package owl

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file owl_sparse_matrix_generic.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
# 1 "src/owl/sparse/owl_sparse_matrix_generic.ml"
(*
 * OWL - OCaml Scientific and Engineering Computing
 * Copyright (c) 2016-2019 Liang Wang <liang.wang@cl.cam.ac.uk>
 *)

open Bigarray

open Owl_sparse_common

open Owl_base_dense_common


type ('a, 'b) kind = ('a, 'b) Bigarray.kind

type ('a, 'b) t = {
  mutable m : int;                             (* number of rows *)
  mutable n : int;                             (* number of columns *)
  mutable k : ('a, 'b) kind;                   (* type of sparse matrices *)
  mutable d : ('a, 'b) eigen_mat;              (* point to eigen struct *)
}

let zeros ?(density=0.01) k m n = {
  m = m;
  n = n;
  k = k;
  d = (_eigen_create) density k m n;
}

let eye k m = {
  m = m;
  n = m;
  k = k;
  d = (_eigen_eye) k m;
}

let shape x = (x.m, x.n)

let row_num x = x.m

let col_num x = x.n

let numel x = x.m * x.n

let nnz x = _eigen_nnz x.d

let density x = (float_of_int (nnz x)) /. (float_of_int (numel x))

let kind x = x.k

let insert x i j a =
  if a <> Owl_const.zero x.k then
  _eigen_insert x.d i j a

let set x i j a = _eigen_set x.d i j a

let get x i j = _eigen_get x.d i j

let reset x = _eigen_reset x.d

let prune x a eps = _eigen_prune x.d a eps

let copy x = {
  m = x.m;
  n = x.n;
  k = x.k;
  d = _eigen_copy x.d;
}

let transpose x = {
  m = x.m;
  n = x.n;
  k = x.k;
  d = _eigen_transpose x.d;
}

let diag x = {
  m = min x.m x.n;
  n = 1;
  k = x.k;
  d = _eigen_diagonal x.d;
}

let trace x = _eigen_trace x.d

let row x i = {
  m = 1;
  n = x.n;
  k = x.k;
  d = _eigen_row x.d i;
}

let col x j = {
  m = x.m;
  n = 1;
  k = x.k;
  d = _eigen_col x.d j;
}

let iteri f x =
  for i = 0 to (row_num x) - 1 do
    for j = 0 to (col_num x) - 1 do
      f i j (get x i j)
    done
  done

let iter f x =
  for i = 0 to (row_num x) - 1 do
    for j = 0 to (col_num x) - 1 do
      f (get x i j)
    done
  done

let mapi f x =
  let d = density x in
  let y = zeros ~density:d (kind x) (row_num x) (col_num x) in
  iteri (fun i j z -> insert y i j (f i j z)) x;
  y

let map f x =
  let d = density x in
  let y = zeros ~density:d (kind x) (row_num x) (col_num x) in
  iteri (fun i j z -> insert y i j (f z)) x;
  y

let _fold_basic iter_fun f a x =
  let r = ref a in
  iter_fun (fun y -> r := f !r y) x; !r

let fold f a x = _fold_basic iter f a x

let foldi f a x =
  let r = ref a in
  iteri (fun i j y -> r := f i j !r y) x;
  !r

let filteri f x =
  let s = Owl_utils.Stack.make () in
  iteri (fun i j y ->
    if (f i j y) then Owl_utils.Stack.push s (i,j)
  ) x;
  Owl_utils.Stack.to_array s

let filter f x = filteri (fun _ _ y -> f y) x

let iteri_nz f x =
  let _ = _eigen_compress x.d in
  let d = _eigen_valueptr x.d in
  let q = _eigen_innerindexptr x.d in
  let p = _eigen_outerindexptr x.d in
  for i = 0 to x.m - 1 do
    for k = (Int64.to_int p.{i}) to (Int64.to_int p.{i + 1}) - 1 do
      let j = Int64.to_int q.{k} in
      f i j d.{k}
    done
  done

let iter_nz f x =
  let _ = _eigen_compress x.d in
  let d = _eigen_valueptr x.d in
  for i = 0 to Array1.dim d - 1 do
    f d.{i}
  done

let mapi_nz f x =
  let _ = _eigen_compress x.d in
  let d = _eigen_valueptr x.d in
  let q = _eigen_innerindexptr x.d in
  let p = _eigen_outerindexptr x.d in
  let y = copy x in
  let e = _eigen_valueptr y.d in
  for i = 0 to x.m - 1 do
    for k = (Int64.to_int p.{i}) to (Int64.to_int p.{i + 1}) - 1 do
      let j = Int64.to_int q.{k} in
      e.{k} <- f i j d.{k}
    done
  done;
  y

let map_nz f x =
  let _ = _eigen_compress x.d in
  let d = _eigen_valueptr x.d in
  let y = copy x in
  let e = _eigen_valueptr y.d in
  for i = 0 to Array1.dim d - 1 do
    e.{i} <- f d.{i}
  done;
  y

let foldi_nz f a x =
  let r = ref a in
  iteri_nz (fun i j y -> r := f i j !r y) x;
  !r

let fold_nz f a x = _fold_basic iter_nz f a x

let filteri_nz f x =
  let s = Owl_utils.Stack.make () in
  iteri_nz (fun i j y ->
    if (f i j y) then Owl_utils.Stack.push s (i,j)
  ) x;
  Owl_utils.Stack.to_array s

let filter_nz f x = filteri_nz (fun _ _ y -> f y) x

let _disassemble_rows x =
  _eigen_compress x.d;
  Owl_log.debug "_disassemble_rows :allocate space";
  let d = Array.init x.m (fun _ -> zeros x.k 1 x.n) in
  Owl_log.debug "_disassemble_rows: iteri_nz";
  let _ = iteri_nz (fun i j z -> insert d.(i) 0 j z) x in
  Owl_log.debug "_disassemble_rows: ends";
  d

let _disassemble_cols x =
  _eigen_compress x.d;
  let d = Array.init x.n (fun _ -> zeros x.k x.m 1) in
  let _ = iteri_nz (fun i j z -> insert d.(j) i 0 z) x in
  d

let iteri_rows f x = Array.iteri (fun i y -> f i y) (_disassemble_rows x)

let iter_rows f x = iteri_rows (fun _ y -> f y) x

let iteri_cols f x = Array.iteri (fun j y -> f j y) (_disassemble_cols x)

let iter_cols f x = iteri_cols (fun _ y -> f y) x

let mapi_rows f x =
  let a = _disassemble_rows x in
  Array.init (row_num x) (fun i -> f i a.(i))

let map_rows f x = mapi_rows (fun _ y -> f y) x

let mapi_cols f x =
  let a = _disassemble_cols x in
  Array.init (col_num x) (fun i -> f i a.(i))

let map_cols f x = mapi_cols (fun _ y -> f y) x

let fold_rows f a x = _fold_basic iter_rows f a x

let fold_cols f a x = _fold_basic iter_cols f a x

let iteri_rows_nz f x = iteri_rows (fun i y -> if (nnz y) != 0 then f i y) x

let iter_rows_nz f x = iteri_rows_nz (fun _ y -> f y) x

let iteri_cols_nz f x = iteri_cols (fun i y -> if (nnz y) != 0 then f i y) x

let iter_cols_nz f x = iteri_cols_nz (fun _ y -> f y) x

let mapi_rows_nz f x =
  let a = _disassemble_rows x in
  let s = Owl_utils.Stack.make () in
  Array.iteri (fun i y ->
    if (nnz y) != 0 then Owl_utils.Stack.push s (f i y)
  ) a;
  Owl_utils.Stack.to_array s

let map_rows_nz f x = mapi_rows_nz (fun _ y -> f y) x

let mapi_cols_nz f x =
  let a = _disassemble_cols x in
  let s = Owl_utils.Stack.make () in
  Array.iteri (fun i y ->
    if (nnz y) != 0 then Owl_utils.Stack.push s (f i y)
  ) a;
  Owl_utils.Stack.to_array s

let map_cols_nz f x = mapi_cols_nz (fun _ y -> f y) x

let fold_rows_nz f a x = _fold_basic iter_rows_nz f a x

let fold_cols_nz f a x = _fold_basic iter_cols_nz f a x

let _exists_basic iter_fun f x =
  try iter_fun (fun y ->
    if (f y) = true then failwith "found"
  ) x; false
  with _exn -> true

let exists f x = _exists_basic iter f x

let not_exists f x = not (exists f x)

let for_all f x = let g y = not (f y) in not_exists g x

let exists_nz f x = _exists_basic iter_nz f x

let not_exists_nz f x = not (exists_nz f x)

let for_all_nz f x = let g y = not (f y) in not_exists_nz g x

let is_zero x = _eigen_is_zero x.d

let is_positive x = _eigen_is_positive x.d

let is_negative x = _eigen_is_negative x.d

let is_nonpositive x = _eigen_is_nonpositive x.d

let is_nonnegative x = _eigen_is_nonnegative x.d

let equal x1 x2 = _eigen_equal x1.d x2.d

let not_equal x1 x2 = _eigen_not_equal x1.d x2.d

let greater x1 x2 = _eigen_greater x1.d x2.d

let less x1 x2 = _eigen_less x1.d x2.d

let greater_equal x1 x2 = _eigen_greater_equal x1.d x2.d

let less_equal x1 x2 = _eigen_less_equal x1.d x2.d

let add x y = {
  m = x.m;
  n = x.n;
  k = x.k;
  d = _eigen_add x.d y.d;
}

let sub x y = {
  m = x.m;
  n = x.n;
  k = x.k;
  d = _eigen_sub x.d y.d;
}

let mul x y = {
  m = x.m;
  n = x.n;
  k = x.k;
  d = _eigen_mul x.d y.d;
}

let div x y = {
  m = x.m;
  n = x.n;
  k = x.k;
  d = _eigen_div x.d y.d;
}

let dot x y = {
  m = x.m;
  n = y.n;
  k = x.k;
  d = _eigen_gemm x.d y.d;
}

let add_scalar x a = {
  m = x.m;
  n = x.n;
  k = x.k;
  d = _eigen_add_scalar x.d a;
}

let sub_scalar x a = {
  m = x.m;
  n = x.n;
  k = x.k;
  d = _eigen_sub_scalar x.d a;
}

let mul_scalar x a = {
  m = x.m;
  n = x.n;
  k = x.k;
  d = _eigen_mul_scalar x.d a;
}

let div_scalar x a = {
  m = x.m;
  n = x.n;
  k = x.k;
  d = _eigen_div_scalar x.d a;
}

let min x = _eigen_min x.d

let max x = _eigen_max x.d

(* TODO: optimise *)
let minmax x = _eigen_min x.d, _eigen_max x.d

let min2 x y = _eigen_min2 x.d y.d [@@warning "-32"]

let max2 x y = _eigen_max2 x.d y.d [@@warning "-32"]

let sum x = _eigen_sum x.d

let mean x = (_mean_elt x.k) (sum x) (numel x)

let abs x = {
  m = x.m;
  n = x.n;
  k = x.k;
  d = _eigen_abs x.d;
}

let neg x = {
  m = x.m;
  n = x.n;
  k = x.k;
  d = _eigen_neg x.d;
}

(* TODO: optimise *)
let reci x =
  let _op = Owl_base_dense_common._inv_elt (kind x) in
  map_nz (fun a -> _op a) x

let power_scalar x c =
  let _op = Owl_base_dense_common._pow_elt (kind x) in
  map (fun y -> (_op) y c) x

let l1norm x = x |> abs |> sum

let l2norm x = mul x x |> sum |> sqrt

let scalar_add a x = add_scalar x a

let scalar_sub a x = sub_scalar x a |> neg

let scalar_mul a x = mul_scalar x a

let scalar_div a x = div_scalar x a |> reci


(** permutation and draw functions *)

let permutation_matrix k d =
  let l = Array.init d (fun x -> x) |> Owl_stats.shuffle in
  let y = zeros k d d in
  let _a1 = Owl_const.one k in
  Array.iteri (fun i j -> insert y i j _a1) l;
  y

let draw_rows ?(replacement=true) x c =
  let m, _n = shape x in
  let a = Array.init m (fun i -> i) in
  let l = match replacement with
    | true  -> Owl_stats.sample a c
    | false -> Owl_stats.choose a c
  in
  let y = zeros (kind x) c m in
  let _a1 = Owl_const.one (kind x) in
  let _ = Array.iteri (fun i j -> insert y i j _a1) l in
  dot y x, l

let draw_cols ?(replacement=true) x c =
  let _m, n = shape x in
  let a = Array.init n (fun i -> i) in
  let l = match replacement with
    | true  -> Owl_stats.sample a c
    | false -> Owl_stats.choose a c
  in
  let y = zeros (kind x) n c in
  let _a1 = Owl_const.one (kind x) in
  let _ = Array.iteri (fun j i -> insert y i j _a1) l in
  dot x y, l

let shuffle_rows x =
  let y = permutation_matrix (kind x) (row_num x) in
  dot y x

let shuffle_cols x =
  let y = permutation_matrix (kind x) (col_num x) in
  dot x y

let shuffle x = x |> shuffle_rows |> shuffle_cols

let to_dense x =
  let y = Owl_dense_matrix_generic.zeros x.k x.m x.n in
  iteri_nz (fun i j z -> Owl_dense_matrix_generic.set y i j z) x;
  y

let of_dense x =
  let m, n = Owl_dense_matrix_generic.shape x in
  let y = zeros ~density:1. (Owl_dense_matrix_generic.kind x) m n in
  for i = 0 to m - 1 do
    for j = 0 to n - 1 do
      let z = Owl_dense_matrix_generic.get x i j in
      insert y i j z
    done;
  done;
  y

let sum_rows x =
  let y = Owl_dense_matrix_generic.ones x.k 1 x.m |> of_dense in
  dot y x

let sum_cols x =
  let y = Owl_dense_matrix_generic.ones x.k x.n 1 |> of_dense in
  dot x y

let mean_rows x =
  let m, _n = shape x in
  let k = kind x in
  let a = (_mean_elt k) (Owl_const.one k) m in
  let y = Owl_dense_matrix_generic.create k 1 m a |> of_dense in
  dot y x

let mean_cols x =
  let _m, n = shape x in
  let k = kind x in
  let a = (_mean_elt k) (Owl_const.one k) n in
  let y = Owl_dense_matrix_generic.create k n 1 a |> of_dense in
  dot x y

let nnz_rows x =
  let s = Hashtbl.create 1000 in
  let _ = iteri_nz (fun i _ _ -> if not (Hashtbl.mem s i) then Hashtbl.add s i 0) x in
  Hashtbl.fold (fun k _v l -> l @ [k]) s [] |> Array.of_list

let nnz_cols x =
  let s = Hashtbl.create 1000 in
  let _ = iteri_nz (fun _ j _ -> if not (Hashtbl.mem s j) then Hashtbl.add s j 0) x in
  Hashtbl.fold (fun k _v l -> l @ [k]) s [] |> Array.of_list

let row_num_nz x = nnz_rows x |> Array.length

let col_num_nz x = nnz_cols x |> Array.length

let to_array x =
  let y = Array.make (nnz x) ([||], Owl_const.zero x.k) in
  let k = ref 0 in
  iteri_nz (fun i j v ->
    y.(!k) <- ([|i;j|], v);
    k := !k + 1;
  ) x;
  y

let of_array k m n x =
  let y = zeros k m n in
  Array.iter (fun (i,v) -> insert y i.(0) i.(1) v) x;
  y

let ones k m n = Owl_dense_matrix_generic.ones k m n |> of_dense

let sequential k m n =
  let x = Owl_dense_matrix_generic.sequential k m n |> of_dense in
  _eigen_prune x.d (Owl_const.zero x.k) 0.;
  x

let fill x a =
  let m, n = shape x in
  for i = 0 to m - 1 do
    for j = 0 to n - 1 do
      insert x i j a
    done
  done

let _random_basic d k f m n =
  let c = int_of_float ((float_of_int (m * n)) *. d) in
  let x = zeros ~density:(d +. 0.01) k m n in
  let l = Owl_stats.choose (Array.init (m * n) (fun i -> i)) c in
  for k = 0 to c - 1 do
    let i = l.(k) / n in
    let j = l.(k) - (i * n) in
    insert x i j (f ())
  done;
  x

let binary ?(density=0.15) k m n =
  let _a1 = Owl_const.one k in
  _random_basic density k (fun () -> _a1) m n

let uniform ?(density=0.15) ?(scale=1.) k m n =
  let _op = Owl_ndarray._owl_uniform_fun k in
  _random_basic density k (fun () -> _op scale) m n

let print x = _eigen_print x.d

(* TODO: improve the performance *)
let pp_spmat x =
  let m, n = shape x in
  let c = nnz x in
  let p = 100. *. (density x) in
  let mz, nz = row_num_nz x, col_num_nz x in
  if m < 100 && n < 100 then
    Owl_dense_matrix_generic.print (to_dense x);
  Printf.printf "shape = (%i,%i) | (%i,%i); nnz = %i (%.1f%%)\n" m n mz nz c p

let save x f = Owl_io.marshal_to_file x f

let load _k f = Owl_io.marshal_from_file f

(* TODO: optimise *)
let rows x l =
  let y = zeros x.k (Array.length l) x.n in
  Array.iteri (fun i k ->
    iteri_nz (fun _ j v -> insert y i j v) (row x k)
  ) l;
  y

let cols x l =
  let y = zeros x.k x.m (Array.length l) in
  Array.iteri (fun j k ->
    iteri_nz (fun i _ v -> insert y i j v) (col x k)
  ) l;
  y

let concat_vertical _x _y =
  failwith "owl_sparse_matrix_generic:concat_vertical:not implemented"

let concat_horizontal _x _y =
  failwith "owl_sparse_matrix_generic:concat_horizontal:not implemented"

let mpow _x _a = failwith "owl_sparse_matrix_generic:mpow:not implemented"
OCaml

Innovation. Community. Security.