Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Page
Library
Module
Module type
Parameter
Class
Class type
Source
hacl.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
(* The MIT License (MIT) * * Copyright (c) 2019-2020 Nomadic Labs <contact@nomadic-labs.com> * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. *) open Hacl_star type secret type public module Rand = struct let write out = if Hacl.RandomBuffer.Noalloc.randombytes ~out then () else failwith "Error getting random bytes" let gen size = match Hacl.RandomBuffer.randombytes ~size with | Some buf -> buf | None -> failwith "Error getting random bytes" end module Hash = struct open Hacl_star.SharedDefs module type HASH_ALG = sig val alg : HashDefs.alg val size : int end module type DIRECT_HASH = sig val size : int val digest : Bytes.t -> Bytes.t end module type INCREMENTAL_HASH = sig type state val init : unit -> state val update : state -> Bytes.t -> unit val finish : state -> Bytes.t end module Make (S : HASH_ALG) = struct type state = EverCrypt.Hash.t let size = S.size let init () = EverCrypt.Hash.init ~alg:S.alg let update st msg = EverCrypt.Hash.update ~st ~msg let finish st = EverCrypt.Hash.finish ~st let digest msg = EverCrypt.Hash.hash ~alg:S.alg ~msg module HMAC = struct let digest ~key ~msg = EverCrypt.HMAC.mac ~alg:S.alg ~key ~msg end end module type S = sig include DIRECT_HASH include INCREMENTAL_HASH module HMAC : sig val digest : key:Bytes.t -> msg:Bytes.t -> Bytes.t end end module SHA256 = struct module H = Make (struct let alg = HashDefs.SHA2_256 let size = 32 end) include H end module SHA512 = struct module H = Make (struct let alg = HashDefs.SHA2_512 let size = 64 end) include H end module SHA3_256 = struct let size = 32 let digest = Hacl.SHA3_256.hash end module SHA3_512 = struct let size = 64 let digest = Hacl.SHA3_512.hash end module Keccak_256 = struct let size = 32 let digest msg = let keccak_256 = Hacl.Keccak.keccak ~rate:1088 ~capacity:512 ~suffix:1 in keccak_256 ~msg ~size end end module Blake2b = struct type t = Bytes.t type hash = Hash of Bytes.t let direct ?(key = Bytes.create 0) inbuf len = if len < 1 || len > 64 then invalid_arg "Blake2b.direct: size must be between 1 and 64" ; (* HACL* doesn't yet provide a multiplexing interface for Blake2b so we * perform this check here and use the faster version if possible *) if AutoConfig2.(has_feature VEC256) then Hash (Hacl.Blake2b_256.hash ~key inbuf len) else Hash (Hacl.Blake2b_32.hash ~key inbuf len) end module Nonce = struct type t = Bytes.t let size = 24 let gen () = Rand.gen size (* Attention to the endianess here. Ref Tezos_stdlib.TzEndian *) let rec incr_byte b step byteno = let res = Bytes.get_uint16_be b byteno + step in let lo = res land 0xffff in let hi = res asr 16 in Bytes.set_uint16_be b byteno lo ; if hi = 0 || byteno = 0 then () else incr_byte b hi (byteno - 2) let increment ?(step = 1) nonce = let new_nonce = Bytes.create 24 in Bytes.blit nonce 0 new_nonce 0 24 ; incr_byte new_nonce step 22 ; new_nonce let of_bytes buf = if Bytes.length buf <> size then None else Some buf let of_bytes_exn buf = match of_bytes buf with | Some s -> s | None -> invalid_arg "Hacl.Nonce.of_bytes_exn: invalid length" end module Secretbox = struct type key = Bytes.t let keybytes = 32 let tagbytes = 16 let unsafe_of_bytes buf = if Bytes.length buf <> keybytes then invalid_arg (Printf.sprintf "Secretbox.unsafe_of_bytes: buffer must be %d bytes long" keybytes) ; buf let blit_of_bytes buf pos = if Bytes.length buf < keybytes then invalid_arg (Printf.sprintf "Secretbox.blit_of_bytes: buffer must be at least %d bytes long" keybytes) ; let key = Bytes.make keybytes '\x00' in Bytes.blit buf pos key 0 keybytes ; key let genkey () = Rand.gen 32 let secretbox ~key ~nonce ~msg ~cmsg = if Hacl.NaCl.Noalloc.Easy.secretbox ~pt:msg ~n:nonce ~key ~ct:cmsg () then () else failwith "Secretbox encryption failed" let secretbox_open ~key ~nonce ~cmsg ~msg = Hacl.NaCl.Noalloc.Easy.secretbox_open ~ct:cmsg ~n:nonce ~key ~pt:msg () end module Box = struct type combined type _ key = | Sk : Bytes.t -> secret key | Pk : Bytes.t -> public key | Ck : Bytes.t -> combined key let skbytes = 32 let pkbytes = 32 let ckbytes = 32 let tagbytes = 16 let unsafe_to_bytes : type a. a key -> Bytes.t = function | Pk buf -> buf | Sk buf -> buf | Ck buf -> buf let blit_to_bytes : type a. a key -> ?pos:int -> Bytes.t -> unit = fun key ?(pos = 0) buf -> match key with | Pk pk -> Bytes.blit pk 0 buf pos pkbytes | Sk sk -> Bytes.blit sk 0 buf pos skbytes | Ck ck -> Bytes.blit ck 0 buf pos ckbytes let equal : type a. a key -> a key -> bool = fun a b -> (* TODO re-group once coverage ppx is updated *) match (a, b) with | Pk a, Pk b -> Bytes.equal a b | Sk a, Sk b -> Bytes.equal a b | Ck a, Ck b -> Bytes.equal a b let unsafe_sk_of_bytes buf = if Bytes.length buf <> skbytes then invalid_arg (Printf.sprintf "Box.unsafe_sk_of_bytes: buffer must be %d bytes long" skbytes) ; Sk buf let unsafe_pk_of_bytes buf = if Bytes.length buf <> pkbytes then invalid_arg (Printf.sprintf "Box.unsafe_pk_of_bytes: buffer must be %d bytes long" pkbytes) ; Pk buf let unsafe_ck_of_bytes buf = if Bytes.length buf <> ckbytes then invalid_arg (Printf.sprintf "Box.unsafe_ck_of_bytes: buffer must be %d bytes long" ckbytes) ; Ck buf let of_seed ?(pos = 0) buf = let buflen = Bytes.length buf in if pos < 0 || pos + skbytes > buflen then invalid_arg (Printf.sprintf "Box.of_seed: invalid pos (%d) or buffer size (%d)" pos buflen) ; let sk = Bytes.make skbytes '\x00' in Bytes.blit buf pos sk 0 skbytes ; Sk sk let basepoint = Bytes.init 32 (function 0 -> '\x09' | _ -> '\x00') let neuterize (Sk sk) = Pk (EverCrypt.Curve25519.scalarmult ~scalar:sk ~point:basepoint) let keypair () = let sk = Sk (Rand.gen skbytes) in (neuterize sk, sk) let dh (Pk pk) (Sk sk) = match Hacl.NaCl.box_beforenm ~pk ~sk with | Some ck -> Ck ck | None -> failwith "Error computing box_beforenm" let box ~k:(Ck k) ~nonce ~msg ~cmsg = if not @@ Hacl.NaCl.Noalloc.Easy.box_afternm ~pt:msg ~n:nonce ~ck:k ~ct:cmsg () then failwith "Box: encryption error" let box_open ~k:(Ck k) ~nonce ~cmsg ~msg = Hacl.NaCl.Noalloc.Easy.box_open_afternm ~ct:cmsg ~n:nonce ~ck:k ~pt:msg () let box_noalloc ~k:(Ck k) ~nonce ~tag ~buf = if not @@ Hacl.NaCl.Noalloc.Detached.box_afternm ~buf ~n:nonce ~ck:k ~tag () then failwith "Box: encryption error" let box_open_noalloc ~k:(Ck k) ~nonce ~tag ~buf = Hacl.NaCl.Noalloc.Detached.box_open_afternm ~buf ~n:nonce ~ck:k ~tag () end module type SIGNATURE = sig type _ key val size : int val pk_size : int val sk_size : int val compare : 'a key -> 'a key -> int val equal : 'a key -> 'a key -> bool val sk_of_bytes : Bytes.t -> secret key option val pk_of_bytes : Bytes.t -> public key option val pk_of_bytes_without_validation : Bytes.t -> public key option val neuterize : 'a key -> public key val keypair : unit -> public key * secret key val to_bytes : _ key -> Bytes.t val blit_to_bytes : _ key -> ?pos:int -> Bytes.t -> unit val sign : sk:secret key -> msg:Bytes.t -> Bytes.t val verify : pk:public key -> msg:Bytes.t -> signature:Bytes.t -> bool end module Ed25519 : SIGNATURE = struct type _ key = Sk : Bytes.t -> secret key | Pk : Bytes.t -> public key let size = 64 let pk_size = 32 let sk_size = 32 let to_bytes : type a. a key -> Bytes.t = function | Pk buf -> Bytes.copy buf | Sk buf -> Bytes.copy buf let sk_of_bytes seed = if Bytes.length seed <> sk_size then None else Some (Sk (Bytes.copy seed)) let pk_of_bytes pk = if Bytes.length pk <> pk_size then None else Some (Pk (Bytes.copy pk)) let pk_of_bytes_without_validation = pk_of_bytes let blit_to_bytes : type a. a key -> ?pos:int -> Bytes.t -> unit = fun key ?(pos = 0) buf -> match key with | Pk pk -> Bytes.blit pk 0 buf pos pk_size | Sk sk -> Bytes.blit sk 0 buf pos sk_size let compare : type a. a key -> a key -> int = fun a b -> (* TODO re-group once coverage ppx is updated *) match (a, b) with | Pk a, Pk b -> Bytes.compare a b | Sk a, Sk b -> Bytes.compare a b let equal : type a. a key -> a key -> bool = fun a b -> compare a b = 0 let neuterize : type a. a key -> public key = function | Pk pk -> Pk pk | Sk sk -> Pk (Hacl.Ed25519.secret_to_public ~sk) let keypair () = let sk = Sk (Rand.gen sk_size) in (neuterize sk, sk) let sign ~sk:(Sk sk) ~msg = Hacl.Ed25519.sign ~sk ~msg let verify ~pk:(Pk pk) ~msg ~signature = Hacl.Ed25519.verify ~pk ~msg ~signature end module P256 : SIGNATURE = struct type _ key = Sk : Bytes.t -> secret key | Pk : Bytes.t -> public key let size = 64 (* A public key is an elliptic curve point with 2 32-byte coordinates (x, y). * Internally we use 3 formats to represent public keys: * - "raw": 64 bytes, representing the concatenation of the 2 components * - "compressed": 33 bytes, in which the first component is replaced by a single * byte (either '\x02' or '\x03'). This is the default representation * used throughout the interface. * - "uncompressed": 65 bytes, same as "raw" but with one additional leading '\x04' byte, * which identifies it as an uncompressed public key. * We bind the HACL* functions which convert between these representations. * More details about how they work can be found in Section 2.3.3 of this document: * http://www.secg.org/sec1-v2.pdf *) let pk_size_raw = 64 let pk_size = (pk_size_raw / 2) + 1 let pk_size_uncompressed = pk_size_raw + 1 let sk_size = 32 (* A public key is generated from a secret key using the first step of the * Elliptic Curve Diffie-Hellman (ECDH) key agreement protocol, in which * sk is multiplied with the base point of the curve. *) let pk_of_sk sk = Hacl.P256.dh_initiator ~sk let valid_pk pk = Hacl.P256.valid_pk ~pk (* Generate a random sk_size buffer until it is valid to be used as * secret key, i.e. non-zero and smaller than the prime order. * This is also used to generate signing secrets. *) let rec get_valid_sk () = let sk = Rand.gen sk_size in if Hacl.P256.valid_sk ~sk then sk else get_valid_sk () let compare : type a. a key -> a key -> int = fun a b -> (* TODO re-group once coverage ppx is updated *) match (a, b) with | Pk a, Pk b -> Bytes.compare a b | Sk a, Sk b -> Bytes.compare a b let equal : type a. a key -> a key -> bool = fun a b -> compare a b = 0 let neuterize : type a. a key -> public key = function | Pk pk -> Pk pk | Sk sk -> ( match pk_of_sk sk with | Some pk -> Pk pk | None -> failwith "P256.neuterize: failure") (* This function accepts a buffer representing a public key in either the * compressed or the uncompressed form. *) let pk_of_bytes_without_validation : Bytes.t -> public key option = fun buf -> Option.map (fun pk -> Pk pk) (match Bytes.length buf with | len when len = pk_size -> Hacl.P256.compressed_to_raw buf | len when len = pk_size_uncompressed -> Hacl.P256.uncompressed_to_raw buf | _ -> None) let pk_of_bytes : Bytes.t -> public key option = fun buf -> Option.bind (pk_of_bytes_without_validation buf) (fun (Pk pk) -> if valid_pk pk then Some (Pk pk) else None) let sk_of_bytes : Bytes.t -> secret key option = fun buf -> if Bytes.length buf = sk_size && Hacl.P256.valid_sk ~sk:buf then Some (Sk (Bytes.copy buf)) else None let to_bytes_with_compression : type a. ?compress:bool -> a key -> Bytes.t = fun ?compress:(comp = true) -> function | Sk sk -> Bytes.copy sk | Pk pk -> if comp then Hacl.P256.raw_to_compressed pk else Hacl.P256.raw_to_uncompressed pk let to_bytes : type a. a key -> Bytes.t = fun key -> to_bytes_with_compression ~compress:true key let blit_to_bytes_with_compression : type a. ?compress:bool -> a key -> ?pos:int -> Bytes.t -> unit = fun ?compress:(comp = true) key ?(pos = 0) buf -> match key with | Sk sk -> let len = Bytes.length sk in Bytes.blit sk 0 buf pos len | Pk pk -> if pos = 0 then if comp then Hacl.P256.Noalloc.raw_to_compressed ~p:pk ~result:buf else Hacl.P256.Noalloc.raw_to_uncompressed ~p:pk ~result:buf else if comp then let out = Hacl.P256.raw_to_compressed pk in Bytes.blit out 0 buf pos pk_size else let out = Hacl.P256.raw_to_uncompressed pk in Bytes.blit out 0 buf pos pk_size_uncompressed let blit_to_bytes : type a. a key -> ?pos:int -> Bytes.t -> unit = fun key ?pos buf -> blit_to_bytes_with_compression ~compress:true key ?pos buf let keypair () : public key * secret key = let sk = get_valid_sk () in match pk_of_sk sk with | Some pk -> (Pk pk, Sk sk) | None -> failwith "P256.keypair: failure" let sign ~sk:(Sk sk) ~msg = (* A random non-zero signing secret k is generated which, similar to * secret keys, needs to be non-zero and smaller than the prime order. *) let k = get_valid_sk () in let res = Hacl.P256.sign ~sk ~msg ~k in Bytes.fill k 0 32 '\x00' ; match res with | Some signature -> signature | None -> failwith "P256.sign: signing failure" let verify ~pk:(Pk pk) ~msg ~signature = if Bytes.length signature <> size then false else Hacl.P256.verify ~pk ~msg ~signature end