package owl

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file owl_dense_ndarray_intf.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
# 1 "src/owl/dense/owl_dense_ndarray_intf.ml"
(*
 * OWL - OCaml Scientific and Engineering Computing
 * Copyright (c) 2016-2020 Liang Wang <liang.wang@cl.cam.ac.uk>
 *)

open Bigarray
open Owl_types

module type Common = sig
  include Owl_base_dense_ndarray_intf.Common

  (* NOTE: below are all the functions that have
     not been implemented in Base*)

  (** {5 Create N-dimensional array} *)

  val linspace : elt -> elt -> int -> arr
  (**
``linspace k 0. 9. 10`` ...
 *)

  val logspace : ?base:float -> elt -> elt -> int -> arr
  (**
``logspace k 0. 9. 10`` ...
 *)

  val unit_basis : int -> int -> arr
  (**
``unit_basis k n i`` returns a unit basis vector with ``i``th element set to 1.
 *)

  (** {5 Obtain basic properties} *)

  val num_dims : arr -> int

  val nth_dim : arr -> int -> int

  val nnz : arr -> int

  val density : arr -> float

  val size_in_bytes : arr -> int

  val same_shape : arr -> arr -> bool

  val same_data : arr -> arr -> bool

  val ind : arr -> int -> int array

  val i1d : arr -> int array -> int

  (** {5 Manipulate a N-dimensional array} *)

  val get_index : arr -> int array array -> elt array

  val set_index : arr -> int array array -> elt array -> unit

  val get_fancy : index list -> arr -> arr

  val set_fancy : index list -> arr -> arr -> unit

  val sub_left : arr -> int -> int -> arr

  val sub_ndarray : int array -> arr -> arr array

  val slice_left : arr -> int array -> arr

  val fill : arr -> elt -> unit

  val resize : ?head:bool -> arr -> int array -> arr

  val flip : ?axis:int -> arr -> arr

  val rotate : arr -> int -> arr

  val swap : int -> int -> arr -> arr

  val concat_vertical : arr -> arr -> arr

  val concat_horizontal : arr -> arr -> arr

  val concat_vh : arr array array -> arr

  val split_vh : (int * int) array array -> arr -> arr array array

  val dropout : ?rate:float -> arr -> arr

  val top : arr -> int -> int array array

  val bottom : arr -> int -> int array array

  val sort : arr -> arr

  val sort1 : ?axis:int -> arr -> arr

  val argsort : arr -> (int64, int64_elt, c_layout) Genarray.t

  val mmap : Unix.file_descr -> ?pos:int64 -> bool -> int array -> arr

  (** {5 Iterate array elements} *)

  val iter2i : (int -> elt -> elt -> unit) -> arr -> arr -> unit

  val iter2 : (elt -> elt -> unit) -> arr -> arr -> unit

  val map2i : (int -> elt -> elt -> elt) -> arr -> arr -> arr

  val map2 : (elt -> elt -> elt) -> arr -> arr -> arr

  val iteri_nd : (int array -> elt -> unit) -> arr -> unit

  val mapi_nd : (int array -> elt -> elt) -> arr -> arr

  val foldi_nd : ?axis:int -> (int array -> elt -> elt -> elt) -> elt -> arr -> arr

  val scani_nd : ?axis:int -> (int array -> elt -> elt -> elt) -> arr -> arr

  val filteri_nd : (int array -> elt -> bool) -> arr -> int array array

  val iter2i_nd : (int array -> elt -> elt -> unit) -> arr -> arr -> unit

  val map2i_nd : (int array -> elt -> elt -> elt) -> arr -> arr -> arr

  val iteri_slice : ?axis:int -> (int -> arr -> unit) -> arr -> unit

  val iter_slice : ?axis:int -> (arr -> unit) -> arr -> unit

  val mapi_slice : ?axis:int -> (int -> arr -> 'c) -> arr -> 'c array

  val map_slice : ?axis:int -> (arr -> 'c) -> arr -> 'c array

  val filteri_slice : ?axis:int -> (int -> arr -> bool) -> arr -> arr array

  val filter_slice : ?axis:int -> (arr -> bool) -> arr -> arr array

  val foldi_slice : ?axis:int -> (int -> 'c -> arr -> 'c) -> 'c -> arr -> 'c

  val fold_slice : ?axis:int -> ('c -> arr -> 'c) -> 'c -> arr -> 'c

  (** {5 Examine array elements or compare two arrays } *)

  val approx_equal : ?eps:float -> arr -> arr -> bool

  val approx_equal_scalar : ?eps:float -> arr -> elt -> bool

  val approx_elt_equal : ?eps:float -> arr -> arr -> arr

  val approx_elt_equal_scalar : ?eps:float -> arr -> elt -> arr

  (** {5 Input/Output functions} *)

  val to_array : arr -> elt array

  val save : out:string -> arr -> unit

  val load : string -> arr

  val save_npy : out:string -> arr -> unit

  val load_npy : string -> arr

  (** {5 Unary mathematical operations } *)

  val prod : ?axis:int -> ?keep_dims:bool -> arr -> arr

  val prod' : arr -> elt

  val mean : ?axis:int -> ?keep_dims:bool -> arr -> arr

  val mean' : arr -> elt

  val median' : arr -> elt

  val median : ?axis:int -> ?keep_dims:bool -> arr -> arr

  val var : ?axis:int -> ?keep_dims:bool -> arr -> arr

  val var' : arr -> elt

  val std : ?axis:int -> ?keep_dims:bool -> arr -> arr

  val std' : arr -> elt

  val sem : ?axis:int -> ?keep_dims:bool -> arr -> arr

  val sem' : arr -> elt

  val minmax : ?axis:int -> ?keep_dims:bool -> arr -> arr * arr

  val minmax' : arr -> elt * elt

  val min_i : arr -> elt * int array

  val max_i : arr -> elt * int array

  val minmax_i : arr -> (elt * int array) * (elt * int array)

  val abs2 : arr -> arr

  val conj : arr -> arr

  val reci : arr -> arr

  val reci_tol : ?tol:elt -> arr -> arr

  val cbrt : arr -> arr

  val exp2 : arr -> arr

  val exp10 : arr -> arr

  val expm1 : arr -> arr

  val log1p : arr -> arr

  val trunc : arr -> arr

  val fix : arr -> arr

  val modf : arr -> arr * arr

  val l1norm : ?axis:int -> ?keep_dims:bool -> arr -> arr

  val l1norm' : arr -> elt

  val l2norm : ?axis:int -> ?keep_dims:bool -> arr -> arr

  val l2norm' : arr -> elt

  val l2norm_sqr : ?axis:int -> ?keep_dims:bool -> arr -> arr

  val l2norm_sqr' : arr -> elt

  val vecnorm : ?axis:int -> ?p:float -> ?keep_dims:bool -> arr -> arr

  val vecnorm' : ?p:float -> arr -> elt

  val cumsum : ?axis:int -> arr -> arr

  val cumprod : ?axis:int -> arr -> arr

  val cummin : ?axis:int -> arr -> arr

  val cummax : ?axis:int -> arr -> arr

  val diff : ?axis:int -> ?n:int -> arr -> arr

  val lgamma : arr -> arr

  (** {5 Binary mathematical operations } *)

  val min2 : arr -> arr -> arr

  val max2 : arr -> arr -> arr

  val ssqr' : arr -> elt -> elt

  val ssqr_diff' : arr -> arr -> elt

  val clip_by_value : ?amin:elt -> ?amax:elt -> arr -> arr

  val clip_by_l2norm : elt -> arr -> arr

  (** {5 Tensor Calculus} *)

  val contract1 : (int * int) array -> arr -> arr

  val contract2 : (int * int) array -> arr -> arr -> arr

  (** {5 Experimental functions} *)

  val sum_slices : ?axis:int -> arr -> arr

  val slide : ?axis:int -> ?ofs:int -> ?step:int -> window:int -> arr -> arr

  (** {5 Functions of in-place modification } *)

  val create_ : out:arr -> elt -> unit

  val uniform_ : ?a:elt -> ?b:elt -> out:arr -> unit

  val gaussian_ : ?mu:elt -> ?sigma:elt -> out:arr -> unit

  val sequential_ : ?a:elt -> ?step:elt -> out:arr -> unit

  val bernoulli_ : ?p:float -> out:arr -> unit

  val zeros_ : out:arr -> unit

  val ones_ : out:arr -> unit

  val sort_ : arr -> unit

  val one_hot_ : out:arr -> int -> arr -> unit

  val get_fancy_ : out:arr -> index list -> arr -> unit

  val set_fancy_ : out:arr -> index list -> arr -> arr -> unit

  val get_slice_ : out:arr -> int list list -> arr -> unit

  val set_slice_ : out:arr -> int list list -> arr -> arr -> unit

  val reshape_ : out:arr -> arr -> unit

  val reverse_ : out:arr -> arr -> unit

  val transpose_ : out:arr -> ?axis:int array -> arr -> unit

  val repeat_ : out:arr -> arr -> int array -> unit

  val tile_ : out:arr -> arr -> int array -> unit

  val pad_ : out:arr -> ?v:elt -> int list list -> arr -> unit

  val sum_ : out:arr -> axis:int -> arr -> unit

  val min_ : out:arr -> axis:int -> arr -> unit

  val max_ : out:arr -> axis:int -> arr -> unit

  val add_ : ?out:arr -> arr -> arr -> unit

  val sub_ : ?out:arr -> arr -> arr -> unit

  val mul_ : ?out:arr -> arr -> arr -> unit

  val div_ : ?out:arr -> arr -> arr -> unit

  val pow_ : ?out:arr -> arr -> arr -> unit

  val atan2_ : ?out:arr -> arr -> arr -> unit

  val hypot_ : ?out:arr -> arr -> arr -> unit

  val fmod_ : ?out:arr -> arr -> arr -> unit

  val min2_ : ?out:arr -> arr -> arr -> unit

  val max2_ : ?out:arr -> arr -> arr -> unit

  val add_scalar_ : ?out:arr -> arr -> elt -> unit

  val sub_scalar_ : ?out:arr -> arr -> elt -> unit

  val mul_scalar_ : ?out:arr -> arr -> elt -> unit

  val div_scalar_ : ?out:arr -> arr -> elt -> unit

  val pow_scalar_ : ?out:arr -> arr -> elt -> unit

  val atan2_scalar_ : ?out:arr -> arr -> elt -> unit

  val fmod_scalar_ : ?out:arr -> arr -> elt -> unit

  val scalar_add_ : ?out:arr -> elt -> arr -> unit

  val scalar_sub_ : ?out:arr -> elt -> arr -> unit

  val scalar_mul_ : ?out:arr -> elt -> arr -> unit

  val scalar_div_ : ?out:arr -> elt -> arr -> unit

  val scalar_pow_ : ?out:arr -> elt -> arr -> unit

  val scalar_atan2_ : ?out:arr -> elt -> arr -> unit

  val scalar_fmod_ : ?out:arr -> elt -> arr -> unit

  val fma_ : ?out:arr -> arr -> arr -> arr -> unit

  val clip_by_value_ : ?out:arr -> ?amin:elt -> ?amax:elt -> arr -> unit

  val clip_by_l2norm_ : ?out:arr -> elt -> arr -> unit

  val dot_
    :  ?transa:bool
    -> ?transb:bool
    -> ?alpha:elt
    -> ?beta:elt
    -> c:arr
    -> arr
    -> arr
    -> unit

  val conj_ : ?out:arr -> arr -> unit

  val abs_ : ?out:arr -> arr -> unit

  val neg_ : ?out:arr -> arr -> unit

  val reci_ : ?out:arr -> arr -> unit

  val signum_ : ?out:arr -> arr -> unit

  val sqr_ : ?out:arr -> arr -> unit

  val sqrt_ : ?out:arr -> arr -> unit

  val cbrt_ : ?out:arr -> arr -> unit

  val exp_ : ?out:arr -> arr -> unit

  val exp2_ : ?out:arr -> arr -> unit

  val exp10_ : ?out:arr -> arr -> unit

  val expm1_ : ?out:arr -> arr -> unit

  val log_ : ?out:arr -> arr -> unit

  val log2_ : ?out:arr -> arr -> unit

  val log10_ : ?out:arr -> arr -> unit

  val log1p_ : ?out:arr -> arr -> unit

  val sin_ : ?out:arr -> arr -> unit

  val cos_ : ?out:arr -> arr -> unit

  val tan_ : ?out:arr -> arr -> unit

  val asin_ : ?out:arr -> arr -> unit

  val acos_ : ?out:arr -> arr -> unit

  val atan_ : ?out:arr -> arr -> unit

  val sinh_ : ?out:arr -> arr -> unit

  val cosh_ : ?out:arr -> arr -> unit

  val tanh_ : ?out:arr -> arr -> unit

  val asinh_ : ?out:arr -> arr -> unit

  val acosh_ : ?out:arr -> arr -> unit

  val atanh_ : ?out:arr -> arr -> unit

  val floor_ : ?out:arr -> arr -> unit

  val ceil_ : ?out:arr -> arr -> unit

  val round_ : ?out:arr -> arr -> unit

  val trunc_ : ?out:arr -> arr -> unit

  val fix_ : ?out:arr -> arr -> unit

  val erf_ : ?out:arr -> arr -> unit

  val erfc_ : ?out:arr -> arr -> unit

  val relu_ : ?out:arr -> arr -> unit

  val softplus_ : ?out:arr -> arr -> unit

  val softsign_ : ?out:arr -> arr -> unit

  val sigmoid_ : ?out:arr -> arr -> unit

  val softmax_ : ?out:arr -> ?axis:int -> arr -> unit

  val cumsum_ : ?out:arr -> ?axis:int -> arr -> unit

  val cumprod_ : ?out:arr -> ?axis:int -> arr -> unit

  val cummin_ : ?out:arr -> ?axis:int -> arr -> unit

  val cummax_ : ?out:arr -> ?axis:int -> arr -> unit

  val dropout_ : ?out:arr -> ?rate:float -> arr -> unit

  val elt_equal_ : ?out:arr -> arr -> arr -> unit

  val elt_not_equal_ : ?out:arr -> arr -> arr -> unit

  val elt_less_ : ?out:arr -> arr -> arr -> unit

  val elt_greater_ : ?out:arr -> arr -> arr -> unit

  val elt_less_equal_ : ?out:arr -> arr -> arr -> unit

  val elt_greater_equal_ : ?out:arr -> arr -> arr -> unit

  val elt_equal_scalar_ : ?out:arr -> arr -> elt -> unit

  val elt_not_equal_scalar_ : ?out:arr -> arr -> elt -> unit

  val elt_less_scalar_ : ?out:arr -> arr -> elt -> unit

  val elt_greater_scalar_ : ?out:arr -> arr -> elt -> unit

  val elt_less_equal_scalar_ : ?out:arr -> arr -> elt -> unit

  val elt_greater_equal_scalar_ : ?out:arr -> arr -> elt -> unit
  (** {5 Matrix functions} *)

  val col : arr -> int -> arr

  val cols : arr -> int array -> arr

  val dot : arr -> arr -> arr

  val trace : arr -> elt

  val to_arrays : arr -> elt array array

  val draw_rows : ?replacement:bool -> arr -> int -> arr * int array

  val draw_cols : ?replacement:bool -> arr -> int -> arr * int array

  val draw_rows2 : ?replacement:bool -> arr -> arr -> int -> arr * arr * int array

  val draw_cols2 : ?replacement:bool -> arr -> arr -> int -> arr * arr * int array
end

module type Real = sig
  include Owl_base_dense_ndarray_intf.Real

  (* NOTE: below are all the functions that have
     not been implemented in Base*)

  (** {5 Real operations} *)

  val i0 : arr -> arr

  val i0e : arr -> arr

  val i1 : arr -> arr

  val i1e : arr -> arr

  val iv : v:arr -> arr -> arr

  val scalar_iv : v:elt -> arr -> arr

  val iv_scalar : v:arr -> elt -> arr

  val j0 : arr -> arr

  val j1 : arr -> arr

  val jv : v:arr -> arr -> arr

  val scalar_jv : v:elt -> arr -> arr

  val jv_scalar : v:arr -> elt -> arr

  val erf : arr -> arr

  val erfc : arr -> arr

  val logistic : arr -> arr

  val elu : ?alpha:elt -> arr -> arr

  val leaky_relu : ?alpha:elt -> arr -> arr

  val softplus : arr -> arr

  val softsign : arr -> arr

  val softmax : ?axis:int -> arr -> arr

  val sigmoid : arr -> arr

  val log_sum_exp' : arr -> float

  val log_sum_exp : ?axis:int -> ?keep_dims:bool -> arr -> arr

  val scalar_atan2 : elt -> arr -> arr

  val atan2_scalar : arr -> elt -> arr

  val hypot : arr -> arr -> arr

  val fmod : arr -> arr -> arr

  val fmod_scalar : arr -> elt -> arr

  val scalar_fmod : elt -> arr -> arr

  val cross_entropy' : arr -> arr -> float

  val fused_adagrad_ : ?out:arr -> rate:float -> eps:float -> arr -> unit

  val poisson : mu:elt -> int array -> arr

  val poisson_ : mu:elt -> out:arr -> unit
end

module type Complex = sig
  type elt

  type arr

  type cast_arr

  (** {5 Complex operations} *)

  val complex : cast_arr -> cast_arr -> arr
  (**
``complex re im`` constructs a complex ndarray/matrix from ``re`` and ``im``.
``re`` and ``im`` contain the real and imaginary part of ``x`` respectively.

Note that both ``re`` and ``im`` can be complex but must have same type. The real
part of ``re`` will be the real part of ``x`` and the imaginary part of ``im`` will
be the imaginary part of ``x``.
 *)

  val polar : cast_arr -> cast_arr -> arr
  (**
``polar rho theta`` constructs a complex ndarray/matrix from polar
coordinates ``rho`` and ``theta``. ``rho`` contains the magnitudes and ``theta``
contains phase angles. Note that the behaviour is undefined if ``rho`` has
negative elelments or ``theta`` has infinity elelments.
 *)

  val re : arr -> cast_arr

  val im : arr -> cast_arr

  val sum' : arr -> elt
end

module type Distribution = sig
  type arr

  (** {5 Stats & distribution functions} *)

  val uniform_rvs : a:arr -> b:arr -> n:int -> arr

  val uniform_pdf : a:arr -> b:arr -> arr -> arr

  val uniform_logpdf : a:arr -> b:arr -> arr -> arr

  val uniform_cdf : a:arr -> b:arr -> arr -> arr

  val uniform_logcdf : a:arr -> b:arr -> arr -> arr

  val uniform_ppf : a:arr -> b:arr -> arr -> arr

  val uniform_sf : a:arr -> b:arr -> arr -> arr

  val uniform_logsf : a:arr -> b:arr -> arr -> arr

  val uniform_isf : a:arr -> b:arr -> arr -> arr

  val gaussian_rvs : mu:arr -> sigma:arr -> n:int -> arr

  val gaussian_pdf : mu:arr -> sigma:arr -> arr -> arr

  val gaussian_logpdf : mu:arr -> sigma:arr -> arr -> arr

  val gaussian_cdf : mu:arr -> sigma:arr -> arr -> arr

  val gaussian_logcdf : mu:arr -> sigma:arr -> arr -> arr

  val gaussian_ppf : mu:arr -> sigma:arr -> arr -> arr

  val gaussian_sf : mu:arr -> sigma:arr -> arr -> arr

  val gaussian_logsf : mu:arr -> sigma:arr -> arr -> arr

  val gaussian_isf : mu:arr -> sigma:arr -> arr -> arr

  val exponential_rvs : lambda:arr -> n:int -> arr

  val exponential_pdf : lambda:arr -> arr -> arr

  val exponential_logpdf : lambda:arr -> arr -> arr

  val exponential_cdf : lambda:arr -> arr -> arr

  val exponential_logcdf : lambda:arr -> arr -> arr

  val exponential_ppf : lambda:arr -> arr -> arr

  val exponential_sf : lambda:arr -> arr -> arr

  val exponential_logsf : lambda:arr -> arr -> arr

  val exponential_isf : lambda:arr -> arr -> arr

  val gamma_rvs : shape:arr -> scale:arr -> n:int -> arr

  val gamma_pdf : shape:arr -> scale:arr -> arr -> arr

  val gamma_logpdf : shape:arr -> scale:arr -> arr -> arr

  val gamma_cdf : shape:arr -> scale:arr -> arr -> arr

  val gamma_logcdf : shape:arr -> scale:arr -> arr -> arr

  val gamma_ppf : shape:arr -> scale:arr -> arr -> arr

  val gamma_sf : shape:arr -> scale:arr -> arr -> arr

  val gamma_logsf : shape:arr -> scale:arr -> arr -> arr

  val gamma_isf : shape:arr -> scale:arr -> arr -> arr

  val beta_rvs : a:arr -> b:arr -> n:int -> arr

  val beta_pdf : a:arr -> b:arr -> arr -> arr

  val beta_logpdf : a:arr -> b:arr -> arr -> arr

  val beta_cdf : a:arr -> b:arr -> arr -> arr

  val beta_logcdf : a:arr -> b:arr -> arr -> arr

  val beta_ppf : a:arr -> b:arr -> arr -> arr

  val beta_sf : a:arr -> b:arr -> arr -> arr

  val beta_logsf : a:arr -> b:arr -> arr -> arr

  val beta_isf : a:arr -> b:arr -> arr -> arr

  val chi2_rvs : df:arr -> n:int -> arr

  val chi2_pdf : df:arr -> arr -> arr

  val chi2_logpdf : df:arr -> arr -> arr

  val chi2_cdf : df:arr -> arr -> arr

  val chi2_logcdf : df:arr -> arr -> arr

  val chi2_ppf : df:arr -> arr -> arr

  val chi2_sf : df:arr -> arr -> arr

  val chi2_logsf : df:arr -> arr -> arr

  val chi2_isf : df:arr -> arr -> arr

  val f_rvs : dfnum:arr -> dfden:arr -> n:int -> arr

  val f_pdf : dfnum:arr -> dfden:arr -> arr -> arr

  val f_logpdf : dfnum:arr -> dfden:arr -> arr -> arr

  val f_cdf : dfnum:arr -> dfden:arr -> arr -> arr

  val f_logcdf : dfnum:arr -> dfden:arr -> arr -> arr

  val f_ppf : dfnum:arr -> dfden:arr -> arr -> arr

  val f_sf : dfnum:arr -> dfden:arr -> arr -> arr

  val f_logsf : dfnum:arr -> dfden:arr -> arr -> arr

  val f_isf : dfnum:arr -> dfden:arr -> arr -> arr

  val cauchy_rvs : loc:arr -> scale:arr -> n:int -> arr

  val cauchy_pdf : loc:arr -> scale:arr -> arr -> arr

  val cauchy_logpdf : loc:arr -> scale:arr -> arr -> arr

  val cauchy_cdf : loc:arr -> scale:arr -> arr -> arr

  val cauchy_logcdf : loc:arr -> scale:arr -> arr -> arr

  val cauchy_ppf : loc:arr -> scale:arr -> arr -> arr

  val cauchy_sf : loc:arr -> scale:arr -> arr -> arr

  val cauchy_logsf : loc:arr -> scale:arr -> arr -> arr

  val cauchy_isf : loc:arr -> scale:arr -> arr -> arr

  val lomax_rvs : shape:arr -> scale:arr -> n:int -> arr

  val lomax_pdf : shape:arr -> scale:arr -> arr -> arr

  val lomax_logpdf : shape:arr -> scale:arr -> arr -> arr

  val lomax_cdf : shape:arr -> scale:arr -> arr -> arr

  val lomax_logcdf : shape:arr -> scale:arr -> arr -> arr

  val lomax_ppf : shape:arr -> scale:arr -> arr -> arr

  val lomax_sf : shape:arr -> scale:arr -> arr -> arr

  val lomax_logsf : shape:arr -> scale:arr -> arr -> arr

  val lomax_isf : shape:arr -> scale:arr -> arr -> arr

  val weibull_rvs : shape:arr -> scale:arr -> n:int -> arr

  val weibull_pdf : shape:arr -> scale:arr -> arr -> arr

  val weibull_logpdf : shape:arr -> scale:arr -> arr -> arr

  val weibull_cdf : shape:arr -> scale:arr -> arr -> arr

  val weibull_logcdf : shape:arr -> scale:arr -> arr -> arr

  val weibull_ppf : shape:arr -> scale:arr -> arr -> arr

  val weibull_sf : shape:arr -> scale:arr -> arr -> arr

  val weibull_logsf : shape:arr -> scale:arr -> arr -> arr

  val weibull_isf : shape:arr -> scale:arr -> arr -> arr

  val laplace_rvs : loc:arr -> scale:arr -> n:int -> arr

  val laplace_pdf : loc:arr -> scale:arr -> arr -> arr

  val laplace_logpdf : loc:arr -> scale:arr -> arr -> arr

  val laplace_cdf : loc:arr -> scale:arr -> arr -> arr

  val laplace_logcdf : loc:arr -> scale:arr -> arr -> arr

  val laplace_ppf : loc:arr -> scale:arr -> arr -> arr

  val laplace_sf : loc:arr -> scale:arr -> arr -> arr

  val laplace_logsf : loc:arr -> scale:arr -> arr -> arr

  val laplace_isf : loc:arr -> scale:arr -> arr -> arr

  val gumbel1_rvs : a:arr -> b:arr -> n:int -> arr

  val gumbel1_pdf : a:arr -> b:arr -> arr -> arr

  val gumbel1_logpdf : a:arr -> b:arr -> arr -> arr

  val gumbel1_cdf : a:arr -> b:arr -> arr -> arr

  val gumbel1_logcdf : a:arr -> b:arr -> arr -> arr

  val gumbel1_ppf : a:arr -> b:arr -> arr -> arr

  val gumbel1_sf : a:arr -> b:arr -> arr -> arr

  val gumbel1_logsf : a:arr -> b:arr -> arr -> arr

  val gumbel1_isf : a:arr -> b:arr -> arr -> arr

  val gumbel2_rvs : a:arr -> b:arr -> n:int -> arr

  val gumbel2_pdf : a:arr -> b:arr -> arr -> arr

  val gumbel2_logpdf : a:arr -> b:arr -> arr -> arr

  val gumbel2_cdf : a:arr -> b:arr -> arr -> arr

  val gumbel2_logcdf : a:arr -> b:arr -> arr -> arr

  val gumbel2_ppf : a:arr -> b:arr -> arr -> arr

  val gumbel2_sf : a:arr -> b:arr -> arr -> arr

  val gumbel2_logsf : a:arr -> b:arr -> arr -> arr

  val gumbel2_isf : a:arr -> b:arr -> arr -> arr

  val logistic_rvs : loc:arr -> scale:arr -> n:int -> arr

  val logistic_pdf : loc:arr -> scale:arr -> arr -> arr

  val logistic_logpdf : loc:arr -> scale:arr -> arr -> arr

  val logistic_cdf : loc:arr -> scale:arr -> arr -> arr

  val logistic_logcdf : loc:arr -> scale:arr -> arr -> arr

  val logistic_ppf : loc:arr -> scale:arr -> arr -> arr

  val logistic_sf : loc:arr -> scale:arr -> arr -> arr

  val logistic_logsf : loc:arr -> scale:arr -> arr -> arr

  val logistic_isf : loc:arr -> scale:arr -> arr -> arr

  val lognormal_rvs : mu:arr -> sigma:arr -> n:int -> arr

  val lognormal_pdf : mu:arr -> sigma:arr -> arr -> arr

  val lognormal_logpdf : mu:arr -> sigma:arr -> arr -> arr

  val lognormal_cdf : mu:arr -> sigma:arr -> arr -> arr

  val lognormal_logcdf : mu:arr -> sigma:arr -> arr -> arr

  val lognormal_ppf : mu:arr -> sigma:arr -> arr -> arr

  val lognormal_sf : mu:arr -> sigma:arr -> arr -> arr

  val lognormal_logsf : mu:arr -> sigma:arr -> arr -> arr

  val lognormal_isf : mu:arr -> sigma:arr -> arr -> arr

  val rayleigh_rvs : sigma:arr -> n:int -> arr

  val rayleigh_pdf : sigma:arr -> arr -> arr

  val rayleigh_logpdf : sigma:arr -> arr -> arr

  val rayleigh_cdf : sigma:arr -> arr -> arr

  val rayleigh_logcdf : sigma:arr -> arr -> arr

  val rayleigh_ppf : sigma:arr -> arr -> arr

  val rayleigh_sf : sigma:arr -> arr -> arr

  val rayleigh_logsf : sigma:arr -> arr -> arr

  val rayleigh_isf : sigma:arr -> arr -> arr
end

module type NN = sig
  include Owl_base_dense_ndarray_intf.NN

  (* NOTE: below are all the functions that have
     not been implemented in Base*)

  (** {5 Neural network related functions} *)

  val max_pool2d_argmax
    :  ?padding:padding
    -> arr
    -> int array
    -> int array
    -> arr * (int64, int64_elt, c_layout) Genarray.t

  val conv1d_ : out:arr -> ?padding:padding -> arr -> arr -> int array -> unit

  val conv2d_ : out:arr -> ?padding:padding -> arr -> arr -> int array -> unit

  val conv3d_ : out:arr -> ?padding:padding -> arr -> arr -> int array -> unit

  val dilated_conv1d_
    :  out:arr
    -> ?padding:padding
    -> arr
    -> arr
    -> int array
    -> int array
    -> unit

  val dilated_conv2d_
    :  out:arr
    -> ?padding:padding
    -> arr
    -> arr
    -> int array
    -> int array
    -> unit

  val dilated_conv3d_
    :  out:arr
    -> ?padding:padding
    -> arr
    -> arr
    -> int array
    -> int array
    -> unit

  val transpose_conv1d_ : out:arr -> ?padding:padding -> arr -> arr -> int array -> unit

  val transpose_conv2d_ : out:arr -> ?padding:padding -> arr -> arr -> int array -> unit

  val transpose_conv3d_ : out:arr -> ?padding:padding -> arr -> arr -> int array -> unit

  val max_pool1d_ : out:arr -> ?padding:padding -> arr -> int array -> int array -> unit

  val max_pool2d_ : out:arr -> ?padding:padding -> arr -> int array -> int array -> unit

  val max_pool3d_ : out:arr -> ?padding:padding -> arr -> int array -> int array -> unit

  val avg_pool1d_ : out:arr -> ?padding:padding -> arr -> int array -> int array -> unit

  val avg_pool2d_ : out:arr -> ?padding:padding -> arr -> int array -> int array -> unit

  val avg_pool3d_ : out:arr -> ?padding:padding -> arr -> int array -> int array -> unit

  val upsampling2d_ : out:arr -> arr -> int array -> unit

  val conv1d_backward_input_ : out:arr -> arr -> arr -> int array -> arr -> unit

  val conv1d_backward_kernel_ : out:arr -> arr -> arr -> int array -> arr -> unit

  val conv2d_backward_input_ : out:arr -> arr -> arr -> int array -> arr -> unit

  val conv2d_backward_kernel_ : out:arr -> arr -> arr -> int array -> arr -> unit

  val conv3d_backward_input_ : out:arr -> arr -> arr -> int array -> arr -> unit

  val conv3d_backward_kernel_ : out:arr -> arr -> arr -> int array -> arr -> unit

  val dilated_conv1d_backward_input_
    :  out:arr
    -> arr
    -> arr
    -> int array
    -> int array
    -> arr
    -> unit

  val dilated_conv1d_backward_kernel_
    :  out:arr
    -> arr
    -> arr
    -> int array
    -> int array
    -> arr
    -> unit

  val dilated_conv2d_backward_input_
    :  out:arr
    -> arr
    -> arr
    -> int array
    -> int array
    -> arr
    -> unit

  val dilated_conv2d_backward_kernel_
    :  out:arr
    -> arr
    -> arr
    -> int array
    -> int array
    -> arr
    -> unit

  val dilated_conv3d_backward_input_
    :  out:arr
    -> arr
    -> arr
    -> int array
    -> int array
    -> arr
    -> unit

  val dilated_conv3d_backward_kernel_
    :  out:arr
    -> arr
    -> arr
    -> int array
    -> int array
    -> arr
    -> unit

  val transpose_conv1d_backward_input_ : out:arr -> arr -> arr -> int array -> arr -> unit

  val transpose_conv1d_backward_kernel_
    :  out:arr
    -> arr
    -> arr
    -> int array
    -> arr
    -> unit

  val transpose_conv2d_backward_input_ : out:arr -> arr -> arr -> int array -> arr -> unit

  val transpose_conv2d_backward_kernel_
    :  out:arr
    -> arr
    -> arr
    -> int array
    -> arr
    -> unit

  val transpose_conv3d_backward_input_ : out:arr -> arr -> arr -> int array -> arr -> unit

  val transpose_conv3d_backward_kernel_
    :  out:arr
    -> arr
    -> arr
    -> int array
    -> arr
    -> unit

  val max_pool1d_backward_
    :  out:arr
    -> padding
    -> arr
    -> int array
    -> int array
    -> arr
    -> unit

  val max_pool2d_backward_
    :  out:arr
    -> padding
    -> arr
    -> int array
    -> int array
    -> arr
    -> unit

  val max_pool3d_backward_
    :  out:arr
    -> padding
    -> arr
    -> int array
    -> int array
    -> arr
    -> unit

  val avg_pool1d_backward_
    :  out:arr
    -> padding
    -> arr
    -> int array
    -> int array
    -> arr
    -> unit

  val avg_pool2d_backward_
    :  out:arr
    -> padding
    -> arr
    -> int array
    -> int array
    -> arr
    -> unit

  val avg_pool3d_backward_
    :  out:arr
    -> padding
    -> arr
    -> int array
    -> int array
    -> arr
    -> unit

  val upsampling2d_backward_ : out:arr -> arr -> int array -> arr -> unit
end
OCaml

Innovation. Community. Security.