Source file context.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
open Tezos_context_encoding.Context
module Env = Env
module type DB = Irmin.Generic_key.S with module Schema = Schema
module Kinded_hash = struct
let of_context_hash = function
| `Value h -> `Contents (Hash.of_context_hash h, ())
| `Node h -> `Node (Hash.of_context_hash h)
let to_context_hash = function
| `Contents (h, ()) -> `Value (Hash.to_context_hash h)
| `Node h -> `Node (Hash.to_context_hash h)
end
type proof_version_expanded = {is_stream : bool; is_binary : bool}
let stream_mask = 0b1
let binary_mask = 0b10
let decode_proof_version v =
let v mask = (v land mask <> 0, v land lnot mask) in
let is_stream, v = extract_bit v stream_mask in
let is_binary, v = extract_bit v binary_mask in
if v <> 0 then Error `Invalid_proof_version else Ok {is_stream; is_binary}
let encode_proof_version ~is_stream ~is_binary =
(if is_stream then stream_mask else 0)
lor if is_binary then binary_mask else 0
module Make_config (Conf : Conf) = struct
let equal_config = Tezos_context_sigs.Config.equal
let config _ =
Tezos_context_sigs.Config.v
~entries:Conf.entries
~stable_hash:Conf.stable_hash
~inode_child_order:Conf.inode_child_order
end
module Make_tree (Conf : Conf) (Store : DB) = struct
include Store.Tree
include Make_config (Conf)
let pp = Irmin.Type.pp Store.tree_t
let empty _ = Store.Tree.empty ()
let equal = Irmin.Type.(unstage (equal Store.tree_t))
let is_empty t = equal (Store.Tree.empty ()) t
let hash t = Hash.to_context_hash (Store.Tree.hash t)
let add t k v = Store.Tree.add t k v
let kind t =
match Store.Tree.destruct t with `Contents _ -> `Value | `Node _ -> `Tree
let to_value t =
let open Lwt_syntax in
match Store.Tree.destruct t with
| `Contents (c, _) ->
let+ v = Store.Tree.Contents.force_exn c in
Some v
| `Node _ -> Lwt.return_none
let of_value _ v = Store.Tree.add (Store.Tree.empty ()) [] v
let fold ?depth t k ~(order : [`Sorted | `Undefined]) ~init ~f =
let open Lwt_syntax in
let* o = find_tree t k in
match o with
| None -> Lwt.return init
| Some t ->
let order =
(order :> [`Random of Random.State.t | `Sorted | `Undefined])
in
Store.Tree.fold
?depth
~force:`True
~cache:false
~uniq:`False
~order
~tree:(fun k t acc ->
match kind t with
| `Value -> if k = [] then Lwt.return acc else f k t acc
| `Tree -> f k t acc)
t
init
type raw = [`Value of bytes | `Tree of raw String.Map.t]
type concrete = Store.Tree.concrete
let rec raw_of_concrete : type a. (raw -> a) -> concrete -> a =
fun k -> function
| `Tree l -> raw_of_node (fun l -> k (`Tree (String.Map.of_seq l))) l
| `Contents (v, _) -> k (`Value v)
and raw_of_node :
type a. ((string * raw) Seq.t -> a) -> (string * concrete) list -> a =
fun k -> function
| [] -> k Seq.empty
| (n, v) :: t ->
raw_of_concrete
(fun v -> raw_of_node (fun t -> k (fun () -> Seq.Cons ((n, v), t))) t)
v
let to_raw t =
let open Lwt_syntax in
let+ c = Store.Tree.to_concrete t in
raw_of_concrete (fun t -> t) c
let rec concrete_of_raw : type a. (concrete -> a) -> raw -> a =
fun k -> function
| `Tree l -> concrete_of_node (fun l -> k (`Tree l)) (String.Map.to_seq l)
| `Value v -> k (`Contents (v, ()))
and concrete_of_node :
type a. ((string * concrete) list -> a) -> (string * raw) Seq.t -> a =
fun k seq ->
match seq () with
| Nil -> k []
| Cons ((n, v), t) ->
concrete_of_raw
(fun v -> concrete_of_node (fun t -> k ((n, v) :: t)) t)
v
let of_raw = concrete_of_raw Store.Tree.of_concrete
let raw_encoding : raw Data_encoding.t =
let open Data_encoding in
mu "Tree.raw" (fun encoding ->
let map_encoding =
conv
String.Map.bindings
(fun bindings -> String.Map.of_seq (List.to_seq bindings))
(list (tup2 string encoding))
in
union
[
case
~title:"tree"
(Tag 0)
map_encoding
(function `Tree t -> Some t | `Value _ -> None)
(fun t -> `Tree t);
case
~title:"value"
(Tag 1)
bytes
(function `Value v -> Some v | `Tree _ -> None)
(fun v -> `Value v);
])
(** [unshallow t] is the tree equivalent to [t] but with all subtrees evaluated,
i.e. without "reference" nodes.
This is done by calling `of_raw . to_raw`, which is *not* the identity function.
TODO: find a more efficient way to do the same, maybe with `fold` *)
let unshallow t =
let open Lwt_syntax in
let* r = to_raw t in
return (of_raw r)
type repo = Store.repo
let make_repo =
let prng_state = lazy (Random.State.make_self_init ()) in
let random_store_name () =
let prng_state = Lazy.force prng_state in
String.init 64 (fun _ -> Char.chr (Random.State.int prng_state 256))
in
fun () -> Store.Repo.v @@ Irmin_pack.config @@ random_store_name ()
let kinded_key t =
match Store.Tree.key t with
| (None | Some (`Node _)) as r -> r
| Some (`Contents (v, ())) -> Some (`Value v)
let is_shallow tree =
match Store.Tree.inspect tree with
| `Node `Key -> true
| `Node (`Map | `Value | `Portable_dirty | `Pruned) | `Contents -> false
let list tree ?offset ?length key =
Store.Tree.list ~cache:true tree ?offset ?length key
let length tree key = Store.Tree.length ~cache:true tree key
exception Context_dangling_hash of string
let find_tree tree key =
Lwt.catch
(fun () -> Store.Tree.find_tree tree key)
(function
| Store.Backend.Node.Val.Dangling_hash {context; hash}
| Store.Tree.Dangling_hash {context; hash} ->
let str =
Fmt.str
"%s encountered dangling hash %a"
context
(Irmin.Type.pp Hash.t)
hash
in
raise (Context_dangling_hash str)
| exn -> raise exn)
let add_tree tree key value =
Lwt.catch
(fun () -> Store.Tree.add_tree tree key value)
(function
| Store.Backend.Node.Val.Dangling_hash {context; hash}
| Store.Tree.Dangling_hash {context; hash} ->
let str =
Fmt.str
"%s encountered dangling hash %a"
context
(Irmin.Type.pp Hash.t)
hash
in
raise (Context_dangling_hash str)
| exn -> raise exn)
end
module Proof_encoding = Tezos_context_merkle_proof_encoding
module Make_proof
(Store : DB)
(Store_conf : Tezos_context_encoding.Context.Conf) =
struct
module DB_proof = Store.Tree.Proof
module Proof = struct
include Tezos_context_sigs.Context.Proof_types
module State = struct
let rec to_inode : type a b. (a -> b) -> a DB_proof.inode -> b inode =
fun f {length; proofs} ->
{length; proofs = List.map (fun (k, v) -> (k, f v)) proofs}
and to_tree : DB_proof.tree -> tree = function
| Contents (c, ()) -> Value c
| Blinded_contents (h, ()) -> Blinded_value (Hash.to_context_hash h)
| Node l -> Node (List.map (fun (k, v) -> (k, to_tree v)) l)
| Blinded_node h -> Blinded_node (Hash.to_context_hash h)
| Inode i -> Inode (to_inode to_inode_tree i)
| Extender e -> Extender (to_inode_extender to_inode_tree e)
and to_inode_extender :
type a b. (a -> b) -> a DB_proof.inode_extender -> b inode_extender =
fun f {length; segments = segment; proof} ->
{length; segment; proof = f proof}
and to_inode_tree : DB_proof.inode_tree -> inode_tree = function
| Blinded_inode h -> Blinded_inode (Hash.to_context_hash h)
| Inode_values l ->
Inode_values (List.map (fun (k, v) -> (k, to_tree v)) l)
| Inode_tree i -> Inode_tree (to_inode to_inode_tree i)
| Inode_extender e -> Inode_extender (to_inode_extender to_inode_tree e)
let rec of_inode : type a b. (a -> b) -> a inode -> b DB_proof.inode =
fun f {length; proofs} ->
{length; proofs = List.map (fun (k, v) -> (k, f v)) proofs}
and of_tree : tree -> DB_proof.tree = function
| Value c -> Contents (c, ())
| Blinded_value h -> Blinded_contents (Hash.of_context_hash h, ())
| Node l -> Node (List.map (fun (k, v) -> (k, of_tree v)) l)
| Blinded_node h -> Blinded_node (Hash.of_context_hash h)
| Inode i -> Inode (of_inode of_inode_tree i)
| Extender e -> Extender (of_inode_extender of_inode_tree e)
and of_inode_extender :
type a b. (a -> b) -> a inode_extender -> b DB_proof.inode_extender =
fun f {length; segment = segments; proof} ->
{length; segments; proof = f proof}
and of_inode_tree : inode_tree -> DB_proof.inode_tree = function
| Blinded_inode h -> Blinded_inode (Hash.of_context_hash h)
| Inode_values l ->
Inode_values (List.map (fun (k, v) -> (k, of_tree v)) l)
| Inode_tree i -> Inode_tree (of_inode of_inode_tree i)
| Inode_extender e -> Inode_extender (of_inode_extender of_inode_tree e)
let of_stream_elt : Stream.elt -> DB_proof.elt = function
| Value c -> Contents c
| Node l ->
Node (List.map (fun (k, v) -> (k, Kinded_hash.of_context_hash v)) l)
| Inode i -> Inode (of_inode Hash.of_context_hash i)
| Inode_extender e ->
Inode_extender (of_inode_extender Hash.of_context_hash e)
let of_stream : stream -> DB_proof.stream = Seq.map of_stream_elt
let to_stream_elt : DB_proof.elt -> Stream.elt = function
| Contents c -> Value c
| Node l ->
Node (List.map (fun (k, v) -> (k, Kinded_hash.to_context_hash v)) l)
| Inode i -> Inode (to_inode Hash.to_context_hash i)
| Inode_extender e ->
Inode_extender (to_inode_extender Hash.to_context_hash e)
let to_stream : DB_proof.stream -> stream = Seq.map to_stream_elt
end
let is_binary =
if Store_conf.entries = 2 then true
else if Store_conf.entries = 32 then false
else assert false
let of_proof ~is_stream f p =
let before = Kinded_hash.to_context_hash (DB_proof.before p) in
let after = Kinded_hash.to_context_hash (DB_proof.after p) in
let state = f (DB_proof.state p) in
let version = encode_proof_version ~is_stream ~is_binary in
{version; before; after; state}
let to_proof f p =
let before = Kinded_hash.of_context_hash p.before in
let after = Kinded_hash.of_context_hash p.after in
let state = f p.state in
DB_proof.v ~before ~after state
let to_tree = of_proof ~is_stream:false State.to_tree
let of_tree = to_proof State.of_tree
let to_stream = of_proof ~is_stream:true State.to_stream
let of_stream = to_proof State.of_stream
end
let produce_tree_proof repo key f =
let open Lwt_syntax in
let key =
match key with `Node n -> `Node n | `Value v -> `Contents (v, ())
in
let+ p, r = Store.Tree.produce_proof repo key f in
(Proof.to_tree p, r)
let verify_tree_proof proof f =
let proof = Proof.of_tree proof in
Store.Tree.verify_proof proof f
let produce_stream_proof repo key f =
let open Lwt_syntax in
let key =
match key with `Node n -> `Node n | `Value v -> `Contents (v, ())
in
let+ p, r = Store.Tree.produce_stream repo key f in
(Proof.to_stream p, r)
let verify_stream_proof proof f =
let proof = Proof.of_stream proof in
Store.Tree.verify_stream proof f
end
type error += Unsupported_context_hash_version of Context_hash.Version.t
let () =
register_error_kind
`Permanent
~id:"context_hash.unsupported_version"
~title:"Unsupported context hash version"
~description:"Unsupported context hash version."
~pp:(fun ppf version ->
Format.fprintf
ppf
"@[Context hash version %a is not supported.@,\
You might need to update the shell.@]"
Context_hash.Version.pp
version)
Data_encoding.(obj1 (req "version" Context_hash.Version.encoding))
(function
| Unsupported_context_hash_version version -> Some version | _ -> None)
(fun version -> Unsupported_context_hash_version version)