Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Page
Library
Module
Module type
Parameter
Class
Class type
Source
sigs1.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
(**************************************************************************) (* *) (* OCaml *) (* *) (* Simon Cruanes *) (* *) (* Copyright 2017 Institut National de Recherche en Informatique et *) (* en Automatique. *) (* *) (* Raphaël Proust *) (* *) (* Copyright 2022 Nomadic Labs *) (* *) (* All rights reserved. This file is distributed under the terms of *) (* the GNU Lesser General Public License version 2.1, with the *) (* special exception on linking described in the file LICENSE. *) (* *) (**************************************************************************) (** {1 Common module signatures} This compilation unit gathers module signatures which are used in the rest of the library. Essentially, the rest of the library provides functors to generate modules with the signatures below. The Seqes library provides functors to produce specialised variants of the {!Stdlib.Seq} type where the forcing of an element involves a monad. E.g., considering an I/O cooperative scheduling monad à la [Lwt] or [Async], which we denote with the type ['a io], you can use Seqes to produce the following type {[ type 'a t = unit -> 'a node io and 'a node = | Nil | Cons of 'a * 'a t ]} In addition to specialised types, the library's functor produce an assortment of functions to operate on values of this type. The assortment of function is compatible with the {!Stdlib.Seq} (except for the monad part). See [examples/seqseq/seqseq.ml] for a demonstration of this compatibility. Familiarity with {!Stdlib.Seq} is assumed. *) (** {1 Traversors} A traversor is a function that traverses a sequence, applying a caller-provided function on the sequence's elements. E.g., [iter]. A traversor may traverse only a portion of the sequence. E.g., [for_all]. The type of traversor mentions two distinct monad types: - ['a mon]: the monad that the sequence is specialised to - ['a callermon]: the monad that the caller-provided functions use These two monad types can be different. The main use for these types being distinct is to provide both plain-traversors (e.g., the plain-[iter] has type [('a -> unit) -> 'a t -> unit mon]) and [mon]-traversors (e.g., the [mon]-[iter] has type [('a -> unit mon) -> 'a t -> unit mon]). Plain-traversors are obtained with [type 'a callermon := 'a] whereas [mon]-traversors are obtained with [type 'a callermon := 'a mon]. There are more advanced use for tiers of monads. See [examples/seqlist/seqlist.ml] for an advanced example involving [List] and [Option]. *) module type SEQMON1TRAVERSORS = sig (** [callermon] is the type constructor for the monad used in caller-provided functions. The type is meant to be substituted by the functor that produces modules following this signature. *) type 'a callermon (** [mon] is the type constructor for the monad used in the sequence. The type is meant to be substituted by the functor that produces modules of following this signature. *) type 'a mon (** [t] is the type constructor for the sequence. The type is meant to be substituted by the functor that produces modules of following this signature. *) type 'a t (** See {!Stdlib.Seq.iter} *) val iter : ('a -> unit callermon) -> 'a t -> unit mon (** See {!Stdlib.Seq.fold_left} *) val fold_left : ('a -> 'b -> 'a callermon) -> 'a -> 'b t -> 'a mon (** See {!Stdlib.Seq.iteri} *) val iteri : (int -> 'a -> unit callermon) -> 'a t -> unit mon (** See {!Stdlib.Seq.fold_lefti} *) val fold_lefti : ('b -> int -> 'a -> 'b callermon) -> 'b -> 'a t -> 'b mon (** See {!Stdlib.Seq.for_all} *) val for_all : ('a -> bool callermon) -> 'a t -> bool mon (** See {!Stdlib.Seq.exists} *) val exists : ('a -> bool callermon) -> 'a t -> bool mon (** See {!Stdlib.Seq.find} *) val find : ('a -> bool callermon) -> 'a t -> 'a option mon (** See {!Stdlib.Seq.find_map} *) val find_map : ('a -> 'b option callermon) -> 'a t -> 'b option mon (** See {!Stdlib.Seq.iter2} *) val iter2 : ('a -> 'b -> unit callermon) -> 'a t -> 'b t -> unit mon (** See {!Stdlib.Seq.fold_left2} *) val fold_left2 : ('a -> 'b -> 'c -> 'a callermon) -> 'a -> 'b t -> 'c t -> 'a mon (** See {!Stdlib.Seq.for_all2} *) val for_all2 : ('a -> 'b -> bool callermon) -> 'a t -> 'b t -> bool mon (** See {!Stdlib.Seq.exists2} *) val exists2 : ('a -> 'b -> bool callermon) -> 'a t -> 'b t -> bool mon end (** {2 Transformers} A transformer is a function that traverses a sequence, applying a caller-provided function on the sequence's elements, returning a sequence. E.g., [map]. A transformer may traverse only a part of the sequence. E.g., [drop_while]. Other functions do not necessarily fit the exact description of traversors but have similar characteristic in their use of monads. E.g., [init] does not consume any sequence. The type of a transformer mentions two distinct monad types: - ['a mon]: the monad that the sequence is specialised to (sometimes this type is mentioned implicitly as a component of the ['a t] type) - ['a callermon]: the monad that the caller-provided functions use These two monad types can be different. The main use for these types being distinct is to provide both plain-traversors (e.g., the plain-[map] has type [('a -> 'b) -> 'a t -> 'b t]) and [mon]-traversors (e.g., the [mon]-[map] has type [('a -> 'b mon) -> 'a t -> 'b t]). Plain-traversors are obtained with [type 'a callermon := 'a] whereas [mon]-traversors are obtained with [type 'a callermon := 'a mon]. There are more advanced use for tiers of monads. See [examples/seqlwtres/seqlwtres.ml] for an advanced example involving [Lwt] and [result]. Because a transformer returns a new sequence, and because that sequence carries within it the [mon] monad, there are restrictions on what the caller monad can be. These restrictions are imposed onto you by the functors that produce Transformer modules. Specifically, these functors expect a function to lift one monad into the other. Because the nature of the transformers impose a restriction on the kind of [callermon] that can be used, it is always possible to generate traversors for these monads. Consequently, the [SEQMON1TRANSFORMERS] signature includes the [SEQMON1TRAVERSORS] signature and the functors that generate transformers also generate traversors. *) module type SEQMON1TRANSFORMERS = sig (** [callermon] is the type constructor for the monad used in caller-provided functions. The type is meant to be substituted by the functor that produces modules following this signature. *) type 'a callermon (** [mon] is the type constructor for the monad used in the sequence. The type is meant to be substituted by the functor that produces modules of following this signature. *) type 'a mon (** [t] is the type constructor for the sequence. The type is meant to be substituted by the functor that produces modules of following this signature. *) type 'a t (** Any monad that we can use to produce transformers, we can also use to produce traversors. Thus, [SEQMON1TRANSFORMERS] includes [SEQMON1TRAVERSORS] and all the functors producing transformer also produce traversors. *) include SEQMON1TRAVERSORS with type 'a callermon := 'a callermon with type 'a mon := 'a mon with type 'a t := 'a t (** See {!Stdlib.Seq.init} *) val init : int -> (int -> 'a callermon) -> 'a t (** See {!Stdlib.Seq.unfold} *) val unfold : ('b -> ('a * 'b) option callermon) -> 'b -> 'a t (** See {!Stdlib.Seq.forever} *) val forever : (unit -> 'a callermon) -> 'a t (** See {!Stdlib.Seq.iterate} *) val iterate : ('a -> 'a callermon) -> 'a -> 'a t (** See {!Stdlib.Seq.map} *) val map : ('a -> 'b callermon) -> 'a t -> 'b t (** See {!Stdlib.Seq.mapi} *) val mapi : (int -> 'a -> 'b callermon) -> 'a t -> 'b t (** See {!Stdlib.Seq.filter} *) val filter : ('a -> bool callermon) -> 'a t -> 'a t (** See {!Stdlib.Seq.filter_map} *) val filter_map : ('a -> 'b option callermon) -> 'a t -> 'b t (** See {!Stdlib.Seq.scan} *) val scan : ('b -> 'a -> 'b callermon) -> 'b -> 'a t -> 'b t (** See {!Stdlib.Seq.take_while} *) val take_while : ('a -> bool callermon) -> 'a t -> 'a t (** See {!Stdlib.Seq.drop_while} *) val drop_while : ('a -> bool callermon) -> 'a t -> 'a t (** See {!Stdlib.Seq.group} *) val group : ('a -> 'a -> bool callermon) -> 'a t -> 'a t t (** See {!Stdlib.Seq.map2} *) val map2 : ('a -> 'b -> 'c callermon) -> 'a t -> 'b t -> 'c t (** See {!Stdlib.Seq.map_product} *) val map_product : ('a -> 'b -> 'c callermon) -> 'a t -> 'b t -> 'c t (** See {!Stdlib.Seq.partition_map} *) val partition_map : ('a -> ('b, 'c) Either.t callermon) -> 'a t -> 'b t * 'c t (** See {!Stdlib.Seq.partition} *) val partition : ('a -> bool callermon) -> 'a t -> 'a t * 'a t end (** {2 Other functions} Sequences also have functions that do not take any caller-provided function as arguments. For these functions, only the monad that the sequence is specialised to matters. In addition to all those functions, the [SEQMON1ALL] module signature also includes the [SEQMON1TRANSFORMERS] module signature, but specialised with the [type 'a callermon := 'a]. All the functors that produce modules with this signature also produce all the transformers and traversors that operate with no caller monad. *) module type SEQMON1ALL = sig (** [mon] is the type constructor for the monad used in the sequence. The type is meant to be substituted by the functor that produces modules of following this signature. *) type 'a mon (** [t] is the type constructor for the sequence. The type is meant to be substituted by the functor that produces modules of following this signature. *) type 'a t include SEQMON1TRANSFORMERS with type 'a mon := 'a mon with type 'a callermon := 'a with type 'a t := 'a t (** See {!Stdlib.Seq.is_empty} *) val is_empty : 'a t -> bool mon (** See {!Stdlib.Seq.uncons} *) val uncons : 'a t -> ('a * 'a t) option mon (** See {!Stdlib.Seq.length} *) val length : 'a t -> int mon (** See {!Stdlib.Seq.equal} *) val equal : ('a -> 'b -> bool) -> 'a t -> 'b t -> bool mon (** See {!Stdlib.Seq.compare} *) val compare : ('a -> 'b -> int) -> 'a t -> 'b t -> int mon (** See {!Stdlib.Seq.empty} *) val empty : 'a t (** See {!Stdlib.Seq.return} *) val return : 'a -> 'a t (** See {!Stdlib.Seq.cons} *) val cons : 'a -> 'a t -> 'a t (** See {!Stdlib.Seq.repeat} *) val repeat : 'a -> 'a t (** See {!Stdlib.Seq.cycle} *) val cycle : 'a t -> 'a t (** See {!Stdlib.Seq.take} *) val take : int -> 'a t -> 'a t (** See {!Stdlib.Seq.drop} *) val drop : int -> 'a t -> 'a t (** See {!Stdlib.Seq.memoize} *) val memoize : 'a t -> 'a t (** See {!Stdlib.Seq.once} *) val once : 'a t -> 'a t (** See {!Stdlib.Seq.transpose} *) val transpose : 'a t t -> 'a t t (** See {!Stdlib.Seq.append} *) val append : 'a t -> 'a t -> 'a t (** See {!Stdlib.Seq.concat} *) val concat : 'a t t -> 'a t (** See {!Stdlib.Seq.flat_map} *) val flat_map : ('a -> 'b t) -> 'a t -> 'b t (** See {!Stdlib.Seq.concat_map} *) val concat_map : ('a -> 'b t) -> 'a t -> 'b t (** See {!Stdlib.Seq.zip} *) val zip : 'a t -> 'b t -> ('a * 'b) t (** See {!Stdlib.Seq.interleave} *) val interleave : 'a t -> 'a t -> 'a t (** See {!Stdlib.Seq.sorted_merge} *) val sorted_merge : ('a -> 'a -> int) -> 'a t -> 'a t -> 'a t (** See {!Stdlib.Seq.product} *) val product : 'a t -> 'b t -> ('a * 'b) t (** See {!Stdlib.Seq.unzip} *) val unzip : ('a * 'b) t -> 'a t * 'b t (** See {!Stdlib.Seq.split} *) val split : ('a * 'b) t -> 'a t * 'b t (** See {!Stdlib.Seq.of_dispenser} *) val of_dispenser : (unit -> 'a option mon) -> 'a t (** See {!Stdlib.Seq.to_dispenser} *) val to_dispenser : 'a t -> (unit -> 'a option mon) (** See {!Stdlib.Seq.ints} *) val ints : int -> int t (** See {!Stdlib.Seq.of_seq} *) val of_seq : 'a Seq.t -> 'a t end (** {2 Monads} Different functors require different monads. *) (** Normal monad *) module type MONAD1 = sig type 'a t val return : 'a -> 'a t val bind : 'a t -> ('a -> 'b t) -> 'b t end (** Mixed-monad operations *) module type GLUE1 = sig type 'a x type 'a f type 'a ret val bind : 'a x -> ('a -> 'b f) -> 'b ret end (**/**) (* For test purpose we need variants of the monad signatures above where the type is injective. This makes the GADTs used to model the seq interface valid. See https://github.com/ocaml/ocaml/issues/5984 *) module type INJ_MONAD1 = sig type !'a t val return : 'a -> 'a t val bind : 'a t -> ('a -> 'b t) -> 'b t end