Library
Module
Module type
Parameter
Class
Class type
A module for working with floating-point numbers. Valid syntax for float
s includes:
0.
0.0
42.
42.0
3.14
0.1234
123_456.123_456
6.022e23 (* = (6.022 * 10^23) *)
6.022e+23 (* = (6.022 * 10^23) *)
1.602e−19 (* = (1.602 * 10^-19) *)
1e3 (* = (1 * 10 ** 3) = 1000. *)
Without opening this module you can use the .
suffixed operators e.g
1. +. 2. /. 0.25 *. 2. = 17.
But by opening this module locally you can use the un-suffixed operators
Float.((10.0 - 1.5 / 0.5) ** 3.0) = 2401.0
Historical Note: The particular details of floats (e.g. NaN
) are specified by IEEE 754 which is literally hard-coded into almost all CPUs in the world.
val zero : t
The literal 0.0
as a named value
val one : t
The literal 1.0
as a named value
val nan : t
NaN
as a named value. NaN stands for not a number.
Note comparing values with Float.nan
will always return false
even if the value you are comparing against is also NaN
.
e.g
let isNotANmber x = Float.(x = nan) in
isNotANumber nan = false
For detecting Nan
you should use Float.isNaN
val negativeInfinity : t
Negative infinity, see Float.infinity
val negative_infinity : t
val e : t
An approximation of Euler's number.
Addition for floating point numbers.
Float.add 3.14 3.14 = 6.28
Float.(3.14 + 3.14 = 6.28)
Although int
s and float
s support many of the same basic operations such as addition and subtraction you cannot add
an int
and a float
directly which means you need to use functions like Int.toFloat
or Float.roundToInt
to convert both values to the same type.
So if you needed to add a List.length
to a float
for some reason, you could:
Float.add 3.14 (Int.toFloat (List.length [1,2,3])) = 6.14
or
Float.roundToInt 3.14 + List.length [1,2,3] = 6
Languages like Java and JavaScript automatically convert int
values to float
values when you mix and match. This can make it difficult to be sure exactly what type of number you are dealing with and cause unexpected behavior.
OCaml has opted for a design that makes all conversions explicit.
Subtract numbers
Float.subtract 4.0 3.0 = 1.0
Alternatively the -
operator can be used:
Float.(4.0 - 3.0) = 1.0
See Float.subtract
Multiply numbers like
Float.multiply 2.0 7.0 = 14.0
Alternatively the operator *
can be used:
Float.(2.0 * 7.0) = 14.0
See Float.multiply
Floating-point division:
Float.divide 3.14 ~by:2.0 = 1.57
Alternatively the /
operator can be used:
Float.(3.14 / 2.0) = 1.57
See Float.divide
Exponentiation, takes the base first, then the exponent.
Float.power ~base:7.0 ~exponent:3.0 = 343.0
Alternatively the **
operator can be used:
Float.(7.0 ** 3.0) = 343.0
See Float.power
Flips the 'sign' of a float
so that positive floats become negative and negative integers become positive. Zero stays as it is.
Float.negate 8 = (-8)
Float.negate (-7) = 7
Float.negate 0 = 0
Alternatively an operator is available:
Float.(~- 4.0) = (-4.0)
See Float.negate
Get the absolute value of a number.
Float.absolute 8. = 8.
Float.absolute (-7) = 7
Float.absolute 0 = 0
Returns the larger of two float
s, if both arguments are equal, returns the first argument
Float.maximum 7. 9. = 9.
Float.maximum (-4.) (-1.) = (-1.)
If either (or both) of the arguments are NaN
, returns NaN
Float.(isNaN (maximum 7. nan) = true
Returns the smaller of two float
s, if both arguments are equal, returns the first argument
Float.minimum 7.0 9.0 = 7.0
Float.minimum (-4.0) (-1.0) = (-4.0)
If either (or both) of the arguments are NaN
, returns NaN
Float.(isNaN (minimum 7. nan) = true
Clamps n
within the inclusive lower
and upper
bounds.
Float.clamp ~lower:0. ~upper:8. 5. = 5.
Float.clamp ~lower:0. ~upper:8. 9. = 8.
Float.clamp ~lower:(-10.) ~upper:(-5.) 5. = -5.
Throws an Invalid_argument
exception if lower > upper
Take the square root of a number.
Float.squareRoot 4.0 = 2.0
Float.squareRoot 9.0 = 3.0
squareRoot
returns NaN
when its argument is negative. See Float.nan
for more.
Calculate the logarithm of a number with a given base.
Float.log ~base:10. 100. = 2.
Float.log ~base:2. 256. = 8.
val isNaN : t -> bool
Determine whether a float is an undefined or unrepresentable number.
Float.isNaN (0.0 / 0.0) = true
Float.(isNaN (squareRoot (-1.0)) = true
Float.isNaN (1.0 / 0.0) = false (* Float.infinity {b is} a number *)
Float.isNaN 1. = false
Note this function is more useful than it might seem since NaN
does not equal Nan
:
Float.(nan = nan) = false
val is_nan : t -> bool
val isFinite : t -> bool
Determine whether a float is finite number. True for any float except Infinity
, -Infinity
or NaN
Float.isFinite (0. / 0.) = false
Float.(isFinite (squareRoot (-1.)) = false
Float.isFinite (1. / 0.) = false
Float.isFinite 1. = true
Float.(isFinite nan) = false
Notice that NaN
is not finite!
For a float
n
to be finite implies that Float.(not (isInfinite n || isNaN n))
evaluates to true
.
val is_finite : t -> bool
val isInfinite : t -> bool
Determine whether a float is positive or negative infinity.
Float.isInfinite (0. / 0.) = false
Float.(isInfinite (squareRoot (-1.)) = false
Float.isInfinite (1. / 0.) = true
Float.isInfinite 1. = false
Float.(isInfinite nan) = false
Notice that NaN
is not infinite!
For a float
n
to be finite implies that Float.(not (isInfinite n || isNaN n))
evaluates to true
.
val is_infinite : t -> bool
Checks if n
is between lower
and up to, but not including, upper
. If lower
is not specified, it's set to to 0.0
.
Float.inRange ~lower:2. ~upper:4. 3. = true
Float.inRange ~lower:1. ~upper:2. 2. = false
Float.inRange ~lower:5.2 ~upper:7.9 9.6 = false
Throws an Invalid_argument
exception if lower > upper
hypotenuse x y
returns the length of the hypotenuse of a right-angled triangle with sides of length x
and y
, or, equivalently, the distance of the point (x, y)
to (0, 0)
.
Float.hypotenuse 3. 4. = 5.
Converts an angle in degrees to Float.radians
.
Float.degrees 180. = v
Convert an angle in turns into Float.radians
.
One turn is equal to 360°.
Float.(turns (1. / 2.)) = pi
Float.(turns 1. = degrees 360.)
Convert polar coordinates (r, θ) to Cartesian coordinates (x,y).
Float.(fromPolar (squareRoot 2., degrees 45.)) = (1., 1.)
Convert Cartesian coordinates (x,y) to polar coordinates (r, θ).
Float.toPolar (3.0, 4.0) = (5.0, 0.9272952180016122)
Float.toPolar (5.0, 12.0) = (13.0, 1.1760052070951352)
Figure out the cosine given an angle in radians.
Float.(cos (degrees 60.)) = 0.5000000000000001
Float.(cos (radians (pi / 3.))) = 0.5000000000000001
Figure out the arccosine for adjacent / hypotenuse
in radians:
Float.(acos (radians 1.0 / 2.0)) = Float.radians 1.0471975511965979 (* 60° or pi/3 radians *)
Figure out the sine given an angle in radians.
Float.(sin (degrees 30.)) = 0.49999999999999994
Float.(sin (radians (pi / 6.)) = 0.49999999999999994
Figure out the arcsine for opposite / hypotenuse
in radians:
Float.(asin (1.0 / 2.0)) = 0.5235987755982989 (* 30° or pi / 6 radians *)
Figure out the tangent given an angle in radians.
Float.(tan (degrees 45.)) = 0.9999999999999999
Float.(tan (radians (pi / 4.)) = 0.9999999999999999
Float.(tan (pi / 4.)) = 0.9999999999999999
This helps you find the angle (in radians) to an (x, y)
coordinate, but in a way that is rarely useful in programming.
You probably want atan2
instead!
This version takes y / x
as its argument, so there is no way to know whether the negative signs comes from the y
or x
value. So as we go counter-clockwise around the origin from point (1, 1)
to (1, -1)
to (-1,-1)
to (-1,1)
we do not get angles that go in the full circle:
Float.atan (1. /. 1.) = 0.7853981633974483 (* 45° or pi/4 radians *)
Float.atan (1. /. -1.) = -0.7853981633974483 (* 315° or 7 * pi / 4 radians *)
Float.atan (-1. /. -1.) = 0.7853981633974483 (* 45° or pi/4 radians *)
Float.atan (-1. /. 1.) = -0.7853981633974483 (* 315° or 7 * pi/4 radians *)
Notice that everything is between pi / 2
and -pi/2
. That is pretty useless for figuring out angles in any sort of visualization, so again, check out Float.atan2
instead!
This helps you find the angle (in radians) to an (x, y)
coordinate. So rather than saying Float.(atan (y / x))
you can Float.atan2 ~y ~x
and you can get a full range of angles:
Float.atan2 ~y:1. ~x:1. = 0.7853981633974483 (* 45° or pi/4 radians *)
Float.atan2 ~y:1. ~x:(-1.) = 2.3561944901923449 (* 135° or 3 * pi/4 radians *)
Float.atan2 ~y:(-1.) ~x:(-1.) = -(2.3561944901923449) (* 225° or 5 * pi/4 radians *)
Float.atan2 ~y:(-1.) ~x:1.) = -(0.7853981633974483) (* 315° or 7 * pi/4 radians *)
Round a number, by default to the to the closest int
with halves rounded `Up
(towards positive infinity)
Float.round 1.2 = 1.0
Float.round 1.5 = 2.0
Float.round 1.8 = 2.0
Float.round -1.2 = -1.0
Float.round -1.5 = -1.0
Float.round -1.8 = -2.0
Other rounding strategies are available by using the optional ~direction
label.
Towards zero
Float.round ~direction:`Zero 1.2 = 1.0
Float.round ~direction:`Zero 1.5 = 1.0
Float.round ~direction:`Zero 1.8 = 1.0
Float.round ~direction:`Zero (-1.2) = -1.0
Float.round ~direction:`Zero (-1.5) = -1.0
Float.round ~direction:`Zero (-1.8) = -1.0
Away from zero
Float.round ~direction:`AwayFromZero 1.2 = 1.0
Float.round ~direction:`AwayFromZero 1.5 = 1.0
Float.round ~direction:`AwayFromZero 1.8 = 1.0
Float.round ~direction:`AwayFromZero (-1.2) = -1.0
Float.round ~direction:`AwayFromZero (-1.5) = -1.0
Float.round ~direction:`AwayFromZero (-1.8) = -1.0
Towards infinity
This is also known as Float.ceiling
Float.round ~direction:`Up 1.2 = 1.0
Float.round ~direction:`Up 1.5 = 1.0
Float.round ~direction:`Up 1.8 = 1.0
Float.round ~direction:`Up (-1.2) = -1.0
Float.round ~direction:`Up (-1.5) = -1.0
Float.round ~direction:`Up (-1.8) = -1.0
Towards negative infinity
This is also known as Float.floor
List.map ~f:(Float.round ~direction:`Down) [-1.8; -1.5; -1.2; 1.2; 1.5; 1.8] = [-2.0; -2.0; -2.0; 1.0 1.0 1.0]
To the closest integer
Rounding a number x
to the closest integer requires some tie-breaking for when the fraction
part of x
is exactly 0.5
.
Halves rounded towards zero
List.map ~f:(Float.round ~direction:(`Closest `AwayFromZero)) [-1.8; -1.5; -1.2; 1.2; 1.5; 1.8] = [-2.0; -1.0; -1.0; 1.0 1.0 2.0]
Halves rounded away from zero
This method is often known as commercial rounding
List.map ~f:(Float.round ~direction:(`Closest `AwayFromZero)) [-1.8; -1.5; -1.2; 1.2; 1.5; 1.8] = [-2.0; -2.0; -1.0; 1.0 2.0 2.0]
Halves rounded down
List.map ~f:(Float.round ~direction:(`Closest `Down)) [-1.8; -1.5; -1.2; 1.2; 1.5; 1.8] = [-2.0; -2.0; -1.0; 1.0 1.0 2.0]
Halves rounded up
This is the default.
Float.round 1.5
is the same as Float.round ~direction:(`Closest `Up) 1.5
Halves rounded towards the closest even number
This tie-breaking rule is the default rounding mode using in
Float.round ~direction:(`Closest `ToEven) -1.5 = -2.0
Float.round ~direction:(`Closest `ToEven) -2.5 = -2.0
Floor function, equivalent to Float.round ~direction:`Down
.
Float.floor 1.2 = 1.0
Float.floor 1.5 = 1.0
Float.floor 1.8 = 1.0
Float.floor -1.2 = -2.0
Float.floor -1.5 = -2.0
Float.floor -1.8 = -2.0
Ceiling function, equivalent to Float.round ~direction:`Up
.
Float.ceiling 1.2 = 2.0
Float.ceiling 1.5 = 2.0
Float.ceiling 1.8 = 2.0
Float.ceiling -1.2 = (-1.0)
Float.ceiling -1.5 = (-1.0)
Float.ceiling -1.8 = (-1.0)
Ceiling function, equivalent to Float.round ~direction:`Zero
.
Float.truncate 1.0 = 1
Float.truncate 1.2 = 1
Float.truncate 1.5 = 1
Float.truncate 1.8 = 1
Float.truncate (-1.2) = -1
Float.truncate (-1.5) = -1
Float.truncate (-1.8) = -1
Convert an int
to a float
Float.fromInt 5 = 5.0
Float.fromInt 0 = 0.0
Float.fromInt -7 = -7.0
val toInt : t -> int option
Converts a float
to an Int
by ignoring the decimal portion. See Float.truncate
for examples.
Returns None
when trying to round a float
which can't be represented as an int
such as Float.nan
or Float.infinity
or numbers which are too large or small.
Float.(toInt nan) = None
Float.(toInt infinity) = None
You probably want to use some form of Float.round
prior to using this function.
Float.(round 1.6 |> toInt) = Some 2
val to_int : t -> int option