectors_with_tags [ NextConstr ]
let this_constr_linear_selectors = selectors_with_tags [ ThisConstr; Linear ]
let next_constr_linear_selectors = selectors_with_tags [ NextConstr; Linear ]
type raw_constraint = {
a : int;
b : int;
c : int;
sels : (string * Scalar.t) list;
label : string list;
}
type gate = raw_constraint array
type t = gate list
let selectors_encoding = Data_encoding.(list (tup2 string Scalar.encoding))
let raw_constraint_encoding : raw_constraint Data_encoding.t =
Data_encoding.(
conv
(fun { a; b; c; sels; label } -> (a, b, c, sels, label))
(fun (a, b, c, sels, label) -> { a; b; c; sels; label })
(obj5 (req "a" int31) (req "b" int31) (req "c" int31)
(req "sels" selectors_encoding)
(req "label" (list string))))
let gate_encoding = Data_encoding.array raw_constraint_encoding
let encoding = Data_encoding.list gate_encoding
let cs_pub_size_encoding = Data_encoding.(tup2 encoding int31)
let q_list ?q_table ~qc ~ql ~qr ~qo ~qlg ~qrg ~qog ~qm ~qx5 ~qecc_ws_add
~qecc_ed_add ~q_plookup () =
let base =
[
("qc", qc);
("ql", ql);
("qr", qr);
("qo", qo);
("qlg", qlg);
("qrg", qrg);
("qog", qog);
("qm", qm);
("qx5", qx5);
("qecc_ws_add", qecc_ws_add);
("qecc_ed_add", qecc_ed_add);
("q_plookup", q_plookup);
]
in
Option.(map (fun q -> ("q_table", q)) q_table |> to_list) @ base
let new_constraint ~a ~b ~c ?qc ?ql ?qr ?qo ?qlg ?qrg ?qog ?qm ?qx5
?qecc_ws_add ?qecc_ed_add ?q_plookup ?q_table ?(labels = []) label =
let sels =
List.filter_map
(fun (l, x) -> Option.bind x (fun c -> Some (l, c)))
(q_list ~qc ~ql ~qr ~qo ~qlg ~qrg ~qog ~qm ~qx5 ~qecc_ws_add
~qecc_ed_add ~q_plookup ~q_table ())
in
{ a; b; c; sels; label = label :: labels }
let get_sel sels s =
match List.find_opt (fun (x, _) -> s = x) sels with
| None -> Scalar.zero
| Some (_, c) -> c
let to_string_raw_constraint { a; b; c; label; sels } : string =
let selectors =
String.concat " "
(List.map (fun (s, c) -> s ^ ":" ^ Scalar.string_of_scalar c) sels)
in
Format.sprintf "a:%i b:%i c:%i %s %s" a b c selectors
(String.concat ";" label)
let to_string_gate g =
String.concat "\n" @@ Array.to_list @@ Array.map to_string_raw_constraint g
let to_string cs =
List.fold_left (fun acc con -> acc ^ to_string_gate con ^ "\n") "" cs
let is_linear_raw_constr constr =
let linear_selectors =
("qc" :: this_constr_linear_selectors) @ next_constr_linear_selectors
in
let is_linear_sel (s, _q) = List.mem s linear_selectors in
List.for_all is_linear_sel constr.sels
let used_selectors gate i =
let this_sels = gate.(i).sels in
let prev_sels = if i = 0 then [] else gate.(i - 1).sels in
List.filter (fun (s, _) -> List.mem s this_constr_selectors) this_sels
@ List.filter (fun (s, _) -> List.mem s next_constr_selectors) prev_sels
let wires_of_constr_i gate i =
let a_selectors = selectors_with_tags [ WireA ] in
let b_selectors = selectors_with_tags [ WireB ] in
let c_selectors = selectors_with_tags [ WireC ] in
let intersect names = List.exists (fun (s, _q) -> List.mem s names) in
let sels = used_selectors gate i in
List.map2
(fun wsels w -> if intersect wsels sels then w else -1)
[ a_selectors; b_selectors; c_selectors ]
[ gate.(i).a; gate.(i).b; gate.(i).c ]
let gate_wires gate =
List.init (Array.length gate) (wires_of_constr_i gate)
|> List.concat |> List.sort_uniq Int.compare
|> List.filter (fun x -> x >= 0)
let linear_terms constr =
if not @@ is_linear_raw_constr constr then
raise @@ Invalid_argument "constraint is non-linear"
else
List.map
(fun (sel_name, coeff) ->
match sel_name with
| "qc" -> (coeff, -1)
| "ql" -> (coeff, constr.a)
| "qr" -> (coeff, constr.b)
| "qo" -> (coeff, constr.c)
| _ -> assert false)
constr.sels
|> List.filter (fun (q, _) -> not @@ Scalar.is_zero q)
let mk_linear_constr (wires, sels) =
match wires with
| [ a; b; c ] -> { a; b; c; sels; label = [ "linear" ] }
| _ -> assert false
let raw_constraint_equal c1 c2 =
c1.a = c2.a && c1.b = c2.b && c1.c = c2.c && c1.label = c2.label
&& List.for_all2
(fun (name, coeff) (name', coeff') ->
name = name' && Scalar.eq coeff coeff')
c1.sels c2.sels
end