package ppx_hash

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file ppx_hash_expander.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
open Base
open Ppxlib
open Ast_builder.Default

module Attrs = struct
  let ignore =
    Attribute.declare "hash.ignore"
      Attribute.Context.label_declaration
      Ast_pattern.(pstr nil)
      ()
  ;;

  let no_hashing =
    Attribute.declare "hash.no_hashing"
      Attribute.Context.label_declaration
      Ast_pattern.(pstr nil)
      ()
  ;;
end

let str_attributes = [
  Attribute.T Attrs.ignore;
  Attribute.T Attrs.no_hashing;
]

let should_ignore_label_declaration ld loc =
  let warning = "[@hash.no_hashing] is deprecated.  Use [@hash.ignore]." in
  let should_ignore =
    if List.exists ~f:(fun attr -> Option.is_some (Attribute.get attr ld))
         [ Attrs.ignore
         ; Ppx_compare_expander.Compare.Attrs.ignore
         ]
    then `ignore
    else `incorporate
  in
  match Attribute.get Attrs.no_hashing ld with
  | None -> should_ignore, None
  | Some () -> `ignore, Some (attribute_of_warning loc warning)
;;

(* Generate code to compute hash values of type [t] in folding style, following the structure of
   the type.  Incorporate all structure when computing hash values, to maximise hash
   quality. Don't attempt to detect/avoid cycles - just loop. *)

let hash_state_t ~loc =
  [%type: Ppx_hash_lib.Std.Hash.state]

let hash_fold_type ~loc ty =
  [%type: [%t hash_state_t ~loc] -> [%t ty] -> [%t hash_state_t ~loc]]

let hash_type ~loc ty =
  [%type: [%t ty] -> Ppx_hash_lib.Std.Hash.hash_value]

(* [expr] is an expression that doesn't use the [hsv] variable.
   Currently it's there only for documentation value, but conceptually it can be thought
   of as an abstract type *)
type expr = expression

(* Represents an expression that produces a hash value and uses the variable [hsv] in
   a linear way (mixes it in exactly once).
   You can think of it as a body of a function of type [Hash.state -> Hash.state] *)
module Hsv_expr : sig
  type t

  val identity : loc:location -> t

  val invoke_hash_fold_t : loc:location -> hash_fold_t:expr -> t:expr -> t

  val compose : loc:location -> t -> t -> t

  (** the [_unchecked] functions all break abstraction in some way *)
  val of_expression_unchecked : expr -> t

  (** the returned [expression] uses the binding [hsv] bound by [pattern] *)
  val to_expression : loc:location -> t -> (pattern * expression)

  (* [case] is binding a variable that's not [hsv] and uses [hsv] on the rhs
     exactly once *)
  type case
  val pexp_match : loc:location -> expr -> case list -> t

  (* [lhs] should not bind [hsv] *)
  val case : lhs:pattern -> guard:expr option -> rhs:t -> case

  (* [value_binding]s should not bind or use [hsv] *)
  val pexp_let : loc:location -> rec_flag -> value_binding list -> t -> t

  val with_attributes : f:(attribute list -> attribute list) -> t -> t
end = struct
  type t = expression

  type nonrec case = case

  let invoke_hash_fold_t ~loc ~hash_fold_t ~t =
    eapply ~loc
      hash_fold_t [[%expr hsv]; t]

  let identity ~loc = [%expr hsv]

  let compose ~loc a b =
    [%expr
      let hsv = [%e a] in
      [%e b]
    ]

  let to_expression ~loc x = ([%pat? hsv], x)
  let of_expression_unchecked x = x

  let pexp_match = pexp_match
  let case = case
  let pexp_let = pexp_let
  let with_attributes ~f x =
    { x with pexp_attributes = f x.pexp_attributes }
end

let hash_fold_int ~loc i : Hsv_expr.t =
  Hsv_expr.invoke_hash_fold_t ~loc
    ~hash_fold_t:[%expr Ppx_hash_lib.Std.Hash.fold_int]
    ~t:(eint ~loc i)

let special_case_types_named_t = function
  | `hash_fold -> false
  | `hash -> true

let hash_fold_ tn =
  match tn with
  | "t" when special_case_types_named_t `hash_fold -> "hash_fold"
  | _ -> "hash_fold_" ^ tn

let hash_ tn =
  match tn with
  | "t" when special_case_types_named_t `hash -> "hash"
  | _ -> "hash_" ^ tn

(** renames [x] avoiding collision with [type_name] *)
let rigid_type_var ~type_name x =
  let prefix = "rigid_" in
  if String.equal x type_name || String.is_prefix x ~prefix
  then prefix ^ x ^ "_of_type_" ^ type_name
  else x

let make_type_rigid ~type_name =
  let map = object
    inherit Ast_traverse.map as super
    method! core_type ty =
      let ptyp_desc =
        let () = (* making sure [type_name] is the only free type variable *)
          match ty.ptyp_desc with
          | Ptyp_constr (name, _args) ->
            (match name.txt with
             | Ldot _ | Lapply _ -> ()
             | Lident name ->
               if (not (String.equal name type_name)) then
                 Location.raise_errorf ~loc:ty.ptyp_loc
                   "ppx_hash: make_type_rigid: unexpected type %S. expected to only find %S"
                   (string_of_core_type ty)
                   type_name;
               ())
          | _ -> ()
        in
        match ty.ptyp_desc with
        | Ptyp_var s ->
          Ptyp_constr (Located.lident ~loc:ty.ptyp_loc (rigid_type_var ~type_name s), [])
        | desc -> super#core_type_desc desc
      in
      { ty with ptyp_desc }
  end in
  map#core_type

(* The only names we assume to be in scope are [hash_fold_<TY>]
   So we are sure [tp_name] (which start with an [_]) will not capture them. *)
let tp_name n = Printf.sprintf "_hash_fold_%s" n

let with_tuple
      loc
      (value : expr)
      xs
      (f : (expr * core_type) list -> Hsv_expr.t) : Hsv_expr.t  =
  let names = List.mapi ~f:(fun i t -> Printf.sprintf "e%d" i, t) xs in
  let pattern =
    let l = List.map ~f:(fun (n, _) -> pvar ~loc n) names in
    ppat_tuple ~loc l
  in
  let e = f (List.map ~f:(fun (n,t) -> (evar ~loc n, t)) names) in
  let binding  = value_binding ~loc ~pat:pattern ~expr:value in
  Hsv_expr.pexp_let ~loc Nonrecursive [binding] e

let rec hash_applied ty value =
  let loc = ty.ptyp_loc in
  match ty.ptyp_desc with
  | Ptyp_constr (name, ta) ->
    let args = List.map ta ~f:(hash_fold_of_ty_fun ~type_constraint:false) in
    Hsv_expr.invoke_hash_fold_t
      ~loc
      ~hash_fold_t:(
        type_constr_conv ~loc name ~f:hash_fold_ args)
      ~t:value
  | _ -> assert false

and hash_fold_of_tuple ~loc tys value =
  with_tuple loc value tys (fun elems1 ->
    List.fold_right elems1 ~init:(Hsv_expr.identity ~loc) ~f:(fun (v, t) (result : Hsv_expr.t) ->
      Hsv_expr.compose ~loc
        (hash_fold_of_ty t v)
        result
    ))

and hash_variant ~loc row_fields value =
  let map = function
    | Rtag ({ txt = cnstr; _ }, _attrs, true, _) | Rtag ({ txt = cnstr; _ }, _attrs, _, []) ->
      Hsv_expr.case ~guard:None
        ~lhs:(ppat_variant ~loc cnstr None)
        ~rhs:(hash_fold_int ~loc (Ocaml_common.Btype.hash_variant cnstr))
    | Rtag ({ txt = cnstr; _ }, _attrs, false, tp :: _) ->
      let v = "_v" in
      let body =
        Hsv_expr.compose ~loc
          (hash_fold_int ~loc (Ocaml_common.Btype.hash_variant cnstr))
          (hash_fold_of_ty tp (evar ~loc v))
      in
      Hsv_expr.case ~guard:None
        ~lhs:(ppat_variant ~loc cnstr (Some (pvar ~loc v)))
        ~rhs:body
    | Rinherit ({ ptyp_desc = Ptyp_constr (id, _); _ } as ty) ->
      (* Generated code from..
         type 'a id = 'a [@@deriving hash]
         type t = [ `a | [ `b ] id ] [@@deriving hash]
         doesn't compile: Also see the "sadly" note in: ppx_compare_expander.ml *)
      let v = "_v" in
      Hsv_expr.case ~guard:None
        ~lhs:(ppat_alias ~loc (ppat_type ~loc id) (Located.mk ~loc v))
        ~rhs:(hash_applied ty (evar ~loc v))
    | Rinherit ty ->
      let s = string_of_core_type ty in
      Location.raise_errorf ~loc "ppx_hash: impossible variant case: %s" s
  in
  Hsv_expr.pexp_match ~loc value (List.map ~f:map row_fields)

and branch_of_sum hsv ~loc cd =
  match cd.pcd_args with
  | Pcstr_tuple [] ->
    let pcnstr = pconstruct cd None in
    Hsv_expr.case ~guard:None ~lhs:pcnstr ~rhs:hsv
  | Pcstr_tuple tps ->
    let ids_ty =
      List.mapi tps ~f:(fun i ty -> (Printf.sprintf "_a%d" i, ty))
    in
    let lpatt = List.map ids_ty ~f:(fun (l,_ty) -> pvar ~loc l) |> ppat_tuple ~loc
    and body =
      List.fold_left ids_ty
        ~init:(Hsv_expr.identity ~loc)
        ~f:(fun expr (l,ty) ->
          Hsv_expr.compose ~loc
            expr
            (hash_fold_of_ty ty (evar ~loc l)))
    in
    Hsv_expr.case ~guard:None
      ~lhs:(pconstruct cd (Some lpatt))
      ~rhs:(
        Hsv_expr.compose ~loc
          hsv
          body)
  | Pcstr_record lds ->
    let arg = "_ir" in
    let pat = pvar ~loc arg in
    let v = evar ~loc arg in
    let body = hash_fold_of_record ~loc lds v in
    Hsv_expr.case ~guard:None
      ~lhs:(pconstruct cd (Some pat))
      ~rhs:(
        Hsv_expr.compose ~loc
          hsv
          body)

and branches_of_sum = function
  | [cd] ->
    (* this is an optimization: we don't need to mix in the constructor tag if the type
       only has one constructor *)
    let loc = cd.pcd_loc in
    [branch_of_sum (Hsv_expr.identity ~loc) ~loc cd]
  | cds ->
    List.mapi cds ~f:(fun i cd ->
      let loc = cd.pcd_loc in
      let hsv = hash_fold_int ~loc i in
      branch_of_sum hsv ~loc cd
    )

and hash_sum ~loc cds value =
  Hsv_expr.pexp_match ~loc value (branches_of_sum cds)

and hash_fold_of_ty ty value =
  let loc = ty.ptyp_loc in
  match ty.ptyp_desc with
  | Ptyp_constr _ -> hash_applied ty value
  | Ptyp_tuple tys -> hash_fold_of_tuple ~loc tys value
  | Ptyp_var name ->
    Hsv_expr.invoke_hash_fold_t
      ~loc
      ~hash_fold_t:(evar ~loc (tp_name name))
      ~t:value
  | Ptyp_arrow _ ->
    Location.raise_errorf ~loc "ppx_hash: functions can not be hashed."
  | Ptyp_variant (row_fields, Closed, None) ->
    hash_variant ~loc row_fields value
  | _ ->
    let s = string_of_core_type ty in
    Location.raise_errorf ~loc "ppx_hash: unsupported type: %s" s

and hash_fold_of_ty_fun ~type_constraint ty =
  let loc = ty.ptyp_loc in
  let arg = "arg" in
  let maybe_constrained_arg =
    if type_constraint then
      ppat_constraint ~loc (pvar ~loc arg) ty
    else
      pvar ~loc arg
  in
  let hsv_pat, hsv_expr =
    Hsv_expr.to_expression ~loc (
      (hash_fold_of_ty ty (evar ~loc arg)))
  in
  eta_reduce_if_possible
    [%expr
      fun [%p hsv_pat] [%p maybe_constrained_arg] ->
        [%e hsv_expr ]
    ]

and hash_fold_of_record ~loc lds value =
  let is_evar = function
    | { pexp_desc = Pexp_ident _; _ } -> true
    | _                               -> false
  in
  assert (is_evar value);
  List.fold_left lds ~init:(Hsv_expr.identity ~loc) ~f:(fun hsv ld ->
    Hsv_expr.compose ~loc hsv (
      let loc = ld.pld_loc in
      let label = Located.map lident ld.pld_name in
      let should_ignore, should_warn = should_ignore_label_declaration ld loc in
      let field_handling =
        match ld.pld_mutable, should_ignore with
        | Mutable, `incorporate
          -> `error "require [@hash.ignore] or [@compare.ignore] on mutable record field"
        | (Mutable | Immutable), `ignore ->
          `ignore
        | Immutable, `incorporate ->
          `incorporate
      in
      let hsv =
        match field_handling with
        | `error s -> Location.raise_errorf ~loc "ppx_hash: %s" s
        | `incorporate ->
          hash_fold_of_ty ld.pld_type (pexp_field ~loc value label)
        | `ignore -> Hsv_expr.identity ~loc
      in
      match should_warn with
      | None -> hsv
      | Some attribute ->
        Hsv_expr.with_attributes ~f:(fun attributes -> attribute :: attributes) hsv
    ))

let hash_fold_of_abstract ~loc type_name value =
  let str =
    Printf.sprintf
      "hash called on the type %s, which is abstract in an implementation."
      type_name
  in
  Hsv_expr.of_expression_unchecked (
    [%expr
      let _ = hsv in
      let _ = [%e value] in
      failwith [%e estring ~loc str]
    ])

(** this does not change behavior (keeps the expression side-effect if any),
    but it can make the compiler happy when the expression occurs on the rhs
    of an [let rec] binding. *)
let eta_expand ~loc f =
  [%expr let func = [%e f] in fun x -> func x]

let recognize_simple_type ty = match ty.ptyp_desc with
  | Ptyp_constr(lident, []) -> Some lident
  | _ -> None

let hash_of_ty_fun ~special_case_simple_types ~type_constraint ty =
  let loc = ty.ptyp_loc in
  let arg = "arg" in
  let maybe_constrained_arg =
    if type_constraint then
      ppat_constraint ~loc (pvar ~loc arg) ty
    else
      pvar ~loc arg
  in
  match recognize_simple_type ty with
  | Some lident when special_case_simple_types ->
    unapplied_type_constr_conv ~loc lident ~f:hash_
  | _ ->
    let hsv_pat, hsv_expr =
      Hsv_expr.to_expression ~loc
        (hash_fold_of_ty ty (evar ~loc arg))
    in
    [%expr
      fun [%p maybe_constrained_arg] ->
        Ppx_hash_lib.Std.Hash.get_hash_value (
          let [%p hsv_pat] = Ppx_hash_lib.Std.Hash.create () in
          [%e hsv_expr])
    ]

let hash_structure_item_of_td td =
  let loc = td.ptype_loc in
  match td.ptype_params with
  | _::_ -> []
  | [] -> [
      let bnd = pvar ~loc (hash_ td.ptype_name.txt) in
      let typ = combinator_type_of_type_declaration td ~f:hash_type in
      let pat = ppat_constraint ~loc bnd typ in
      let expected_scope, expr =
        let is_simple_type ty = match recognize_simple_type ty with
          | Some _ -> true
          | None -> false
        in
        match td.ptype_kind, td.ptype_manifest with
        | Ptype_abstract, Some ty when is_simple_type ty ->
          `uses_rhs,
          (hash_of_ty_fun ~special_case_simple_types:true ~type_constraint:false ty)
        | _ ->
          `uses_hash_fold_t_being_defined,
          (hash_of_ty_fun ~special_case_simple_types:false ~type_constraint:false
             { ptyp_loc = loc;
               ptyp_attributes = [];
               ptyp_desc =
                 Ptyp_constr ({ loc; txt = Lident td.ptype_name.txt }, []); })
      in
      expected_scope, value_binding ~loc ~pat ~expr:(eta_expand ~loc expr)
    ]

let hash_fold_structure_item_of_td td ~rec_flag =
  let loc = td.ptype_loc in
  let arg = "arg" in
  let body =
    let v      = evar ~loc arg in
    match td.ptype_kind with
    | Ptype_variant cds -> hash_sum ~loc cds v
    | Ptype_record  lds -> hash_fold_of_record ~loc lds v
    | Ptype_open ->
      Location.raise_errorf ~loc
        "ppx_hash: open types are not supported"
    | Ptype_abstract ->
      match td.ptype_manifest with
      | None -> hash_fold_of_abstract ~loc td.ptype_name.txt v
      | Some ty ->
        match ty.ptyp_desc with
        | Ptyp_variant (_, Open, _) | Ptyp_variant (_, Closed, Some (_ :: _)) ->
          Location.raise_errorf ~loc:ty.ptyp_loc
            "ppx_hash: cannot hash open polymorphic variant types"
        | Ptyp_variant (row_fields, _, _) ->
          hash_variant ~loc row_fields v
        | _ ->
          hash_fold_of_ty ty v
  in
  let vars = List.map td.ptype_params ~f:(fun p -> (get_type_param_name p)) in
  let extra_names = List.map vars ~f:(fun x -> tp_name x.txt) in
  let hsv_pat, hsv_expr = Hsv_expr.to_expression ~loc body in
  let patts = List.map extra_names ~f:(pvar ~loc) @ [ hsv_pat; pvar ~loc arg ] in
  let bnd = pvar ~loc (hash_fold_ td.ptype_name.txt) in
  let scheme = combinator_type_of_type_declaration td ~f:hash_fold_type in
  let pat = ppat_constraint ~loc bnd (ptyp_poly ~loc vars scheme) in
  let expr =
    eta_reduce_if_possible_and_nonrec ~rec_flag (
      eabstract ~loc patts hsv_expr)
  in
  let use_rigid_variables = match td.ptype_kind with | Ptype_variant _ -> true | _ -> false in
  let expr =
    if use_rigid_variables then
      let type_name = td.ptype_name.txt in
      List.fold_right vars ~f:(fun s ->
        pexp_newtype ~loc { txt = rigid_type_var ~type_name s.txt; loc = s.loc; })
        ~init:(pexp_constraint ~loc expr (make_type_rigid ~type_name scheme))
    else
      expr
  in
  value_binding ~loc ~pat ~expr

let pstr_value ~loc rec_flag bindings = match bindings with
  | [] -> []
  | nonempty_bindings ->
    (* [pstr_value] with zero bindings is invalid *)
    [ pstr_value ~loc rec_flag nonempty_bindings ]

let str_type_decl ~loc ~path:_ (rec_flag, tds) =
  let rec_flag =
    (object
      inherit type_is_recursive rec_flag tds as super

      method! label_declaration ld =
        match fst (should_ignore_label_declaration ld ld.pld_loc) with
        | `ignore -> ()
        | `incorporate -> super#label_declaration ld

    end)#go ()
  in
  let hash_fold_bindings = List.map ~f:(hash_fold_structure_item_of_td ~rec_flag) tds in
  let hash_bindings =
    List.concat (List.map ~f:hash_structure_item_of_td tds)
  in
  match rec_flag with
  | Recursive ->
    (* if we wanted to maximize the scope hygiene here this would be, in this order:
       - recursive group of [hash_fold]
       - nonrecursive group of [hash] that are [`uses_hash_fold_t_being_defined]
       - recursive group of [hash] that are [`uses_rhs]
         but fighting the "unused rec flag" warning is just way too hard *)
    pstr_value ~loc Recursive (hash_fold_bindings @ List.map ~f:snd hash_bindings)
  | Nonrecursive ->
    let rely_on_hash_fold_t, use_rhs =
      List.partition_map hash_bindings ~f:(function
        | `uses_hash_fold_t_being_defined, binding ->
          `Fst binding
        | `uses_rhs, binding ->
          `Snd binding)
    in
    pstr_value ~loc Nonrecursive (hash_fold_bindings @ use_rhs) @
    pstr_value ~loc Nonrecursive rely_on_hash_fold_t

let sig_type_decl ~loc:_ ~path:_ (_rec_flag, tds) =
  List.concat (List.map tds ~f:(fun td ->
    let monomorphic = List.is_empty td.ptype_params in
    let definition ~f_type ~f_name =
      let type_ =
        combinator_type_of_type_declaration td ~f:f_type
      in
      let name =
        let tn = td.ptype_name.txt in
        f_name tn
      in
      let loc = td.ptype_loc in
      psig_value ~loc (
        value_description ~loc ~name:{ td.ptype_name with txt = name }
          ~type_ ~prim:[])
    in
    List.concat [
      [                     definition ~f_type:hash_fold_type ~f_name:hash_fold_];
      (if monomorphic then [definition ~f_type:hash_type      ~f_name:hash_     ] else []);
    ]))

let hash_fold_core_type ty = hash_fold_of_ty_fun ~type_constraint:true ty
let hash_core_type ty = hash_of_ty_fun ~special_case_simple_types:true ~type_constraint:true ty
OCaml

Innovation. Community. Security.