package repr

  1. Overview
  2. Docs

Source file type_intf.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
module type DSL = sig
  (** {1 Type Combinators} *)

  type 'a t
  (** The type for runtime representation of values of type ['a]. *)

  type len = [ `Int | `Int8 | `Int16 | `Int32 | `Int64 | `Fixed of int ]
  (** The type of integer used to store buffers, list or array lengths.

      [Int] use a (compressed) variable encoding to encode integers in a binary
      format, while [IntX] always use [X] bytes. Overflows are not detected. *)

  (** {1:primitives Primitives} *)

  val unit : unit t
  (** [unit] is a representation of the unit type. *)

  val bool : bool t
  (** [bool] is a representation of the boolean type. *)

  val char : char t
  (** [char] is a representation of the character type. *)

  val int : int t
  (** [int] is a representation of integers. Binary serialization uses a
      varying-width representation. *)

  val int32 : int32 t
  (** [int32] is a representation of the 32-bit integer type. *)

  val int64 : int64 t
  (** [int64] is a representation of the 64-bit integer type. *)

  val float : float t
  (** [float] is a representation of the [float] type. *)

  val string : string t
  (** [string] is a representation of the [string] type. *)

  val bytes : bytes t
  (** [bytes] is a representation of the [bytes] type. *)

  val string_of : len -> string t
  (** Like {!string} but with a given kind of size. *)

  val bytes_of : len -> bytes t
  (** Like {!bytes} but with a given kind of size. *)

  val boxed : 'a t -> 'a t
  (** [boxed t] is the same as [t] but with a binary representation which is
      always boxed (e.g. top-level values won't be unboxed). This forces
      {!Unboxed} functions to be exactly the same as boxed ones.*)

  val list : ?len:len -> 'a t -> 'a list t
  (** [list t] is a representation of lists of values of type [t]. *)

  val array : ?len:len -> 'a t -> 'a array t
  (** [array t] is a representation of arrays of values of type [t]. *)

  val option : 'a t -> 'a option t
  (** [option t] is a representation of values of type [t option]. *)

  val pair : 'a t -> 'b t -> ('a * 'b) t
  (** [pair x y] is a representation of values of type [x * y]. *)

  val triple : 'a t -> 'b t -> 'c t -> ('a * 'b * 'c) t
  (** [triple x y z] is a representation of values of type [x * y * z]. *)

  val result : 'a t -> 'b t -> ('a, 'b) result t
  (** [result a b] is a representation of values of type [(a, b) result]. *)

  val either : 'a t -> 'b t -> ('a, 'b) Either.t t
  (** [either a b] is a representation of values of type [(a, b) Either.t]. *)

  val seq : 'a t -> 'a Seq.t t
  (** [seq t] is a representation of sequences of values of type [t]. *)

  val ref : 'a t -> 'a ref t
  (** [ref t] is a representation of references to values of type [t].

      {b Note}: derived deserialisation functions will not preserve reference
      sharing. *)

  val lazy_t : 'a t -> 'a Lazy.t t
  (** [lazy_t t] is a representation of lazy values of type [t].

      {b Note}: derived deserialisation functions on the resulting type will not
      be lazy. *)

  val queue : 'a t -> 'a Queue.t t
  (** [queue t] is a representation of queues of values of type [t]. *)

  val stack : 'a t -> 'a Stack.t t
  (** [stack t] is a representation of stacks of values of type [t]. *)

  val hashtbl : 'k t -> 'v t -> ('k, 'v) Hashtbl.t t
  (** [hashtbl k v] is a representation of hashtables with keys of type [k] and
      values of type [v]. *)

  val set :
    (module Set.S with type elt = 'elt and type t = 'set) -> 'elt t -> 'set t
  (** [set (module Set) elt] is a representation of sets with elements of type
      [elt]. See {!Of_set} for a functorised equivalent of this function. *)

  (** Functor for building representatives of {i sets} from the standard
      library. *)
  module Of_set (Set : sig
    type elt

    val elt_t : elt t

    include Set.S with type elt := elt
  end) : sig
    val t : Set.t t
  end

  (** Functor for building representatives of {i maps} from the standard
      library. *)
  module Of_map (Map : sig
    type key

    val key_t : key t

    include Map.S with type key := key
  end) : sig
    val t : 'v t -> 'v Map.t t
  end

  (** An uninhabited type, defined as a variant with no constructors. *)
  type empty = |

  val empty : empty t
  (** [empty] is a representation of the {!empty} type. *)

  (** {1:records Records} *)

  type ('a, 'b, 'c) open_record
  (** The type for representing open records of type ['a] with a constructor of
      type ['b]. ['c] represents the remaining fields to be described using the
      {!(|+)} operator. An open record initially satisfies ['c = 'b] and can be
      {{!sealr} sealed} once ['c = 'a]. *)

  val record : string -> 'b -> ('a, 'b, 'b) open_record
  (** [record n f] is an incomplete representation of the record called [n] of
      type ['a] with constructor [f]. To complete the representation, add fields
      with {!(|+)} and then seal the record with {!sealr}.

      The name [n] is used for non-binary encoding/decoding and for pretty
      printing. *)

  type ('a, 'b) field
  (** The type for fields holding values of type ['b] and belonging to a record
      of type ['a]. *)

  val field : string -> 'a t -> ('b -> 'a) -> ('b, 'a) field
  (** [field n t g] is the representation of the field called [n] of type [t]
      with getter [g]. {b Raises.} [Invalid_argument] if [n] is not valid UTF-8.

      The name [n] is used for non-binary encoding/decoding and for pretty
      printing. It must not be used by any other [field] in the record.

      For instance:

      {[
        type manuscript = { title : string option }

        let manuscript = field "title" (option string) (fun t -> t.title)
      ]} *)

  val ( |+ ) :
    ('a, 'b, 'c -> 'd) open_record -> ('a, 'c) field -> ('a, 'b, 'd) open_record
  (** [r |+ f] is the open record [r] augmented with the field [f]. *)

  val sealr : ('a, 'b, 'a) open_record -> 'a t
  (** [sealr r] seals the open record [r]. {b Raises.} [Invalid_argument] if two
      or more fields share the same name. *)

  (** Putting all together:

      {[
        type menu = { restaurant : string; items : (string * int32) list }

        let t =
          record "t" (fun restaurant items -> { restaurant; items })
          |+ field "restaurant" string (fun t -> t.restaurant)
          |+ field "items" (list (pair string int32)) (fun t -> t.items)
          |> sealr
      ]} *)

  (** {1:variants Variants} *)

  type ('a, 'b, 'c) open_variant
  (** The type for representing open variants of type ['a] with pattern matching
      of type ['b]. ['c] represents the remaining constructors to be described
      using the {!(|~)} operator. An open variant initially satisfies [c' = 'b]
      and can be {{!sealv} sealed} once ['c = 'a]. *)

  val variant : string -> 'b -> ('a, 'b, 'b) open_variant
  (** [variant n p] is an incomplete representation of the variant type called
      [n] of type ['a] using [p] to deconstruct values. To complete the
      representation, add cases with {!(|~)} and then seal the variant with
      {!sealv}.

      The name [n] is used for non-binary encoding/decoding and for pretty
      printing. *)

  type ('a, 'b) case
  (** The type for representing variant cases of type ['a] with patterns of type
      ['b]. *)

  type 'a case_p
  (** The type for representing patterns for a variant of type ['a]. *)

  val case0 : string -> 'a -> ('a, 'a case_p) case
  (** [case0 n v] is a representation of a variant constructor [v] with no
      arguments and name [n]. {b Raises.} [Invalid_argument] if [n] is not valid
      UTF-8.

      The name [n] is used for non-binary encoding/decoding and for pretty
      printing. It must not by used by any other [case0] in the record.

      For instance:

      {[
        type t = Foo

        let foo = case0 "Foo" Foo
      ]} *)

  val case1 : string -> 'b t -> ('b -> 'a) -> ('a, 'b -> 'a case_p) case
  (** [case1 n t c] is a representation of a variant constructor [c] with an
      argument of type [t] and name [n]. {b Raises.} [Invalid_argument] if [n]
      is not valid UTF-8.

      The name [n] is used for non-binary encoding/decoding and for pretty
      printing. It must not by used by any other [case1] in the record.

      For instance:

      {[
        type t = Foo of string

        let foo = case1 "Foo" string (fun s -> Foo s)
      ]} *)

  val ( |~ ) :
    ('a, 'b, 'c -> 'd) open_variant ->
    ('a, 'c) case ->
    ('a, 'b, 'd) open_variant
  (** [v |~ c] is the open variant [v] augmented with the case [c]. *)

  val sealv : ('a, 'b, 'a -> 'a case_p) open_variant -> 'a t
  (** [sealv v] seals the open variant [v]. {b Raises.} [Invalid_argument] if
      two or more cases of same arity share the same name. *)

  (** Putting all together:

      {[
        type t = Foo | Bar of string

        let t =
          variant "t" (fun foo bar -> function Foo -> foo | Bar s -> bar s)
          |~ case0 "Foo" Foo
          |~ case1 "Bar" string (fun x -> Bar x)
          |> sealv
      ]} *)

  val enum : string -> (string * 'a) list -> 'a t
  (** [enum n cs] is a representation of the variant type called [n] with
      singleton cases [cs]. e.g.

      {[
        type t = Foo | Bar | Toto

        let t = enum "t" [ ("Foo", Foo); ("Bar", Bar); ("Toto", Toto) ]
      ]}

      The name [n] and the case names are used for non-binary encoding/decoding
      and for pretty printing. {b Raises.} [Invalid_argument] if two or more
      cases share the same name. *)

  (** {1:recursive Recursive definitions}

      [Repr] allows a limited description of recursive records and variants.

      {b TODO}: describe the limitations, e.g. only regular recursion and no use
      of the generics inside the [mu*] functions and the usual caveats with
      recursive values (such as infinite loops on most of the generics which
      don't check sharing). *)

  val mu : ('a t -> 'a t) -> 'a t
  (** [mu f] is the representation [r] such that [r = mu r].

      For instance:

      {[
        type x = { x : x option }

        let x =
          mu (fun x ->
              record "x" (fun x -> { x })
              |+ field "x" (option x) (fun x -> x.x)
              |> sealr)
      ]} *)

  val mu2 : ('a t -> 'b t -> 'a t * 'b t) -> 'a t * 'b t
  (** [mu2 f] is the representations [r] and [s] such that [r, s = mu2 r s].

      For instance:

      {[
        type r = { foo : int; bar : string list; z : z option }

        and z = { x : int; r : r list }

        (* Build the representation of [r] knowing [z]'s. *)
        let mkr z =
          record "r" (fun foo bar z -> { foo; bar; z })
          |+ field "foo" int (fun t -> t.foo)
          |+ field "bar" (list string) (fun t -> t.bar)
          |+ field "z" (option z) (fun t -> t.z)
          |> sealr

        (* And the representation of [z] knowing [r]'s. *)
        let mkz r =
          record "z" (fun x r -> { x; r })
          |+ field "x" int (fun t -> t.x)
          |+ field "r" (list r) (fun t -> t.r)
          |> sealr

        (* Tie the loop. *)
        let r, z = mu2 (fun r z -> (mkr z, mkz y))
      ]} *)

  (** {1 Staging} *)

  type +'a staged
  (** The type for staged operations. *)

  val stage : 'a -> 'a staged
  (** [stage x] stages [x], where [x] would typically be a function that is
      expensive to construct. *)

  val unstage : 'a staged -> 'a
  (** [unstage x] unstages [x].

      Both [stage] and [unstage] are implemented with the identity function.

      As the {{!generics} generic operations} tend to be used repeatedly with
      the same left-most parameters, this type trick encourages the user to
      specialise them only once for performance reasons.

      For instance:

      {[
        let t = Repr.(pair int bool)
        let compare = Repr.(unstage (compare t))

        let sorted_list =
          List.init 42_000 (fun _ -> (Random.int 100_000, Random.bool ()))
          |> List.sort compare
      ]} *)

  (** {1:generics Generic Operations}

      Given a value ['a t], it is possible to define generic operations on value
      of type ['a] such as pretty-printing, parsing and unparsing. *)

  type 'a equal = ('a -> 'a -> bool) staged

  val equal : 'a t -> 'a equal
  (** [equal t] is the equality function between values of type [t]. *)

  type 'a compare = ('a -> 'a -> int) staged

  val compare : 'a t -> 'a compare
  (** [compare t] compares values of type [t]. *)

  type 'a pp = 'a Fmt.t
  (** The type for pretty-printers. *)

  type 'a of_string = string -> ('a, [ `Msg of string ]) result
  (** The type for parsers. *)

  val pp : 'a t -> 'a pp
  (** [pp t] is the pretty-printer for values of type [t]. *)

  val pp_dump : 'a t -> 'a pp
  (** [pp_dump t] is the dump pretty-printer for values of type [t].

      This pretty-printer outputs an encoding which is as close as possible to
      native OCaml syntax, so that the result can easily be copy-pasted into an
      OCaml REPL to inspect the value further. *)

  val pp_ty : 'a t pp
  (** The pretty printer for generics of type {!t}. *)

  val to_string : 'a t -> 'a -> string
  (** [to_string t] is [Fmt.to_to_string (pp t)]. *)

  val of_string : 'a t -> 'a of_string
  (** [of_string t] parses values of type [t]. *)

  (** {2 JSON converters} *)

  module Json : sig
    (** Overlay on top of Jsonm to work with rewindable streams. *)

    type decoder
    (** The type for JSON decoder. *)

    val decoder : ?encoding:[< Jsonm.encoding ] -> [< Jsonm.src ] -> decoder
    (** Same as [Jsonm.decoder]. *)

    val decode :
      decoder ->
      [> `Await | `End | `Error of Jsonm.error | `Lexeme of Jsonm.lexeme ]
    (** Same as [Jsonm.decode]. *)

    val rewind : decoder -> Jsonm.lexeme -> unit
    (** [rewind d l] rewinds [l] on top of the current state of [d]. This allows
        to put back lexemes already seen. *)

    val assoc : 'a t -> (string * 'a) list t
    (** [assoc v] is the typerepr of an association list (assoc) in which keys
        are strings and values are of typerepr [v]. The JSON codec represents
        such an assoc as a JSON object. *)
  end

  type 'a encode_json = Jsonm.encoder -> 'a -> unit
  (** The type for JSON encoders. *)

  type 'a decode_json = Json.decoder -> ('a, [ `Msg of string ]) result
  (** The type for JSON decoders. *)

  val pp_json : ?minify:bool -> 'a t -> 'a Fmt.t
  (** Similar to {!dump} but pretty-prints the JSON representation instead of
      the OCaml one. See {!encode_json} for details about the encoding.

      For instance:

      {[
        type t = { foo : int option; bar : string list }

        let t =
          record "r" (fun foo bar -> { foo; bar })
          |+ field "foo" (option int) (fun t -> t.foo)
          |+ field "bar" (list string) (fun t -> t.bar)
          |> sealr

        let s = Fmt.strf "%a\n" (pp t) { foo = None; bar = [ "foo" ] }

        (* s is "{ foo = None; bar = [\"foo\"]; }" *)

        let j = Fmt.strf "%a\n" (pp_json t) { foo = None; bar = [ "foo" ] }

        (* j is "{ \"bar\":[\"foo\"] }" *)
      ]}

      {b NOTE:} this will automatically convert JSON fragments to valid JSON
      objects by adding an enclosing array if necessary. *)

  val encode_json : 'a t -> Jsonm.encoder -> 'a -> unit
  (** [encode_json t e] encodes [t] into the
      {{:http://erratique.ch/software/jsonm} jsonm} encoder [e]. The encoding is
      a relatively straightforward translation of the OCaml structure into JSON.
      The main highlights are:

      - The unit value [()] is translated into the empty object [{}].
      - OCaml ints are translated into JSON floats.
      - OCaml strings are translated into JSON strings. You must then ensure
        that the OCaml strings contains only valid UTF-8 characters.
      - OCaml options are translated differently depending on context: record
        fields with a value of [None] are removed from the JSON object; record
        fields with a value of [Some x] are automatically unboxed into x; and
        outside of records, [None] is translated into [null] and [Some x] into
        [{"some": x'}] with [x'] the JSON encoding of [x].
      - Variant cases built using {!case0} are represented as strings.
      - Variant cases built using {!case1} are represented as a record with one
        field; the field name is the name of the variant.

      {b NOTE:} this can be used to encode JSON fragments. It's the
      responsibility of the caller to ensure that the encoded JSON fragment fits
      properly into a well-formed JSON object. *)

  val decode_json : 'a t -> Jsonm.decoder -> ('a, [ `Msg of string ]) result
  (** [decode_json t e] decodes values of type [t] from the
      {{:http://erratique.ch/software/jsonm} jsonm} decoder [e]. *)

  val decode_json_lexemes :
    'a t -> Jsonm.lexeme list -> ('a, [ `Msg of string ]) result
  (** [decode_json_lexemes] is similar to {!decode_json} but uses an already
      decoded list of JSON lexemes instead of a decoder. *)

  val to_json_string : ?minify:bool -> 'a t -> 'a -> string
  (** [to_json_string] is {!encode_json} with a string encoder. *)

  val of_json_string : 'a t -> string -> ('a, [ `Msg of string ]) result
  (** [of_json_string] is {!decode_json} with a string decoder .*)

  (** {2 Binary Converters} *)

  type 'a encode_bin = ('a -> (string -> unit) -> unit) staged
  (** The type for binary encoders. *)

  type 'a decode_bin = (string -> int -> int * 'a) staged
  (** The type for binary decoders. *)

  type 'a size_of = ('a -> int option) staged
  (** The type for size function related to binary encoder/decoders. *)

  type 'a short_hash := (?seed:int -> 'a -> int) staged

  val short_hash : 'a t -> 'a short_hash
  (** [hash t x] is a short hash of [x] of type [t]. *)

  val pre_hash : 'a t -> 'a encode_bin
  (** [pre_hash t x] is the string representation of [x], of type [t], which
      will be used to compute the digest of the value. By default it's
      [to_bin_string t x] but it can be overriden by {!v}, {!like} and {!map}
      operators. *)

  val encode_bin : 'a t -> 'a encode_bin
  (** [encode_bin t] is the binary encoder for values of type [t]. *)

  val decode_bin : 'a t -> 'a decode_bin
  (** [decode_bin t] is the binary decoder for values of type [t]. *)

  val to_bin_string : 'a t -> ('a -> string) staged
  (** [to_bin_string t x] use {!encode_bin} to convert [x], of type [t], to a
      string.

      {b NOTE:} When [t] is {!Type.string} or {!Type.bytes}, the original buffer
      [x] is not prefixed by its size as {!encode_bin} would do. If [t] is
      {!Type.string}, the result is [x] (without copy). *)

  val of_bin_string : 'a t -> (string -> ('a, [ `Msg of string ]) result) staged
  (** [of_bin_string t s] is [v] such that [s = to_bin_string t v].

      {b NOTE:} When [t] is {!Type.string}, the result is [s] (without copy). *)

  val size_of : 'a t -> 'a size_of
  (** [size_of t x] is either the size of [encode_bin t x] or the binary
      encoding of [x], if the backend is not able to pre-compute serialisation
      lengths. *)

  module Unboxed : sig
    (** Unboxed operations assumes that value being serialized is fully filling
        the underlying buffer. When that's the case, it is not necessary to
        prefix the value's binary representation by its size, as it is exactly
        the buffer's size.

        Unboxed operations only apply to top-level string-like values. These are
        defined as follows:

        - they are not not embedded in a larger structured values;
        - they are either of type {!string} or {!bytes};
        - or they are built by combining {!like} and {!map} operators to
          top-level string-like values.

        When unboxed operations are applied to values not supporting that
        operation, they automatically fall-back to their boxed counter-part. *)

    val encode_bin : 'a t -> 'a encode_bin
    (** Same as {!encode_bin} for unboxed values. *)

    val decode_bin : 'a t -> 'a decode_bin
    (** Same as {!decode_bin} for unboxed values. *)

    val size_of : 'a t -> 'a size_of
    (** Same as {!size_of} for unboxed values. *)
  end

  (** {1 Abstract types} *)

  val abstract :
    pp:'a pp ->
    of_string:'a of_string ->
    json:'a encode_json * 'a decode_json ->
    bin:'a encode_bin * 'a decode_bin * 'a size_of ->
    ?unboxed_bin:'a encode_bin * 'a decode_bin * 'a size_of ->
    equal:'a equal ->
    compare:'a compare ->
    short_hash:'a short_hash ->
    pre_hash:'a encode_bin ->
    unit ->
    'a t
  (** The representation of an {i abstract} type, with an internal structure
      that is opaque to Repr, that supports the generic operations above. *)

  (** {2 Overriding specific operations}

      For a given type representation, each generic operation can be implemented
      in one of the following ways: *)

  type 'a impl =
    | Structural
        (** The automatic implementation derived from the type structure. *)
    | Custom of 'a  (** A hand-written implementation. *)
    | Undefined
        (** An unimplemented operation that raises {!Unsupported_operation} when
            invoked. *)

  exception Unsupported_operation of string

  val partially_abstract :
    pp:'a pp impl ->
    of_string:'a of_string impl ->
    json:('a encode_json * 'a decode_json) impl ->
    bin:('a encode_bin * 'a decode_bin * 'a size_of) impl ->
    unboxed_bin:('a encode_bin * 'a decode_bin * 'a size_of) impl ->
    equal:'a equal impl ->
    compare:'a compare impl ->
    short_hash:'a short_hash impl ->
    pre_hash:'a encode_bin impl ->
    'a t ->
    'a t
  (** [partially_abstract t] is a partially-abstract type with internal
      representation [t]. The named arguments specify the implementation of each
      of the generic operations on this type. *)

  val like :
    ?pp:'a pp ->
    ?of_string:'a of_string ->
    ?json:'a encode_json * 'a decode_json ->
    ?bin:'a encode_bin * 'a decode_bin * 'a size_of ->
    ?unboxed_bin:'a encode_bin * 'a decode_bin * 'a size_of ->
    ?equal:'a equal ->
    ?compare:'a compare ->
    ?short_hash:'a short_hash ->
    ?pre_hash:'a encode_bin ->
    'a t ->
    'a t
  (** A wrapper around {!partially_abstract} with each operation defaulting to
      [`Structural] and admitting a [`Custom] override.

      {b Note}: if [~compare] is passed and [~equal] is not then the default
      equality function [(fun x y -> compare x y = 0)] will be used. *)

  val map :
    ?pp:'a pp ->
    ?of_string:'a of_string ->
    ?json:'a encode_json * 'a decode_json ->
    ?bin:'a encode_bin * 'a decode_bin * 'a size_of ->
    ?unboxed_bin:'a encode_bin * 'a decode_bin * 'a size_of ->
    ?equal:'a equal ->
    ?compare:'a compare ->
    ?short_hash:'a short_hash ->
    ?pre_hash:'a encode_bin ->
    'b t ->
    ('b -> 'a) ->
    ('a -> 'b) ->
    'a t
  (** This combinator allows defining a representative of one type in terms of
      another by supplying coercions between them. For a representative of
      [Stdlib.Map], see {!Of_map}. *)

  type 'a ty = 'a t

  module type S = sig
    type t

    val t : t ty
  end
end

module type Type = sig
  include DSL
  (** @inline *)

  module type DSL = DSL
end
OCaml

Innovation. Community. Security.