Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Page
Library
Module
Module type
Parameter
Class
Class type
Source
type_intf.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
module type DSL = sig (** {1 Type Combinators} *) type 'a t (** The type for runtime representation of values of type ['a]. *) type len = [ `Int | `Int8 | `Int16 | `Int32 | `Int64 | `Fixed of int ] (** The type of integer used to store buffers, list or array lengths. [Int] use a (compressed) variable encoding to encode integers in a binary format, while [IntX] always use [X] bytes. Overflows are not detected. *) (** {1:primitives Primitives} *) val unit : unit t (** [unit] is a representation of the unit type. *) val bool : bool t (** [bool] is a representation of the boolean type. *) val char : char t (** [char] is a representation of the character type. *) val int : int t (** [int] is a representation of integers. Binary serialization uses a varying-width representation. *) val int32 : int32 t (** [int32] is a representation of the 32-bit integer type. *) val int64 : int64 t (** [int64] is a representation of the 64-bit integer type. *) val float : float t (** [float] is a representation of the [float] type. *) val string : string t (** [string] is a representation of the [string] type. *) val bytes : bytes t (** [bytes] is a representation of the [bytes] type. *) val string_of : len -> string t (** Like {!string} but with a given kind of size. *) val bytes_of : len -> bytes t (** Like {!bytes} but with a given kind of size. *) val boxed : 'a t -> 'a t (** [boxed t] is the same as [t] but with a binary representation which is always boxed (e.g. top-level values won't be unboxed). This forces {!Unboxed} functions to be exactly the same as boxed ones.*) val list : ?len:len -> 'a t -> 'a list t (** [list t] is a representation of lists of values of type [t]. *) val array : ?len:len -> 'a t -> 'a array t (** [array t] is a representation of arrays of values of type [t]. *) val option : 'a t -> 'a option t (** [option t] is a representation of values of type [t option]. *) val pair : 'a t -> 'b t -> ('a * 'b) t (** [pair x y] is a representation of values of type [x * y]. *) val triple : 'a t -> 'b t -> 'c t -> ('a * 'b * 'c) t (** [triple x y z] is a representation of values of type [x * y * z]. *) val result : 'a t -> 'b t -> ('a, 'b) result t (** [result a b] is a representation of values of type [(a, b) result]. *) val either : 'a t -> 'b t -> ('a, 'b) Either.t t (** [either a b] is a representation of values of type [(a, b) Either.t]. *) val seq : 'a t -> 'a Seq.t t (** [seq t] is a representation of sequences of values of type [t]. *) val ref : 'a t -> 'a ref t (** [ref t] is a representation of references to values of type [t]. {b Note}: derived deserialisation functions will not preserve reference sharing. *) val lazy_t : 'a t -> 'a Lazy.t t (** [lazy_t t] is a representation of lazy values of type [t]. {b Note}: derived deserialisation functions on the resulting type will not be lazy. *) val queue : 'a t -> 'a Queue.t t (** [queue t] is a representation of queues of values of type [t]. *) val stack : 'a t -> 'a Stack.t t (** [stack t] is a representation of stacks of values of type [t]. *) val hashtbl : 'k t -> 'v t -> ('k, 'v) Hashtbl.t t (** [hashtbl k v] is a representation of hashtables with keys of type [k] and values of type [v]. *) val set : (module Set.S with type elt = 'elt and type t = 'set) -> 'elt t -> 'set t (** [set (module Set) elt] is a representation of sets with elements of type [elt]. See {!Of_set} for a functorised equivalent of this function. *) (** Functor for building representatives of {i sets} from the standard library. *) module Of_set (Set : sig type elt val elt_t : elt t include Set.S with type elt := elt end) : sig val t : Set.t t end (** Functor for building representatives of {i maps} from the standard library. *) module Of_map (Map : sig type key val key_t : key t include Map.S with type key := key end) : sig val t : 'v t -> 'v Map.t t end (** An uninhabited type, defined as a variant with no constructors. *) type empty = | val empty : empty t (** [empty] is a representation of the {!empty} type. *) (** {1:records Records} *) type ('a, 'b, 'c) open_record (** The type for representing open records of type ['a] with a constructor of type ['b]. ['c] represents the remaining fields to be described using the {!(|+)} operator. An open record initially satisfies ['c = 'b] and can be {{!sealr} sealed} once ['c = 'a]. *) val record : string -> 'b -> ('a, 'b, 'b) open_record (** [record n f] is an incomplete representation of the record called [n] of type ['a] with constructor [f]. To complete the representation, add fields with {!(|+)} and then seal the record with {!sealr}. The name [n] is used for non-binary encoding/decoding and for pretty printing. *) type ('a, 'b) field (** The type for fields holding values of type ['b] and belonging to a record of type ['a]. *) val field : string -> 'a t -> ('b -> 'a) -> ('b, 'a) field (** [field n t g] is the representation of the field called [n] of type [t] with getter [g]. {b Raises.} [Invalid_argument] if [n] is not valid UTF-8. The name [n] is used for non-binary encoding/decoding and for pretty printing. It must not be used by any other [field] in the record. For instance: {[ type manuscript = { title : string option } let manuscript = field "title" (option string) (fun t -> t.title) ]} *) val ( |+ ) : ('a, 'b, 'c -> 'd) open_record -> ('a, 'c) field -> ('a, 'b, 'd) open_record (** [r |+ f] is the open record [r] augmented with the field [f]. *) val sealr : ('a, 'b, 'a) open_record -> 'a t (** [sealr r] seals the open record [r]. {b Raises.} [Invalid_argument] if two or more fields share the same name. *) (** Putting all together: {[ type menu = { restaurant : string; items : (string * int32) list } let t = record "t" (fun restaurant items -> { restaurant; items }) |+ field "restaurant" string (fun t -> t.restaurant) |+ field "items" (list (pair string int32)) (fun t -> t.items) |> sealr ]} *) (** {1:variants Variants} *) type ('a, 'b, 'c) open_variant (** The type for representing open variants of type ['a] with pattern matching of type ['b]. ['c] represents the remaining constructors to be described using the {!(|~)} operator. An open variant initially satisfies [c' = 'b] and can be {{!sealv} sealed} once ['c = 'a]. *) val variant : string -> 'b -> ('a, 'b, 'b) open_variant (** [variant n p] is an incomplete representation of the variant type called [n] of type ['a] using [p] to deconstruct values. To complete the representation, add cases with {!(|~)} and then seal the variant with {!sealv}. The name [n] is used for non-binary encoding/decoding and for pretty printing. *) type ('a, 'b) case (** The type for representing variant cases of type ['a] with patterns of type ['b]. *) type 'a case_p (** The type for representing patterns for a variant of type ['a]. *) val case0 : string -> 'a -> ('a, 'a case_p) case (** [case0 n v] is a representation of a variant constructor [v] with no arguments and name [n]. {b Raises.} [Invalid_argument] if [n] is not valid UTF-8. The name [n] is used for non-binary encoding/decoding and for pretty printing. It must not by used by any other [case0] in the record. For instance: {[ type t = Foo let foo = case0 "Foo" Foo ]} *) val case1 : string -> 'b t -> ('b -> 'a) -> ('a, 'b -> 'a case_p) case (** [case1 n t c] is a representation of a variant constructor [c] with an argument of type [t] and name [n]. {b Raises.} [Invalid_argument] if [n] is not valid UTF-8. The name [n] is used for non-binary encoding/decoding and for pretty printing. It must not by used by any other [case1] in the record. For instance: {[ type t = Foo of string let foo = case1 "Foo" string (fun s -> Foo s) ]} *) val ( |~ ) : ('a, 'b, 'c -> 'd) open_variant -> ('a, 'c) case -> ('a, 'b, 'd) open_variant (** [v |~ c] is the open variant [v] augmented with the case [c]. *) val sealv : ('a, 'b, 'a -> 'a case_p) open_variant -> 'a t (** [sealv v] seals the open variant [v]. {b Raises.} [Invalid_argument] if two or more cases of same arity share the same name. *) (** Putting all together: {[ type t = Foo | Bar of string let t = variant "t" (fun foo bar -> function Foo -> foo | Bar s -> bar s) |~ case0 "Foo" Foo |~ case1 "Bar" string (fun x -> Bar x) |> sealv ]} *) val enum : string -> (string * 'a) list -> 'a t (** [enum n cs] is a representation of the variant type called [n] with singleton cases [cs]. e.g. {[ type t = Foo | Bar | Toto let t = enum "t" [ ("Foo", Foo); ("Bar", Bar); ("Toto", Toto) ] ]} The name [n] and the case names are used for non-binary encoding/decoding and for pretty printing. {b Raises.} [Invalid_argument] if two or more cases share the same name. *) (** {1:recursive Recursive definitions} [Repr] allows a limited description of recursive records and variants. {b TODO}: describe the limitations, e.g. only regular recursion and no use of the generics inside the [mu*] functions and the usual caveats with recursive values (such as infinite loops on most of the generics which don't check sharing). *) val mu : ('a t -> 'a t) -> 'a t (** [mu f] is the representation [r] such that [r = mu r]. For instance: {[ type x = { x : x option } let x = mu (fun x -> record "x" (fun x -> { x }) |+ field "x" (option x) (fun x -> x.x) |> sealr) ]} *) val mu2 : ('a t -> 'b t -> 'a t * 'b t) -> 'a t * 'b t (** [mu2 f] is the representations [r] and [s] such that [r, s = mu2 r s]. For instance: {[ type r = { foo : int; bar : string list; z : z option } and z = { x : int; r : r list } (* Build the representation of [r] knowing [z]'s. *) let mkr z = record "r" (fun foo bar z -> { foo; bar; z }) |+ field "foo" int (fun t -> t.foo) |+ field "bar" (list string) (fun t -> t.bar) |+ field "z" (option z) (fun t -> t.z) |> sealr (* And the representation of [z] knowing [r]'s. *) let mkz r = record "z" (fun x r -> { x; r }) |+ field "x" int (fun t -> t.x) |+ field "r" (list r) (fun t -> t.r) |> sealr (* Tie the loop. *) let r, z = mu2 (fun r z -> (mkr z, mkz y)) ]} *) (** {1 Staging} *) type +'a staged (** The type for staged operations. *) val stage : 'a -> 'a staged (** [stage x] stages [x], where [x] would typically be a function that is expensive to construct. *) val unstage : 'a staged -> 'a (** [unstage x] unstages [x]. Both [stage] and [unstage] are implemented with the identity function. As the {{!generics} generic operations} tend to be used repeatedly with the same left-most parameters, this type trick encourages the user to specialise them only once for performance reasons. For instance: {[ let t = Repr.(pair int bool) let compare = Repr.(unstage (compare t)) let sorted_list = List.init 42_000 (fun _ -> (Random.int 100_000, Random.bool ())) |> List.sort compare ]} *) (** {1:generics Generic Operations} Given a value ['a t], it is possible to define generic operations on value of type ['a] such as pretty-printing, parsing and unparsing. *) type 'a equal = ('a -> 'a -> bool) staged val equal : 'a t -> 'a equal (** [equal t] is the equality function between values of type [t]. *) type 'a compare = ('a -> 'a -> int) staged val compare : 'a t -> 'a compare (** [compare t] compares values of type [t]. *) type 'a pp = 'a Fmt.t (** The type for pretty-printers. *) type 'a of_string = string -> ('a, [ `Msg of string ]) result (** The type for parsers. *) val pp : 'a t -> 'a pp (** [pp t] is the pretty-printer for values of type [t]. *) val pp_dump : 'a t -> 'a pp (** [pp_dump t] is the dump pretty-printer for values of type [t]. This pretty-printer outputs an encoding which is as close as possible to native OCaml syntax, so that the result can easily be copy-pasted into an OCaml REPL to inspect the value further. *) val pp_ty : 'a t pp (** The pretty printer for generics of type {!t}. *) val to_string : 'a t -> 'a -> string (** [to_string t] is [Fmt.to_to_string (pp t)]. *) val of_string : 'a t -> 'a of_string (** [of_string t] parses values of type [t]. *) (** {2 JSON converters} *) module Json : sig (** Overlay on top of Jsonm to work with rewindable streams. *) type decoder (** The type for JSON decoder. *) val decoder : ?encoding:[< Jsonm.encoding ] -> [< Jsonm.src ] -> decoder (** Same as [Jsonm.decoder]. *) val decode : decoder -> [> `Await | `End | `Error of Jsonm.error | `Lexeme of Jsonm.lexeme ] (** Same as [Jsonm.decode]. *) val rewind : decoder -> Jsonm.lexeme -> unit (** [rewind d l] rewinds [l] on top of the current state of [d]. This allows to put back lexemes already seen. *) val assoc : 'a t -> (string * 'a) list t (** [assoc v] is the typerepr of an association list (assoc) in which keys are strings and values are of typerepr [v]. The JSON codec represents such an assoc as a JSON object. *) end type 'a encode_json = Jsonm.encoder -> 'a -> unit (** The type for JSON encoders. *) type 'a decode_json = Json.decoder -> ('a, [ `Msg of string ]) result (** The type for JSON decoders. *) val pp_json : ?minify:bool -> 'a t -> 'a Fmt.t (** Similar to {!dump} but pretty-prints the JSON representation instead of the OCaml one. See {!encode_json} for details about the encoding. For instance: {[ type t = { foo : int option; bar : string list } let t = record "r" (fun foo bar -> { foo; bar }) |+ field "foo" (option int) (fun t -> t.foo) |+ field "bar" (list string) (fun t -> t.bar) |> sealr let s = Fmt.strf "%a\n" (pp t) { foo = None; bar = [ "foo" ] } (* s is "{ foo = None; bar = [\"foo\"]; }" *) let j = Fmt.strf "%a\n" (pp_json t) { foo = None; bar = [ "foo" ] } (* j is "{ \"bar\":[\"foo\"] }" *) ]} {b NOTE:} this will automatically convert JSON fragments to valid JSON objects by adding an enclosing array if necessary. *) val encode_json : 'a t -> Jsonm.encoder -> 'a -> unit (** [encode_json t e] encodes [t] into the {{:http://erratique.ch/software/jsonm} jsonm} encoder [e]. The encoding is a relatively straightforward translation of the OCaml structure into JSON. The main highlights are: - The unit value [()] is translated into the empty object [{}]. - OCaml ints are translated into JSON floats. - OCaml strings are translated into JSON strings. You must then ensure that the OCaml strings contains only valid UTF-8 characters. - OCaml options are translated differently depending on context: record fields with a value of [None] are removed from the JSON object; record fields with a value of [Some x] are automatically unboxed into x; and outside of records, [None] is translated into [null] and [Some x] into [{"some": x'}] with [x'] the JSON encoding of [x]. - Variant cases built using {!case0} are represented as strings. - Variant cases built using {!case1} are represented as a record with one field; the field name is the name of the variant. {b NOTE:} this can be used to encode JSON fragments. It's the responsibility of the caller to ensure that the encoded JSON fragment fits properly into a well-formed JSON object. *) val decode_json : 'a t -> Jsonm.decoder -> ('a, [ `Msg of string ]) result (** [decode_json t e] decodes values of type [t] from the {{:http://erratique.ch/software/jsonm} jsonm} decoder [e]. *) val decode_json_lexemes : 'a t -> Jsonm.lexeme list -> ('a, [ `Msg of string ]) result (** [decode_json_lexemes] is similar to {!decode_json} but uses an already decoded list of JSON lexemes instead of a decoder. *) val to_json_string : ?minify:bool -> 'a t -> 'a -> string (** [to_json_string] is {!encode_json} with a string encoder. *) val of_json_string : 'a t -> string -> ('a, [ `Msg of string ]) result (** [of_json_string] is {!decode_json} with a string decoder .*) (** {2 Binary Converters} *) type 'a encode_bin = ('a -> (string -> unit) -> unit) staged (** The type for binary encoders. *) type 'a decode_bin = (string -> int -> int * 'a) staged (** The type for binary decoders. *) type 'a size_of = ('a -> int option) staged (** The type for size function related to binary encoder/decoders. *) type 'a short_hash := (?seed:int -> 'a -> int) staged val short_hash : 'a t -> 'a short_hash (** [hash t x] is a short hash of [x] of type [t]. *) val pre_hash : 'a t -> 'a encode_bin (** [pre_hash t x] is the string representation of [x], of type [t], which will be used to compute the digest of the value. By default it's [to_bin_string t x] but it can be overriden by {!v}, {!like} and {!map} operators. *) val encode_bin : 'a t -> 'a encode_bin (** [encode_bin t] is the binary encoder for values of type [t]. *) val decode_bin : 'a t -> 'a decode_bin (** [decode_bin t] is the binary decoder for values of type [t]. *) val to_bin_string : 'a t -> ('a -> string) staged (** [to_bin_string t x] use {!encode_bin} to convert [x], of type [t], to a string. {b NOTE:} When [t] is {!Type.string} or {!Type.bytes}, the original buffer [x] is not prefixed by its size as {!encode_bin} would do. If [t] is {!Type.string}, the result is [x] (without copy). *) val of_bin_string : 'a t -> (string -> ('a, [ `Msg of string ]) result) staged (** [of_bin_string t s] is [v] such that [s = to_bin_string t v]. {b NOTE:} When [t] is {!Type.string}, the result is [s] (without copy). *) val size_of : 'a t -> 'a size_of (** [size_of t x] is either the size of [encode_bin t x] or the binary encoding of [x], if the backend is not able to pre-compute serialisation lengths. *) module Unboxed : sig (** Unboxed operations assumes that value being serialized is fully filling the underlying buffer. When that's the case, it is not necessary to prefix the value's binary representation by its size, as it is exactly the buffer's size. Unboxed operations only apply to top-level string-like values. These are defined as follows: - they are not not embedded in a larger structured values; - they are either of type {!string} or {!bytes}; - or they are built by combining {!like} and {!map} operators to top-level string-like values. When unboxed operations are applied to values not supporting that operation, they automatically fall-back to their boxed counter-part. *) val encode_bin : 'a t -> 'a encode_bin (** Same as {!encode_bin} for unboxed values. *) val decode_bin : 'a t -> 'a decode_bin (** Same as {!decode_bin} for unboxed values. *) val size_of : 'a t -> 'a size_of (** Same as {!size_of} for unboxed values. *) end (** {1 Abstract types} *) val abstract : pp:'a pp -> of_string:'a of_string -> json:'a encode_json * 'a decode_json -> bin:'a encode_bin * 'a decode_bin * 'a size_of -> ?unboxed_bin:'a encode_bin * 'a decode_bin * 'a size_of -> equal:'a equal -> compare:'a compare -> short_hash:'a short_hash -> pre_hash:'a encode_bin -> unit -> 'a t (** The representation of an {i abstract} type, with an internal structure that is opaque to Repr, that supports the generic operations above. *) (** {2 Overriding specific operations} For a given type representation, each generic operation can be implemented in one of the following ways: *) type 'a impl = | Structural (** The automatic implementation derived from the type structure. *) | Custom of 'a (** A hand-written implementation. *) | Undefined (** An unimplemented operation that raises {!Unsupported_operation} when invoked. *) exception Unsupported_operation of string val partially_abstract : pp:'a pp impl -> of_string:'a of_string impl -> json:('a encode_json * 'a decode_json) impl -> bin:('a encode_bin * 'a decode_bin * 'a size_of) impl -> unboxed_bin:('a encode_bin * 'a decode_bin * 'a size_of) impl -> equal:'a equal impl -> compare:'a compare impl -> short_hash:'a short_hash impl -> pre_hash:'a encode_bin impl -> 'a t -> 'a t (** [partially_abstract t] is a partially-abstract type with internal representation [t]. The named arguments specify the implementation of each of the generic operations on this type. *) val like : ?pp:'a pp -> ?of_string:'a of_string -> ?json:'a encode_json * 'a decode_json -> ?bin:'a encode_bin * 'a decode_bin * 'a size_of -> ?unboxed_bin:'a encode_bin * 'a decode_bin * 'a size_of -> ?equal:'a equal -> ?compare:'a compare -> ?short_hash:'a short_hash -> ?pre_hash:'a encode_bin -> 'a t -> 'a t (** A wrapper around {!partially_abstract} with each operation defaulting to [`Structural] and admitting a [`Custom] override. {b Note}: if [~compare] is passed and [~equal] is not then the default equality function [(fun x y -> compare x y = 0)] will be used. *) val map : ?pp:'a pp -> ?of_string:'a of_string -> ?json:'a encode_json * 'a decode_json -> ?bin:'a encode_bin * 'a decode_bin * 'a size_of -> ?unboxed_bin:'a encode_bin * 'a decode_bin * 'a size_of -> ?equal:'a equal -> ?compare:'a compare -> ?short_hash:'a short_hash -> ?pre_hash:'a encode_bin -> 'b t -> ('b -> 'a) -> ('a -> 'b) -> 'a t (** This combinator allows defining a representative of one type in terms of another by supplying coercions between them. For a representative of [Stdlib.Map], see {!Of_map}. *) type 'a ty = 'a t module type S = sig type t val t : t ty end end module type Type = sig include DSL (** @inline *) module type DSL = DSL end