package tensorboard

  1. Overview
  2. Docs

Source file pbrt.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
(*
  Copyright (c) 2014 Peter Zotov <whitequark@whitequark.org>
  Copyright (c) 2016 Maxime Ransan <maxime.ransan@gmail.com>
  
  Permission is hereby granted, free of charge, to any person obtaining a copy
  of this software and associated documentation files (the "Software"), to deal
  in the Software without restriction, including without limitation the rights
  to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  copies of the Software, and to permit persons to whom the Software is
  furnished to do so, subject to the following conditions:
  
    The above copyright notice and this permission notice shall be included in
  all copies or substantial portions of the Software.
  
  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  THE SOFTWARE.
*)

type payload_kind = Protobuf.payload_kind = 
  | Varint
  | Bits32
  | Bits64
  | Bytes 

module Decoder = struct 

  type t = Protobuf.Decoder.t 

  let of_bytes = Protobuf.Decoder.of_bytes 
  
  let malformed_variant variant_name = 
    raise (Protobuf.Decoder.Failure (
      Protobuf.Decoder.Malformed_variant variant_name))

  let unexpected_payload field_name pk = 
    raise (Protobuf.Decoder.Failure (
      Protobuf.Decoder.Unexpected_payload (field_name, pk)))
  
  let missing_field field_name = 
    raise (Protobuf.Decoder.Failure (
      Protobuf.Decoder.Missing_field field_name))

  let key = Protobuf.Decoder.key
  
  let skip = Protobuf.Decoder.skip 

  let nested = Protobuf.Decoder.nested 

  let map_entry d ~decode_key ~decode_value = 
    let d = nested d in 

    let key_v = ref None in 
    let value_v = ref None in 
    
    let rec loop () =
      match key d with
      | None -> ()
      | Some (1, _)  -> key_v := Some (decode_key d); loop () 
      | Some (2, _)  -> value_v := Some (decode_value d); loop ()
      | Some (_, pk) -> (
        skip d pk; 
        loop ()
      )
    in 
    loop (); 
    match !key_v, !value_v with 
    | Some key, Some value -> (key, value)
    | _ -> failwith "Missing key or value for map entry"

  let empty_nested d =
    let len = Protobuf.Decoder.varint d in
    if len <> 0L
    then raise (Protobuf.Decoder.Failure Protobuf.Decoder.Incomplete) 
    else () 

  let packed_fold f e0 d =
    let d' = nested d in 
    let rec loop acc = 
      if Protobuf.Decoder.at_end d'
      then acc 
      else loop (f acc d')
    in 
    loop e0 

  let int_as_varint d = 
    Int64.to_int @@ Protobuf.Decoder.varint d
    
  let int_as_zigzag d = 
    Int64.to_int @@ Protobuf.Decoder.zigzag d 

  let int32_as_varint d = 
    Int64.to_int32 (Protobuf.Decoder.varint d) 

  let int32_as_zigzag d =
    Int64.to_int32 (Protobuf.Decoder.zigzag d)

  let int64_as_varint = Protobuf.Decoder.varint 

  let int64_as_zigzag  = Protobuf.Decoder.zigzag 

  let int32_as_bits32  = Protobuf.Decoder.bits32

  let int64_as_bits64  = Protobuf.Decoder.bits64

  let bool d = 
    Protobuf.Decoder.bool_of_int64 "" (Protobuf.Decoder.varint d)

  let float_as_bits32 d = 
    Int32.float_of_bits (Protobuf.Decoder.bits32 d)

  let float_as_bits64 d = 
    Int64.float_of_bits (Protobuf.Decoder.bits64 d) 

  let int_as_bits32 d = 
    Protobuf.Decoder.int_of_int32 "" (Protobuf.Decoder.bits32 d) 

  let int_as_bits64 d = 
    Protobuf.Decoder.int_of_int64 "" (Protobuf.Decoder.bits64 d) 

  let string d = Bytes.to_string (Protobuf.Decoder.bytes d) 

  let bytes  = Protobuf.Decoder.bytes

  let wrapper_double_value d = 
    let d = nested d in 
    match key d with
    | Some (1, Bits64) -> Some (float_as_bits64 d)
    | _ -> None

  let wrapper_float_value d = 
    let d = nested d in 
    match key d with
    | Some (1, Bits32) -> Some (float_as_bits32 d)
    | _ -> None

  let wrapper_int64_value d = 
    let d = nested d in 
    match key d with
    | Some (1, Varint) -> Some (int64_as_varint d)
    | _ -> None

  let wrapper_int32_value d = 
    let d = nested d in 
    match key d with
    | Some (1, Varint) -> Some (int32_as_varint d)
    | _ -> None

  let wrapper_bool_value d = 
    let d = nested d in 
    match key d with
    | Some (1, Varint) -> Some (bool d)
    | _ -> None

  let wrapper_string_value d = 
    let d = nested d in 
    match key d with
    | Some (1, Bytes) -> Some (string d)
    | _ -> None

  let wrapper_bytes_value d = 
    let d = nested d in 
    match key d with
    | Some (1, Bytes) -> Some (bytes d)
    | _ -> None
end 

module Encoder = struct 

  type t = Protobuf.Encoder.t 

  let create = Protobuf.Encoder.create 

  let to_bytes = Protobuf.Encoder.to_bytes  
  
  let key = Protobuf.Encoder.key

  let nested = Protobuf.Encoder.nested
  
  let map_entry ~encode_key ~encode_value ((key_value, key_pk), (value_value, value_pk)) t = 
    nested (fun t -> 
      key (1, key_pk) t; 
      encode_key key_value t;
      key (2, value_pk) t; 
      encode_value value_value t; 
    ) t 
  
  let empty_nested e = 
    Protobuf.Encoder.varint 0L e

  let int_as_varint i e = 
    Protobuf.Encoder.varint (Int64.of_int i) e 

  let int_as_zigzag i e = 
    Protobuf.Encoder.zigzag (Int64.of_int i) e 

  let int32_as_varint i e = 
    Protobuf.Encoder.varint (Int64.of_int32 i) e 

  let int32_as_zigzag i e = 
    Protobuf.Encoder.zigzag (Int64.of_int32 i) e 

  let int64_as_varint = Protobuf.Encoder.varint 

  let int64_as_zigzag = Protobuf.Encoder.zigzag 

  let int32_as_bits32 = Protobuf.Encoder.bits32

  let int64_as_bits64 = Protobuf.Encoder.bits64

  let bool b e = 
    Protobuf.Encoder.varint (if b then 1L else 0L) e

  let float_as_bits32 f e = 
    Protobuf.Encoder.bits32 (Int32.bits_of_float f) e 

  let float_as_bits64 f e =
    Protobuf.Encoder.bits64 (Int64.bits_of_float f) e 

  let int_as_bits32 i e = 
    Protobuf.Encoder.bits32 (Int32.of_int i) e 
  
  let int_as_bits64 i e =
    Protobuf.Encoder.bits64 (Int64.of_int i) e 

  let string s e = Protobuf.Encoder.bytes (Bytes.of_string s) e 

  let bytes = Protobuf.Encoder.bytes 

  let double_value_key = (1, Protobuf.Bits64)

  let wrapper_double_value v e = 
    Protobuf.Encoder.nested (fun e -> 
      key double_value_key e; 
      begin match v with
      | None -> ()
      | Some f -> float_as_bits64 f e 
      end
    ) e

  let float_value_key = (1, Protobuf.Bits32)

  let wrapper_float_value v e = 
    Protobuf.Encoder.nested (fun e -> 
      key float_value_key e; 
      begin match v with
      | None -> ()
      | Some f -> float_as_bits32 f e 
      end
    ) e

  let int64_value_key = (1, Protobuf.Varint)

  let wrapper_int64_value v e = 
    Protobuf.Encoder.nested (fun e -> 
      key int64_value_key e; 
      begin match v with
      | None -> ()
      | Some i -> int64_as_varint i e 
      end
    ) e

  let int32_value_key = (1, Protobuf.Varint)

  let wrapper_int32_value v e = 
    Protobuf.Encoder.nested (fun e -> 
      key int32_value_key e; 
      begin match v with
      | None -> ()
      | Some i -> int32_as_varint i e 
      end
    ) e

  let bool_value_key = (1, Protobuf.Varint)

  let wrapper_bool_value v e = 
    Protobuf.Encoder.nested (fun e -> 
      key bool_value_key e; 
      begin match v with
      | None -> ()
      | Some b -> bool b e 
      end
    ) e

  let string_value_key = (1, Protobuf.Bytes)

  let wrapper_string_value v e = 
    Protobuf.Encoder.nested (fun e -> 
      key string_value_key e; 
      begin match v with
      | None -> ()
      | Some s -> string s e 
      end
    ) e

  let bytes_value_key = (1, Protobuf.Bytes)

  let wrapper_bytes_value v e = 
    Protobuf.Encoder.nested (fun e -> 
      key bytes_value_key e; 
      begin match v with
      | None -> ()
      | Some b -> bytes b e 
      end
    ) e

end 

module Repeated_field = struct 

  (** [t] is a container optimized for fast repeated inserts. 
      
      It is made of a list of growing size array [l] as well as 
      a current array [a] in which inserts are performed until 
      [a] is full and appended to [l]. 

      The main growing logic is implemented in the [add] functions. 
    *) 
  type 'a t = {
    mutable s : int;           (* total size (allocated) of the partial array [a] *) 
    mutable i : int;           (* current number of inserted element in [a] *) 
    mutable a : 'a array;      (* partial array *)  
    mutable l : 'a array list; (* previously filled array [List.hd l] is the last filled array *)
  }

  let make v = {
    s = 16; 
    i = 0; 
    a = Array.make 16 v; 
    l = []; 
  }

  let of_array_no_copy a = {
    (* We intentionally don't put [a] argument in [l]
       directly since it would require the allocation of a new 
       array and an initial value. Since [Array.length a] could be [0] 
       we would not be able to get such a value from the [a] argument. 

       Hence the transfer of [a] to [l] will be done in the subsequent
       [add v t] call in which [v] argument is used to initialize the new array.
     *)
    s = Array.length a; 
    i = Array.length a; 
    a = a; 
    l = [];
  }
  
  let add v ({s; i; a; l} as tmp) = 
    match i with
    | i when i = s -> (
      (* [1.3] is an emperical growth factor found to be 
         a good balance for allocation of a new 
         array. 
       *)
      tmp.s <- int_of_float (float_of_int s *.  1.3);
      tmp.i <- 1;
      tmp.l <- a :: l;
      tmp.a <- Array.make tmp.s v;
    )
    | i -> (
      Array.unsafe_set a i v; 
      tmp.i  <- i + 1; 
    )
  
  let to_array {s; i; a; l} = 
    let l = match i with 
      | 0 -> l 
      | i when i = s -> a :: l  
      | i -> (Array.sub a 0 i) :: l 
    in 
    Array.concat (List.rev l) 

  (** [list_rev_iter f l] iterate over the list in reverse order *)
  let rec list_rev_iter f = function 
    | [] -> () 
    | hd::tl -> (
      list_rev_iter f tl; 
      f hd
    )

  let iter f {i; a; l; _} = 
    list_rev_iter (fun a -> 
      let len = Array.length a - 1 in 
      for j = 0 to len do
        f (Array.unsafe_get a j)
      done
    ) l; 
    let len = i - 1 in 
    for j = 0 to len do
      f (Array.unsafe_get a j)
    done
  
  let iteri f {i; a; l; _} = 
    let counter = ref 0 in 
    list_rev_iter (fun a -> 
      let len = Array.length a - 1 in 
      for j = 0 to len do
        f !counter (Array.unsafe_get a j);
        incr counter; 
      done
    ) l; 
    let len = i - 1 in 
    for j = 0 to len do
      f !counter (Array.unsafe_get a j);
      incr counter; 
    done
                      
  let fold_left f e0 t =   
    let acc = ref e0 in
    iter (fun e ->
       acc := f !acc e 
    ) t;
    !acc 

  let length {s = _ ; i; a=_; l } : int= 
    let len = List.fold_left (fun len a -> 
      len + (Array.length a)
    ) 0 l in 
    len + i

  let map_to_array f t = 
    let len = length t in  
    let dest = Array.make len (f @@ Array.unsafe_get t.a 0) in 
    let index = ref 0 in 

    iter (fun e -> 
      Array.unsafe_set dest !index (f e); 
      incr index
    ) t;
    dest 
  
  let map_to_list f ({s = _ ; i; a; l}) = 

    let rec a_to_list a i res =
      if i < 0 
      then res 
      else a_to_list a (i - 1) (f (Array.unsafe_get a i) :: res)
    in
    
    (* start with last (partial) array and its last index *)
    let res = a_to_list a (i - 1) [] in 

    (* go over the filled array *)
    List.fold_left (fun acc a -> 
      a_to_list a (Array.length a - 1) acc  
    ) res l  

  external identity : 'a -> 'a = "%identity" 
  
  let to_list t = map_to_list identity t 
      
end (* Repeated_field*) 


module Pp = struct
  module F = Format

  type formatter = F.formatter 

  let pp_unit fmt () = 
    F.pp_print_string fmt "()"
  
  let pp_int = 
    F.pp_print_int 
  
  let pp_float = 
    F.pp_print_float 
  
  let pp_bool = 
    F.pp_print_bool 
  
  let pp_int32 fmt i = 
    F.pp_print_string fmt (Int32.to_string i)  
  
  let pp_int64 fmt i = 
    F.pp_print_string fmt (Int64.to_string i)  
  
  let pp_string fmt s = 
    F.fprintf fmt "\"%a\"" F.pp_print_string s
  
  let pp_bytes fmt b = 
    pp_string fmt (Bytes.to_string b) 
  
  let pp_option pp_f fmt = function
    | None   -> F.fprintf fmt "@[None@]"
    | Some x -> F.fprintf fmt "@[Some(%a)@]" pp_f x 

  let pp_wrapper_float fmt v = 
    pp_option pp_float fmt v 

  let pp_wrapper_bool fmt v = 
    pp_option pp_bool fmt v 

  let pp_wrapper_int32 fmt v = 
    pp_option pp_int32 fmt v 
  
  let pp_wrapper_int64 fmt v = 
    pp_option pp_int64 fmt v 

  let pp_wrapper_string fmt v = 
    pp_option pp_string fmt v 

  let pp_wrapper_bytes fmt v = 
    pp_option pp_bytes fmt v 

  let pp_list pp_element fmt l = 
    let rec pp_i fmt = function
      | [h]  -> Format.fprintf fmt "%a" pp_element h
      | h::t ->
        Format.fprintf fmt "%a;@,%a" pp_element h pp_i t
      | []   -> ()
    in
    F.fprintf fmt "@[<v 1>[%a@,@]]" pp_i l 

  let pp_associative_list pp_key pp_value fmt l = 
    let pp_element fmt (k, v) = 
      F.fprintf fmt "(%a, %a)" pp_key k pp_value v 
    in
    pp_list pp_element fmt l 

  let pp_hastable pp_key pp_value fmt h = 
    let l = Hashtbl.fold (fun a b l -> 
      (a, b)::l
    ) h [] in  
    pp_associative_list pp_key pp_value fmt l 
  
  let pp_record_field field_name pp_val fmt val_ = 
    F.fprintf fmt "@,@[<h>%s = %a;@]" field_name pp_val val_ 
  
  let pp_brk pp_record (fmt:F.formatter) r : unit = 
    F.fprintf fmt "@[<v>{%a@,@]}" pp_record r  


  
end (* Pp *)
OCaml

Innovation. Community. Security.