Source file ast.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
open Costlang
module type S = sig
type size
val size_ty : size Ty.t
type unop = Log2 | Sqrt
type binop_size = Add | Sat_sub | Mul | Div | Max | Min
type binop_bool = Eq | Lt
type _ t =
| Size : Num.t -> size t
| Bool : bool -> bool t
| Unop : unop * size t -> size t
| Binop_size : binop_size * size t * size t -> size t
| Binop_bool : binop_bool * size t * size t -> bool t
| Shift : [`Left | `Right] * size t * int -> size t
| Free : Free_variable.t -> size t
| Lam : string * 'a Ty.t * 'b t -> ('a -> 'b) t
| App : ('a -> 'b) t * 'a t -> 'b t
| Let : string * 'a t * 'b t -> 'b t
| If : bool t * size t * size t -> size t
| Variable : string * 'a Ty.t -> 'a t
val term_size : 'a. 'a t -> int
val type_of : 'a t -> 'a Ty.t
val pp : Format.formatter -> _ t -> unit
(** To OCaml parsetree *)
val to_expression : _ t -> Parsetree.expression
(** Existentials *)
type packed
val pack : 'a t -> packed
val unpack : 'a Ty.t -> packed -> 'a t option
(** Optimizations *)
val at_least_10 : 'a t -> 'a t
val subst_let : 'a t -> 'a t
val optimize_affine : 'a t -> 'a t
val cse : 'a t -> 'a t
end
module Make (A : sig
type size
val size_ty : size Ty.t
end) =
struct
include A
type unop = Log2 | Sqrt
type binop_size = Add | Sat_sub | Mul | Div | Max | Min
type binop_bool = Eq | Lt
type _ t =
| Size : Num.t -> size t
| Bool : bool -> bool t
| Unop : unop * size t -> size t
| Binop_size : binop_size * size t * size t -> size t
| Binop_bool : binop_bool * size t * size t -> bool t
| Shift : [`Left | `Right] * size t * int -> size t
| Free : Free_variable.t -> size t
| Lam : string * 'a Ty.t * 'b t -> ('a -> 'b) t
| App : ('a -> 'b) t * 'a t -> 'b t
| Let : string * 'a t * 'b t -> 'b t
| If : bool t * size t * size t -> size t
| Variable : string * 'a Ty.t -> 'a t
type 'a ast = 'a t
let rec type_of : type a. a t -> a Ty.t = function
| Size _ -> A.size_ty
| Bool _ -> Ty.Bool
| Unop _ -> A.size_ty
| Shift _ -> A.size_ty
| Binop_size _ -> A.size_ty
| Binop_bool _ -> Ty.Bool
| Free _ -> A.size_ty
| Lam (_name, ty, b) -> Ty.Arrow (ty, type_of b)
| Let (_v, _m, t) -> type_of t
| App (f, _t) -> ( match type_of f with Ty.Arrow (_tf, tr) -> tr)
| Variable (_, ty) -> ty
| If (_, t, _) -> type_of t
let rec term_size : type a. a t -> int = function
| Size _ -> 1
| Bool _ -> 1
| Unop (_, t) -> term_size t + 1
| Binop_size (_, t1, t2) -> term_size t1 + term_size t2 + 1
| Binop_bool (_, t1, t2) -> term_size t1 + term_size t2 + 1
| Shift (_, t, _) -> term_size t + 1
| Free _ -> 1
| Lam (_, _, t) -> term_size t + 1
| App (t1, t2) -> term_size t1 + term_size t2 + 1
| Let (_, t1, t2) -> term_size t1 + term_size t2 + 1
| If (t1, t2, t3) -> term_size t1 + term_size t2 + term_size t3 + 1
| Variable _ -> 1
module Parsetree = struct
open Ast_helper
let loc txt = {Asttypes.txt; loc = Location.none}
let loc_ident x = {Asttypes.txt = Longident.Lident x; loc = Location.none}
let loc_str (x : string) = {Asttypes.txt = x; loc = Location.none}
let ident x = Exp.ident (loc_ident x)
let pvar x = Pat.var (loc_str x)
let saturated name = ["S"; name]
let call f args =
let f = WithExceptions.Option.get ~loc:__LOC__ @@ Longident.unflatten f in
let args = List.map (fun x -> (Asttypes.Nolabel, x)) args in
Exp.(apply (ident (loc f)) args)
let string_of_fv fv = Format.asprintf "%a" Free_variable.pp fv
let rec to_expression : type a. a t -> Parsetree.expression = function
| Bool true -> Exp.construct (loc_ident "true") None
| Bool false -> Exp.construct (loc_ident "false") None
| Size (Int i) -> call (saturated "safe_int") [Exp.constant (Const.int i)]
| Size (Float f) ->
call
(saturated "safe_int")
[
call
["int_of_float"]
[Exp.constant @@ Const.float (string_of_float f)];
]
| Binop_size (Add, t1, t2) ->
call ["+"] [to_expression t1; to_expression t2]
| Binop_size (Sat_sub, t1, t2) ->
call (saturated "sub") [to_expression t1; to_expression t2]
| Binop_size (Mul, t1, t2) ->
call ["*"] [to_expression t1; to_expression t2]
| Binop_size (Div, t1, t2) ->
call ["/"] [to_expression t1; to_expression t2]
| Binop_size (Max, t1, t2) ->
call (saturated "max") [to_expression t1; to_expression t2]
| Binop_size (Min, t1, t2) ->
call (saturated "min") [to_expression t1; to_expression t2]
| Unop (Log2, t) -> call ["log2"] [to_expression t]
| Unop (Sqrt, t) -> call ["sqrt"] [to_expression t]
| Free name -> Exp.ident (loc_ident (string_of_fv name))
| Binop_bool (Lt, t1, t2) ->
call ["<"] [to_expression t1; to_expression t2]
| Binop_bool (Eq, t1, t2) ->
call ["="] [to_expression t1; to_expression t2]
| Shift (`Left, t, bits) ->
call ["lsl"] [to_expression t; Exp.constant (Const.int bits)]
| Shift (`Right, t, bits) ->
call ["lsr"] [to_expression t; Exp.constant (Const.int bits)]
| Lam (name, _ty, b) ->
let patt = pvar name in
Exp.fun_ Nolabel None patt (to_expression b)
| App (f, t) -> Exp.apply (to_expression f) [(Nolabel, to_expression t)]
| Let (name, m, b) ->
let var = pvar name in
let m = to_expression m in
let b = to_expression b in
Exp.let_ Nonrecursive [Vb.mk var m] b
| If (c, t, f) ->
Exp.ifthenelse
(to_expression c)
(to_expression t)
(Some (to_expression f))
| Variable (name, _ty) -> ident name
end
let to_expression = Parsetree.to_expression
let pp ppf t = Pprintast.expression ppf @@ Parsetree.to_expression t
type packed = Packed : 'a Ty.t * 'a t -> packed
let pack t = Packed (type_of t, t)
let unpack : type a. a Ty.t -> packed -> a t option =
fun ty (Packed (ty', t)) ->
match Ty.equal ty ty' with None -> None | Some Refl -> Some t
let apply_to_size =
let rec g : type a. (size t -> size t) -> a t -> a t =
fun f t ->
match t with
| Lam (name, ty, t) -> Lam (name, ty, g f t)
| Free _ -> f t
| Unop _ -> f t
| Shift _ -> f t
| Size _ -> f t
| Binop_size _ -> f t
| If (_, _, _) | Let (_, _, _) | App _ | Variable _ -> (
match Ty.equal (type_of t) A.size_ty with
| None -> t
| Some Refl -> f t)
| Binop_bool _ -> t
| Bool _ -> t
in
g
let at_least_10 t =
let rec f = function
| Let (v, m, t) -> Let (v, m, f t)
| t -> Binop_size (Max, Size (Int 10), t)
in
apply_to_size f t
let subst_let t =
let rec f : type a. (string * packed) list -> a t -> a t =
fun env t ->
match t with
| Variable (name, ty) -> (
match List.assoc ~equal:String.equal name env with
| None -> t
| Some entry -> (
match unpack ty entry with None -> assert false | Some t -> t))
| Let (name, m, t) ->
let m = f env m in
f ((name, pack m) :: env) t
| Unop (op, t) -> Unop (op, f env t)
| Binop_size (op, t1, t2) -> Binop_size (op, f env t1, f env t2)
| Binop_bool (op, t1, t2) -> Binop_bool (op, f env t1, f env t2)
| Shift (dir, t, n) -> Shift (dir, f env t, n)
| Lam (name, ty, body) ->
if List.mem_assoc ~equal:String.equal name env then
Stdlib.failwith
(Printf.sprintf "Ast.subst_let: name collision: %s" name)
else Lam (name, ty, f env body)
| App (t1, t2) -> App (f env t1, f env t2)
| If (c, t, e) -> If (f env c, f env t, f env e)
| Size _ | Bool _ | Free _ -> t
in
f [] t
let rec combine_ts id op = function
| [] -> id
| [t] -> t
| t1 :: t2 :: ts -> combine_ts id op (Binop_size (op, t1, t2) :: ts)
module Affine = struct
module Component : sig
type t = private Comp of size ast option * Num.t
val comp : size ast option * Num.t -> t
val pp : Format.formatter -> t -> unit
val mul : t -> Num.t -> t
val to_ast : t -> size ast
end = struct
type t = Comp of size ast option * Num.t
let comp (e, n) =
match e with
| None -> Comp (None, n)
| Some e -> (
match (e, n) with
| Binop_size (Add, _, _), _ -> assert false
| Size _, _ -> assert false
| _, (Int 0 | Float 0.0) -> Comp (None, Int 0)
| _ -> Comp (Some e, n))
let pp ppf (Comp (e, n)) =
match e with
| None -> Num.pp ppf n
| Some e -> Format.fprintf ppf "%a * %a" pp e Num.pp n
let mul (Comp (e, n)) = function
| Num.Int 0 | Float 0.0 ->
comp (None, Num.Int 0)
| m -> comp (e, Num.mul m n)
let to_ast = function
| Comp (None, n) -> Size n
| Comp (Some t, (Int 1 | Float 1.0)) -> t
| Comp (Some _, (Int 0 | Float 0.0)) -> Size (Int 0)
| Comp (Some t, size) -> Binop_size (Mul, t, Size size)
end
open Component
let t =
let rec t =
match t with
| Size n -> (n, [])
| Binop_size (Mul, t1, t2) ->
let n1, mults1 = extract_mults t1 in
let n2, mults2 = extract_mults t2 in
(Num.mul n1 n2, mults1 @ mults2)
| _ -> (Int 1, [t])
in
let n, mults = extract_mults t in
(n, List.sort Stdlib.compare mults)
module T : sig
type t = private Component.t list
val to_ast : t -> size ast
val of_ast : size ast -> t
val concat : t -> t -> t
val compare : t -> t -> [> `GT | `LE | `Unknown]
end = struct
type t = Component.t list
let _pp ppf comps =
let open Format in
pp_print_list
~pp_sep:(fun ppf () -> fprintf ppf "@ + ")
Component.pp
ppf
comps
let normalize comps =
let open List in
let keys =
let compare k1 k2 =
match (k1, k2) with
| None, None -> 0
| None, Some _ -> 1
| Some _, None -> -1
| Some t1, Some t2 -> Stdlib.compare t1 t2
in
sort_uniq compare @@ map (fun (Comp (k, _)) -> k) comps
in
filter_map
(fun key ->
let weight =
fold_left Num.add (Int 0)
@@ map (fun (Comp (_k, v)) -> v)
@@ find_all (fun (Comp (key', _)) -> key = key') comps
in
match weight with
| Int 0 | Float 0.0 -> None
| _ -> Some (comp (key, weight)))
keys
let mul_scalar comps m =
match m with
| Num.Int 0 | Float 0.0 -> []
| _ -> List.map (fun comp -> Component.mul comp m) comps
let to_ast comps =
combine_ts (Size (Int 0)) Add
@@ List.map Component.to_ast @@ normalize comps
let one t = [comp (Some t, Num.Int 1)]
let rec of_ast ast : t =
match ast with
| Size (Int i) -> [comp (None, Int i)]
| Size (Float f) -> [comp (None, Float f)]
| Binop_size (Add, t1, t2) -> of_ast t1 @ of_ast t2
| Binop_size (Mul, _, _) -> (
let m, ts = extract_mults ast in
match ts with
| [] -> [comp (None, m)]
| [t] ->
let comps = of_ast t in
mul_scalar comps m
| _ -> [comp (Some (combine_ts (Size (Int 1)) Mul ts), m)])
| _ -> one ast
let of_ast ast = normalize @@ of_ast ast
let compare t1 t2 =
if
List.for_all
(fun (Comp (k1, w1)) ->
match
List.find_map
(fun (Comp (k, v)) -> if k = k1 then Some v else None)
t2
with
| None -> false
| Some w2 -> Num.compare w1 w2 <= 0)
t1
then `LE
else if
List.for_all
(fun (Comp (k2, w2)) ->
match
List.find_map
(fun (Comp (k, v)) -> if k = k2 then Some v else None)
t1
with
| None -> false
| Some w1 -> Num.compare w1 w2 >= 0)
t2
then `GT
else `Unknown
let concat t1 t2 = normalize (t1 @ t2)
end
include T
end
let rec t =
match t with
| Binop_size (Max, t1, t2) ->
let maxes1 = extract_maxes t1 in
let maxes2 = extract_maxes t2 in
maxes1 @ maxes2
| _ -> [t]
let optimize_affine =
let rec f : type a. a t -> a t =
fun t ->
match t with
| Binop_size (Add, t1, t2) ->
let t1 = f t1 in
let t2 = f t2 in
Affine.(to_ast (concat (of_ast t1) (of_ast t2)))
| Binop_size (Mul, t1, t2) ->
let t1 = f t1 in
let t2 = f t2 in
Affine.(to_ast @@ of_ast @@ Binop_size (Mul, t1, t2))
| Binop_size (Max, _, _) ->
let maxes = extract_maxes t in
let maxes = List.map f maxes in
let maxes = List.map Affine.of_ast maxes in
let maxes =
let rec f acc = function
| [] -> List.rev acc
| m :: ms ->
if
List.exists
(fun m' ->
match Affine.compare m m' with
| `LE -> true
| `GT | `Unknown -> false)
(acc @ ms)
then f acc ms
else f (m :: acc) ms
in
f [] maxes
in
let maxes = List.map Affine.to_ast maxes in
combine_ts (Size (Int 0)) Max maxes
| Variable _ | Size _ | Free _ | Bool _ -> t
| Lam (v, ty, t) -> Lam (v, ty, f t)
| Unop (op, t) -> Unop (op, f t)
| Shift (dir, t, n) -> Shift (dir, f t, n)
| If (c, t, e) -> If (f c, f t, f e)
| Let (n, t1, t2) -> Let (n, f t1, f t2)
| App (t1, t2) -> App (f t1, f t2)
| Binop_size (Sat_sub, t1, t2) -> Binop_size (Sat_sub, f t1, f t2)
| Binop_size (Div, t1, t2) -> Binop_size (Div, f t1, f t2)
| Binop_size (Min, t1, t2) -> Binop_size (Min, f t1, f t2)
| Binop_bool (op, t1, t2) -> Binop_bool (op, f t1, f t2)
in
f
module PackMap = Map.Make (struct
type t = packed
let compare = Stdlib.compare
end)
module CSE = struct
let count t =
let add : type a. a t -> int PackMap.t -> int PackMap.t =
fun t map ->
let k = pack t in
let n = Option.value ~default:0 @@ PackMap.find k map in
PackMap.add k (n + 1) map
in
let rec f : type a. a t -> int PackMap.t -> int PackMap.t =
fun t map ->
match t with
| Free _ | Variable _ | Size _ | Bool _ -> map
| Unop (_, t') ->
let map = f t' map in
add t map
| Shift (_, t', _) ->
let map = f t' map in
add t map
| Binop_size (_op, t1, t2) ->
let map = f t1 map in
let map = f t2 map in
add t map
| Binop_bool (_op, t1, t2) ->
let map = f t1 map in
let map = f t2 map in
add t map
| If (c, t1, t2) ->
let map = f c map in
let map = f t1 map in
let map = f t2 map in
add t map
| Let (_, t1, t2) ->
let map = f t1 map in
let map = f t2 map in
add t map
| App (t1, t2) ->
let map = f t1 map in
let map = f t2 map in
add t map
| Lam (_, _, t') ->
let map = f t' map in
add t map
in
f t PackMap.empty
let build_replace_map t =
let count_map = count t in
let cntr = ref 0 in
PackMap.filter_map
(fun _entry -> function
| 1 -> None
| _ ->
incr cntr ;
let name = Printf.sprintf "w%d" !cntr in
Some name)
count_map
let rec replace : type a. a t -> string PackMap.t -> a t * String.Set.t =
fun t map ->
let ( ++ ) = String.Set.union in
match PackMap.find (pack t) map with
| Some name -> (Variable (name, type_of t), String.Set.singleton name)
| None -> (
match t with
| Free _ | Variable _ | Size _ | Bool _ -> (t, String.Set.empty)
| Unop (op, t') ->
let t', s = replace t' map in
(Unop (op, t'), s)
| Shift (dir, t', n) ->
let t', s = replace t' map in
(Shift (dir, t', n), s)
| Binop_size (op, t1, t2) ->
let t1, s1 = replace t1 map in
let t2, s2 = replace t2 map in
(Binop_size (op, t1, t2), s1 ++ s2)
| Binop_bool (op, t1, t2) ->
let t1, s1 = replace t1 map in
let t2, s2 = replace t2 map in
(Binop_bool (op, t1, t2), s1 ++ s2)
| If (t1, t2, t3) ->
let t1, s1 = replace t1 map in
let t2, s2 = replace t2 map in
let t3, s3 = replace t3 map in
(If (t1, t2, t3), s1 ++ s2 ++ s3)
| Let (v, t1, t2) ->
let t1, s1 = replace t1 map in
let t2, s2 = replace t2 map in
(Let (v, t1, t2), s1 ++ s2)
| App (t1, t2) ->
let t1, s1 = replace t1 map in
let t2, s2 = replace t2 map in
(App (t1, t2), s1 ++ s2)
| Lam (v, ty, t') ->
let t', s = replace t' map in
(Lam (v, ty, t'), s))
let rec count_var : type a. string -> a t -> int =
fun v t ->
match t with
| Variable (v', _) when v = v' -> 1
| Variable _ | Free _ | Size _ | Bool _ -> 0
| Unop (_, t') -> count_var v t'
| Shift (_, t', _) -> count_var v t'
| Lam (_, _, t') -> count_var v t'
| Binop_size (_, t1, t2) -> count_var v t1 + count_var v t2
| Binop_bool (_, t1, t2) -> count_var v t1 + count_var v t2
| Let (_, t1, t2) -> count_var v t1 + count_var v t2
| App (t1, t2) -> count_var v t1 + count_var v t2
| If (t1, t2, t3) -> count_var v t1 + count_var v t2 + count_var v t3
let expand_one_time_let t =
let rec f : type a. packed String.Map.t -> a t -> a t =
fun env t ->
match t with
| Variable (v, ty) -> (
match String.Map.find v env with
| Some e -> (
match unpack ty e with
| None -> assert false
| Some t -> f env t)
| None -> t)
| Free _ | Size _ | Bool _ -> t
| Unop (op, t') ->
let t' = f env t' in
Unop (op, t')
| Shift (dir, t', n) ->
let t' = f env t' in
Shift (dir, t', n)
| Binop_size (op, t1, t2) ->
let t1 = f env t1 in
let t2 = f env t2 in
Binop_size (op, t1, t2)
| Binop_bool (op, t1, t2) ->
let t1 = f env t1 in
let t2 = f env t2 in
Binop_bool (op, t1, t2)
| If (t1, t2, t3) ->
let t1 = f env t1 in
let t2 = f env t2 in
let t3 = f env t3 in
If (t1, t2, t3)
| Let (v, t1, t2) -> (
let t1 = f env t1 in
match count_var v t2 with
| 0 -> f env t2
| 1 ->
let env = String.Map.add v (pack t1) env in
f env t2
| _ -> Let (v, t1, f env t2))
| App (t1, t2) ->
let t1 = f env t1 in
let t2 = f env t2 in
App (t1, t2)
| Lam (v, ty, t') ->
let t' = f env t' in
Lam (v, ty, t')
in
f String.Map.empty t
let cse : type a. a t -> a t =
fun t ->
let _ty = type_of t in
let replace_map = build_replace_map t in
let vs = List.of_seq @@ PackMap.to_seq replace_map in
let vs =
List.sort
(fun (Packed (_, t1), _) (Packed (_, t2), _) ->
compare (term_size t1) (term_size t2))
vs
in
expand_one_time_let
@@ List.fold_right
(fun (packed, name) acc ->
match packed with
| Packed (_ty, t) ->
let replace_map' = PackMap.remove packed replace_map in
Let (name, fst @@ replace t replace_map', acc))
vs
(fst @@ replace t replace_map)
let cse t = apply_to_size cse t
end
let cse = CSE.cse
end
module Ast = Make (struct
type size = Num.t
let size_ty = Ty.num
end)
module To_ast (Ast : S) :
Costlang.S with type 'a repr = 'a Ast.t and type size = Ast.size = struct
type size = Ast.size
let size_ty = Ast.size_ty
type 'a repr = 'a Ast.t
open Ast
let false_ = Bool false
let true_ = Bool true
let float f = Size (Float f)
let int i = Size (Int i)
let ( + ) x y = Binop_size (Add, x, y)
let ( * ) x y = Binop_size (Mul, x, y)
let sat_sub x y = Binop_size (Sat_sub, x, y)
let ( / ) x y = Binop_size (Div, x, y)
let max x y = Binop_size (Max, x, y)
let min x y = Binop_size (Min, x, y)
let shift_left x s = Shift (`Left, x, s)
let shift_right x s = Shift (`Right, x, s)
let log2 x = Unop (Log2, x)
let sqrt x = Unop (Sqrt, x)
let free ~name = Free name
let lt x y = Binop_bool (Lt, x, y)
let eq x y = Binop_bool (Eq, x, y)
let lam' ~name ty (f : 'a repr -> 'b repr) =
Lam (name, ty, f (Variable (name, ty)))
let lam ~name = lam' ~name size_ty
let app f arg = App (f, arg)
let let_ ~name (type a) (m : a repr) (f : a repr -> 'b repr) : 'b repr =
let var = Variable (name, type_of m) in
Let (name, m, f var)
let if_ cond ift iff = If (cond, ift, iff)
end
module Transform (F : functor (Ast : S) -> sig
val transform : 'a Ast.t -> 'a Ast.t
end) : Costlang.Transform =
functor
(X : Costlang.S)
->
struct
module Ast = Make (struct
type size = X.size
let size_ty = X.size_ty
end)
include To_ast (Ast)
module T = F (Ast)
type 'a repr = 'a Ast.t
type x_repr_ex = X_repr_ex : 'a Ty.t * 'a X.repr -> x_repr_ex
let rec prj' : type a. (string * x_repr_ex) list -> a repr -> a X.repr =
fun env t ->
match t with
| Variable (name, ty) -> (
match List.assoc ~equal:String.equal name env with
| None -> assert false
| Some (X_repr_ex (ty', xa)) -> (
match Ty.equal ty ty' with
| None -> assert false
| Some Refl -> xa))
| Lam (name, ty, b) ->
X.lam' ~name ty (fun xa ->
let env = (name, X_repr_ex (ty, xa)) :: env in
prj' env b)
| Let (name, m, t) ->
X.let_ ~name (prj' env m) (fun xa ->
let env = (name, X_repr_ex (Ast.type_of m, xa)) :: env in
prj' env t)
| Size (Int i) -> X.int i
| Size (Float f) -> X.float f
| Bool true -> X.true_
| Bool false -> X.false_
| Unop (Log2, t) -> X.log2 (prj' env t)
| Unop (Sqrt, t) -> X.sqrt (prj' env t)
| Binop_size (Add, t1, t2) -> X.( + ) (prj' env t1) (prj' env t2)
| Binop_size (Sat_sub, t1, t2) -> X.sat_sub (prj' env t1) (prj' env t2)
| Binop_size (Mul, t1, t2) -> X.( * ) (prj' env t1) (prj' env t2)
| Binop_size (Div, t1, t2) -> X.( / ) (prj' env t1) (prj' env t2)
| Binop_size (Max, t1, t2) -> X.max (prj' env t1) (prj' env t2)
| Binop_size (Min, t1, t2) -> X.min (prj' env t1) (prj' env t2)
| Binop_bool (Eq, t1, t2) -> X.eq (prj' env t1) (prj' env t2)
| Binop_bool (Lt, t1, t2) -> X.lt (prj' env t1) (prj' env t2)
| Shift (`Left, t, n) -> X.shift_left (prj' env t) n
| Shift (`Right, t, n) -> X.shift_right (prj' env t) n
| Free name -> X.free ~name
| App (f, t) -> X.app (prj' env f) (prj' env t)
| If (c, t, e) -> X.if_ (prj' env c) (prj' env t) (prj' env e)
let prj t = prj' [] (T.transform t)
end
module Optimize =
Transform
(functor
(Ast : S)
->
struct
open Ast
let transform t = cse @@ optimize_affine @@ subst_let t
end)
module At_least_10 =
Transform
(functor
(Ast : S)
->
struct
open Ast
let transform = at_least_10
end)