Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Page
Library
Module
Module type
Parameter
Class
Class type
Source
EphemeralChunk.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
(******************************************************************************) (* *) (* Sek *) (* *) (* Arthur Charguéraud, Émilie Guermeur and François Pottier *) (* *) (* Copyright Inria. All rights reserved. This file is distributed under the *) (* terms of the GNU Lesser General Public License as published by the Free *) (* Software Foundation, either version 3 of the License, or (at your *) (* option) any later version, as described in the file LICENSE. *) (* *) (******************************************************************************) open PublicSettings open PrivateSignatures (* -------------------------------------------------------------------------- *) (* A circular segment of a chunk is represented as a pair of a [head] index and a [size]. *) (* We have [head < max_capacity] and [size <= max_capacity]. We know that [max_capacity] is less than [2^bits], so both [head] and [size] fit in [bits] bits. Provided [bits] is small enough, we can pack [2 * bits] bits of information in a single OCaml integer value. This allows us to avoid allocating a pair. *) let min_capacity = 2 let max_capacity = 32767 let bits = 15 let () = assert (max_capacity < 1 lsl bits) let () = assert (2 * bits <= Sys.word_size - 1) type segment = int (* seg_head : high [bits] bits *) (* seg_size : low [bits] bits *) let[@inline] segment head size = assert (0 <= head && head < max_capacity); assert (0 <= size && size <= max_capacity); (head lsl bits) lor size let[@inline] seg_head s = let head = s lsr bits in assert (0 <= head && head < max_capacity); head let[@inline] seg_size s = let size = s land (1 lsl bits - 1) in assert (0 <= size && size <= max_capacity); size (* [seg_update_size s size] is equivalent to [segment (seg_head s) size]. This formulation saves two shifts. *) let[@inline] seg_update_size s size = assert (0 <= size && size <= max_capacity); let s = s land (lnot (1 lsl bits - 1)) in s lor size (* [empty] is equivalent to [segment 0 0]. *) let empty : segment = 0 let[@inline] resize s delta = (* Changing the size of a segment without moving its head, can be done with one addition, without going through shifting and masking. *) assert ( s + delta = segment (seg_head s) (seg_size s + delta) ); s + delta (* -------------------------------------------------------------------------- *) module[@inline] Make (O : OVERWRITE_EMPTY_SLOTS) = struct open O (* -------------------------------------------------------------------------- *) (* A chunk is represented as an array [data], where only the circular segment [segment] actually contains data. The [default] element is used to overwrite a slot that becomes empty. *) type 'a t = { mutable segment : segment; data : 'a array; default : 'a; } (* -------------------------------------------------------------------------- *) (* Accessors. *) let[@inline] head c = seg_head c.segment let[@inline] size c = seg_size c.segment let[@inline] set_head c h = c.segment <- segment h (size c) let[@inline] set_size c i = c.segment <- seg_update_size c.segment i (* or: [segment (head c) i] *) let[@inline] set_head_size c h i = c.segment <- segment h i let[@inline] capacity c = Array.length c.data (* -------------------------------------------------------------------------- *) (* A chunk satisfies the following invariant. *) let check c = let n = capacity c in assert (min_capacity <= n && n <= max_capacity); assert (0 <= head c && head c < n); assert (size c <= n); (* If [overwrite_empty_slots] is [true], then every empty slot must contain the value [default]. *) if overwrite_empty_slots then for i = size c to n - 1 do assert (Array.get c.data ((head c + i) mod n) == c.default) done (* Ensure [check] has zero cost in release mode. *) let[@inline] check c = assert (check c; true) let[@inline] validate c = check c; c (* -------------------------------------------------------------------------- *) (* Chunk creation functions. *) let create d n = assert (min_capacity <= n && n <= max_capacity); validate { segment = empty; data = Array.make n d; default = d; } let dummy d = { segment = empty; data = [||]; default = d; } let[@inline] is_dummy c = Array.length c.data = 0 (* [of_array_destructive d k data] creates a chunk whose default element is [d] and whose size is [k] by taking ownership of the array [data]. The array segment that extends from index [0] included to index [k] excluded must contain valid elements. The rest of the array must be filled with [default]. *) let of_array_destructive d k data = assert (0 <= k && k <= Array.length data); validate { segment = segment 0 k; data; default = d; } let make d n k v = assert (min_capacity <= n && n <= max_capacity); assert (0 <= k && k <= n); let data = if k = n then Array.make n v else if k < n/2 then begin (* Majority of [d]: initialize with [d], fill front with [v]. *) let data = Array.make n d in Array.fill data 0 k v; data end else begin (* Majority of [v]: initialize with [v], fill back with [d]. *) let data = Array.make n v in Array.fill data k (n - k) d; data end in of_array_destructive d k data let init d n k i f = assert (min_capacity <= n && n <= max_capacity); assert (0 <= k && k <= n); let data = Array.make n d in for j = 0 to k - 1 do data.(j) <- f (i + j); done; of_array_destructive d k data let of_array_segment d n a head size = (* [head] and [size] must represent a valid range in the array [a]. *) assert (ArrayExtra.is_valid_segment a head size); (* [size] must be less than the desired capacity [n] of the chunk. *) assert (size <= n); (* Allocate an array of length [n], and copy a segment of size [size] of the array [a] into it. *) let data = if size = n then Array.sub a head size else let data = Array.make n d in Array.blit a head data 0 size; data in validate { segment = segment 0 size; data; default = d } (* -------------------------------------------------------------------------- *) (* Basic accessors. *) let[@inline] data c = c.data let[@inline] default c = (* It is permitted to apply [default] to a dummy chunk. *) c.default let[@inline] length c = (* It is permitted to apply [length] to a dummy chunk. The result is zero. *) size c let[@inline] is_empty_or_dummy c = size c = 0 let[@inline] is_empty c = assert (not (is_dummy c)); size c = 0 let[@inline] is_full c = assert (not (is_dummy c)); size c = capacity c (* -------------------------------------------------------------------------- *) (* Internal index calculations. *) (* [wrap_up c i] adjusts the index [i], by wrapping around, in case it exceeds the capacity of the chunk [c]. *) let[@inline] wrap_up c i = let n = capacity c in assert (0 <= i && i < 2 * n); if i < n then i else i - n (* OR: [i mod n] *) (* [wrap_down c i] adjusts the index [i], by wrapping around, in case it is negative. *) let[@inline] wrap_down c i = let n = capacity c in assert (-n <= i && i < n); if i < 0 then i + n else i (* OR: [i mod n] *) (* A benchmark (with lambda, with inlining and specialisation) suggests that using a branch is significantly faster than using [mod]. *) (* -------------------------------------------------------------------------- *) (* Random access to a single element in a chunk. *) (* [index c i] converts the index [i], an index into the sequence of elements represented by the chunk [c], to an index into the array [c.data]. *) let[@inline] index c i = assert (0 <= i && i < length c); wrap_up c (head c + i) let[@inline] get c i = Array.get c.data (index c i) let[@inline] set c i y = Array.set c.data (index c i) y (* [xchg c i y] combines [get] and [set], saving one call to [index]. *) let[@inline] xchg c i y = let i = index c i in let x = Array.get c.data i in Array.set c.data i y; x (* -------------------------------------------------------------------------- *) (* Stack operations: [peek], [push], [pop]. *) let[@inline] peek_index pov c = match pov with | Front -> 0 | Back -> length c - 1 let[@inline] peek pov c = assert (0 < length c); get c (peek_index pov c) let[@inline] allocate_front c = let i = wrap_down c (head c - 1) in set_head c i; i let[@inline] allocate_back c = wrap_up c (head c + size c) let[@inline] allocate pov c = assert (length c < capacity c); match pov with | Front -> allocate_front c | Back -> allocate_back c let[@inline] push pov c x = Array.set c.data (allocate pov c) x; c.segment <- resize c.segment (+1); check c let[@inline] pop pov c = assert (0 < length c); let x = if overwrite_empty_slots then xchg c (peek_index pov c) c.default else get c (peek_index pov c) in begin match pov with | Front -> set_head_size c (wrap_up c (head c + 1)) (size c - 1) | Back -> c.segment <- resize c.segment (-1) end; check c; x (* -------------------------------------------------------------------------- *) (* Copying and clearing. *) let copy c = validate { c with data = Array.copy c.data } let clear c = if overwrite_empty_slots then ArrayExtra.fill_circularly c.data (head c) (size c) c.default; c.segment <- empty; check c; () (* -------------------------------------------------------------------------- *) (* Segments. *) module Segment = struct type nonrec segment = segment let check_segment c s = let n = capacity c in (* The segment head must be within bounds. *) assert (0 <= seg_head s && seg_head s < n); (* The segment size must be comprised between 0 and [size c], included. *) assert (0 <= seg_size s); let slack = size c - seg_size s in assert (slack >= 0); (* The live area of the segment must be included in the live area of the chunk. This is expressed by computing the relative advance of the segment head over the chunk head, a nonnegative number, and requiring this number to be at most [slack]. *) assert (wrap_down c (seg_head s - head c) <= slack) (* Ensure [check_segment] has zero cost in release mode. *) let[@inline] check_segment c s = assert (check_segment c s; true) let dummy = 0 let iter_contiguous_segments yield c s = check c; check_segment c s; if seg_size s > 0 then let n = capacity c in let h = seg_head s in let i = h + seg_size s in if i <= n then yield s else begin yield (segment h (n - h)); yield (segment 0 (i - n)) end let contiguous_segments c s = let r = ref [] in iter_contiguous_segments (fun s -> r := s :: !r) c s; List.rev !r let[@inline] peek pov c s = check_segment c s; assert (seg_size s > 0); match pov with | Front -> Array.get c.data (seg_head s) | Back -> Array.get c.data (wrap_up c (seg_head s + seg_size s - 1)) let[@inline] index c s i = check_segment c s; assert (0 <= i && i < seg_size s); wrap_up c (seg_head s + i) let[@inline] get c s i = Array.get c.data (index c s i) let[@inline] set c s i x = Array.set c.data (index c s i) x let three_way_split c s i = check_segment c s; assert (0 <= i && i < seg_size s); let front = seg_update_size s i in let x = get c s i in let i = i + 1 in let back = segment (wrap_up c (seg_head s + i)) (seg_size s - i) in front, x, back (* We use the following terminology: a segment is "flush" if it is flush with one side (front or back) of a chunk. A segment is "aligned" if it is flush with both sides. *) let[@inline] is_flush_front c s = head c = seg_head s let[@inline] is_flush_back c s = let slack = size c - seg_size s in wrap_down c (seg_head s - head c) = slack let[@inline] is_flush pov c s = check_segment c s; match pov with | Front -> is_flush_front c s | Back -> is_flush_back c s let[@inline] is_aligned c s = check_segment c s; is_flush_front c s && size c = seg_size s (* This is equivalent to [is_flush_front c s && is_flush_back c s]. *) let[@inline] push_front c s = segment (wrap_down c (seg_head s - 1)) (seg_size s + 1) let[@inline] push_back _c s = resize s (+1) let[@inline] push pov c s = assert (seg_size s < capacity c); match pov with | Front -> push_front c s | Back -> push_back c s let[@inline] pop_front c s = segment (wrap_up c (seg_head s + 1)) (seg_size s - 1) let[@inline] pop_back _c s = resize s (-1) let[@inline] pop pov c s = assert (0 < seg_size s); match pov with | Front -> pop_front c s | Back -> pop_back c s let[@inline] copy_front c1 s1 c2 s2 = let target = wrap_down c2 (seg_head s2 - seg_size s1) in ArrayExtra.blit_circularly c1.data (seg_head s1) c2.data target (seg_size s1); set_head_size c2 target (size c2 + seg_size s1); check c2; segment target (seg_size s1 + seg_size s2) let[@inline] copy_back c1 s1 c2 s2 = let target = wrap_up c2 (seg_head s2 + seg_size s2) in ArrayExtra.blit_circularly c1.data (seg_head s1) c2.data target (seg_size s1); (* No change to [head c2] is required. *) c2.segment <- resize c2.segment (seg_size s1); resize s2 (seg_size s1) let[@inline] copy pov c1 s1 c2 s2 = check_segment c1 s1; check_segment c2 s2; assert (seg_size s1 + seg_size s2 <= capacity c2); match pov with | Front -> copy_front c1 s1 c2 s2 | Back -> copy_back c1 s1 c2 s2 let sub c s = check_segment c s; let default = default c in (* We have a choice between 1- copying all of the data from the old chunk to the new chunk; or 2- first initialize the new chunk with a default element everywhere, then copy only the data in segment [s] from the old chunk to the new chunk. Approach 1- seems more efficient, as every slot in the new chunk is written just once, instead of possibly twice. However, approach 2- is always safe, whereas approach 1- fails to overwrite empty slots with a default value, so it is safe only if [overwrite_empty_slots] is [false] or the segment [s] covers all of the chunk [c]. *) let data = if not overwrite_empty_slots || is_aligned c s then (* Approach 1: *) Array.copy c.data else begin (* Approach 2: *) let data = Array.make (capacity c) default in let head, size = seg_head s, seg_size s in ArrayExtra.blit_circularly c.data head data head size; data end in let segment = s in validate { segment; data; default } let iter_left f c s = let n = capacity c in let i = ref (seg_head s) in for _k = 0 to seg_size s - 1 do f (Array.get c.data !i); i := !i + 1; if !i = n then i := 0 done let iter_right f c s = if seg_size s > 0 then let n = capacity c in let i = ref (wrap_up c (seg_head s + seg_size s - 1)) in for _k = 0 to seg_size s - 1 do f (Array.get c.data !i); i := !i - 1; if !i < 0 then i := n - 1 done let[@inline] iter pov f c s = check_segment c s; match pov with | Front -> iter_left f c s | Back -> iter_right f c s let check = check_segment let print s = let open PPrint.OCaml in record "segment" [ "head", int (seg_head s); "size", int (seg_size s); ] let head = seg_head let size = seg_size end (* Segment *) (* -------------------------------------------------------------------------- *) (* The following functions are relegated here because they use some of the facilities offered by the submodule [Segment]. *) let carve_back c i = assert (0 <= i && i <= size c); (* Compute the head and size of the back segment. *) let head = wrap_up c (head c + i) and size = size c - i in let s = segment head size in let back = Segment.sub c s in if overwrite_empty_slots then ArrayExtra.fill_circularly c.data head size c.default; set_size c i; back let[@inline] segment c = c.segment let[@inline] iter_ranges c yield = (* [iter_ranges] can be applied to a dummy chunk. *) if size c > 0 then Segment.iter_contiguous_segments (fun s -> yield (data c) (seg_head s) (seg_size s) ) c (segment c) let[@inline] iter pov f c = (* [iter] can be applied to a dummy chunk. *) if size c > 0 then Segment.iter pov f c (segment c) (* -------------------------------------------------------------------------- *) (* Printing. *) let to_list c = Adapters.to_list (iter Back) c let print print c = let open PPrint in let open PPrint.OCaml in if is_dummy c then !^ "<dummy>" else record "chunk" [ "head", int (head c); "size", int (size c); "model", flowing_list print (to_list c); ] end (* Make *)