package owl-base

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file owl_base_stats.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
# 1 "src/base/stats/owl_base_stats.ml"
(*
 * OWL - OCaml Scientific and Engineering Computing
 * Copyright (c) 2016-2019 Liang Wang <liang.wang@cl.cam.ac.uk>
 *)


(* PRNG of various distributions *)

let std_uniform_rvs = Owl_base_stats_dist_uniform.std_uniform_rvs


let uniform_int_rvs = Owl_base_stats_dist_uniform.uniform_int_rvs


let uniform_rvs = Owl_base_stats_dist_uniform.uniform_rvs


let bernoulli_rvs = Owl_base_stats_dist_bernoulli.bernoulli_rvs


let gaussian_rvs = Owl_base_stats_dist_gaussian.gaussian_rvs


let exponential_rvs = Owl_base_stats_dist_exponential.exponential_rvs


let cauchy_rvs = Owl_base_stats_dist_cauchy.cauchy_rvs


let std_gamma_rvs = Owl_base_stats_dist_gamma.std_gamma_rvs


let gamma_rvs = Owl_base_stats_dist_gamma.gamma_rvs


let gumbel1_rvs = Owl_base_stats_dist_gumbel1.gumbel1_rvs


let gumbel2_rvs = Owl_base_stats_dist_gumbel2.gumbel2_rvs


(* Randomisation function *)

let shuffle x =
  let y = Array.copy x in
  let n = Array.length x in

  for i = n - 1 downto 1 do
    let s = float_of_int (i + 1) in
    let j = int_of_float (std_uniform_rvs () *. s) in
    Owl_utils_array.swap y i j
  done;

  y


let choose x k =
  let n = Array.length x in
  assert (n >= k);
  let y = Array.make k x.(0) in
  let i = ref 0 in
  let j = ref 0 in

  while !i < n && !j < k do
    let s = float_of_int (n - !i) in
    let l = int_of_float (s *. std_uniform_rvs ()) in
    if l < (k - !j) then (
      y.(!j) <- x.(!i);
      j := !j + 1;
    );
    i := !i + 1;
  done;

  y


let sample x k =
  let y = Array.make k x.(0) in
  let n = Array.length x in

  for i = 0 to k - 1 do
    let j = uniform_int_rvs n in
    y.(i) <- x.(j)
  done;

  y


(* Basic statistical functions *)

let sum x = Array.fold_left ( +. ) 0. x


let mean x =
  let n = float_of_int (Array.length x) in
  sum x /. n


let _get_mean m x =
  match m with
  | Some a -> a
  | None   -> mean x


let var ?mean x =
  let m = _get_mean mean x in
  let t = ref 0. in

  Array.iter (fun a ->
    let d = a -. m in
    t := !t +. d *. d
  ) x;

  let l = float_of_int (Array.length x) in
  let n = if l = 1. then 1. else l -. 1. in
  !t /. n


let std ?mean x = sqrt (var ?mean x)


let sem ?mean x =
  let s = std ?mean x in
  let n = float_of_int (Array.length x) in
  s /. (sqrt n)


let absdev ?mean x =
  let m = _get_mean mean x in
  let t = ref 0. in

  Array.iter (fun a ->
    let d = abs_float (a -. m) in
    t := !t +. d
  ) x;

  let n = float_of_int (Array.length x) in
  !t /. n


let skew ?mean ?sd x =
  let m = _get_mean mean x in
  let s = match sd with
    | Some a -> a
    | None   -> std ~mean:m x
  in
  let t = ref 0. in

  Array.iter (fun a ->
    let s = (a -. m) /. s in
    t := !t +. s *. s *. s
  ) x;

  let n = float_of_int (Array.length x) in
  !t /. n


let kurtosis ?mean ?sd x =
  let m = _get_mean mean x in
  let s = match sd with
    | Some a -> a
    | None   -> std ~mean:m x
  in
  let t = ref 0. in

  Array.iter (fun a ->
    let s = (a -. m) /. s in
    let u = s *. s in
    t := !t +. u *. u
  ) x;

  let n = float_of_int (Array.length x) in
  !t /. n


let central_moment n x =
  let m = float_of_int n in
  let u = mean x in
  let x = Array.map (fun x -> (x -. u) ** m) x in
  let a = Array.fold_left (+.) 0. x in
  a /. (float_of_int (Array.length x))


let cov ?m0 ?m1 x0 x1 =
  let n0 = Array.length x0 in
  let n1 = Array.length x1 in
  assert (n0 = n1);
  let m0 = _get_mean m0 x0 in
  let m1 = _get_mean m1 x1 in
  let t = ref 0. in

  Array.iter2 (fun a0 a1 ->
    let d0 = a0 -. m0 in
    let d1 = a1 -. m1 in
    t := !t +. d0 *. d1
  ) x0 x1;

  let n = float_of_int (Array.length x0) in
  !t /. n


let concordant x0 x1 =
  let c = ref 0 in
  for i = 0 to (Array.length x0) - 2 do
    for j = i + 1 to (Array.length x0) - 1 do
      if (i <> j) && (
        ((x0.(i) < x0.(j)) && (x1.(i) < x1.(j))) ||
        ((x0.(i) > x0.(j)) && (x1.(i) > x1.(j))) ) then
        c := !c + 1
    done
  done;
  !c


let discordant x0 x1 =
  let c = ref 0 in
  for i = 0 to (Array.length x0) - 2 do
    for j = i + 1 to (Array.length x0) - 1 do
      if (i <> j) && (
        ((x0.(i) < x0.(j)) && (x1.(i) > x1.(j))) ||
        ((x0.(i) > x0.(j)) && (x1.(i) < x1.(j))) ) then
        c := !c + 1
    done
  done;
  !c


let kendall_tau x0 x1 =
  let a = float_of_int (concordant x0 x1) in
  let b = float_of_int (discordant x0 x1) in
  let n = float_of_int (Array.length x0) in
  2. *. (a -. b) /. (n *. (n -. 1.))


let sort ?(inc=true) x =
  let y = Array.copy x in
  let c = if inc then 1 else (-1) in
  Array.sort (fun a b ->
    if a < b then (-c)
    else if a > b then c
    else 0
  ) y;
  y


let argsort ?(inc=true) x =
  let n = Array.length x in
  let dir = if inc then 1 else (-1) in
  let order = Array.init n (fun i -> i) in begin
    Array.sort (fun i j -> dir * compare x.(i) x.(j)) order;
    order
  end


let _resolve_ties next d = function
  | `Average    -> float_of_int next -. float_of_int d /. 2.
  | `Min        -> float_of_int (next - d)
  | `Max        -> float_of_int next


let rank ?(ties_strategy=`Average) vs =
  let n = Array.length vs in
  let order = argsort vs in
  let ranks = Array.make n 0. in
  let d = ref 0 in begin
    for i = 0 to n - 1 do
      if i == n - 1 || compare vs.(order.(i)) vs.(order.(i + 1)) <> 0
      then
        let tie_rank = _resolve_ties (i + 1) !d ties_strategy in
        for j = i - !d to i do
          ranks.(order.(j)) <- tie_rank
        done;
        d := 0
      else
        incr d  (* Found a duplicate! *)
    done;
  end;
  ranks


let minmax_i x =
  assert (Array.length x > 0);
  let _min = ref x.(0) in
  let _max = ref x.(0) in
  let _min_idx = ref 0 in
  let _max_idx = ref 0 in
  Array.iteri (fun i a ->
    if a < !_min then (
      _min := a;
      _min_idx := i
    )
    else if a > !_max then (
      _max := a;
      _max_idx := i;
    )
  ) x;
  !_min_idx, !_max_idx


let min_i x = minmax_i x |> fst


let max_i x = minmax_i x |> snd


let min x = Array.fold_left min infinity x


let max x = Array.fold_left max neg_infinity x


let minmax x =
  let _min = ref infinity in
  let _max = ref neg_infinity in
  Array.iter (fun a ->
    if a < !_min then _min := a;
    if a > !_max then _max := a;
  ) x;
  !_min, !_max


type histogram = {
  bins              : float array;
  counts            : int array;
  weighted_counts   : float array option;
  normalised_counts : float array option;
  density           : float array option
}


(* fast unsafe array access! *)
let (.%()) = Array.unsafe_get and (.%()<-) = Array.unsafe_set
(*let (.%()) = Array.get and (.%()<-) = Array.set*)


let fcmp = (compare :> float -> _ -> _)


(* fast direct binning for uniform bins *)

let setup_uniform_binning n x =
  if n < 1 then failwith "Need at least one bin!";
  let bmin, bmax = minmax x in
  let db = (bmax -. bmin) /. float_of_int n in
  let bins = Array.init (n + 1) (fun i -> bmin +. float_of_int i *. db) in
  let get_bin y =
    let i = int_of_float ((y -. bmin) /. db) in
    if i = n then n - 1 else i in
  bmin, bmax, db, bins, get_bin


let hist_uniform n x =
  let _bmin, _bmax, _db, bins, get_bin = setup_uniform_binning n x in
  let c = Array.make n 0 in
  x |> Array.iter (fun y ->
      let i = get_bin y in
      c.%(i) <- c.%(i) + 1);
  bins, c


let hist_weighted_uniform n w x =
  if Array.(length x <> length w) then
    failwith  "Data and weights must have the same length.";
  let _bmin, _bmax, _db, bins, get_bin = setup_uniform_binning n x in
  let c = Array.make n 0 in
  let wc = Array.make n 0. in
  x |> Array.iteri (fun j y ->
      let i = get_bin y in
      c.%(i)  <- c.%(i) + 1;
      wc.%(i) <- wc.%(i) +. w.%(j));
  (bins, c), Some wc


(* nonuniform binning with binary search *)

let setup_nonuniform_binning bins =
  let n = Array.length bins - 1 in
  if n < 1 then failwith "Need at least two bin boundaries!";
  let get_bin y =
    let i = Owl_utils_array.bsearch ~cmp:fcmp y bins in
    if i = n && fcmp y bins.(n) = 0 then i - 1 else i in
  n, get_bin


let hist_nonuniform bins x =
  let n, get_bin = setup_nonuniform_binning bins in
  let c = Array.make n 0 in
  x |> Array.iter (fun y ->
      let i = get_bin y in
      (* drop out-of-bounds without exception.
       * compatible with -unsafe compiler option. *)
      if 0 <= i && i < n then c.(i) <- c.(i) + 1);
  bins, c


let hist_weighted_nonuniform bins w x =
  if Array.(length x <> length w) then
    failwith  "Data and weights must have the same length.";
  let n, get_bin = setup_nonuniform_binning bins in
  let c = Array.make n 0 in
  let wc = Array.make n 0. in
  x |> Array.iteri (fun j y ->
      let i = get_bin y in
      if 0 <= i && i < n then
        (c.(i) <- c.(i) + 1;
         wc.(i) <- wc.(i) +. w.(j)));
  (bins, c), Some wc


(* binning of sorted arrays by accumulating bin by bin *)

let make_uniform_bins_from_sorted n x =
  let bmin, bmax = minmax x in
  let db = (bmax -. bmin) /. float_of_int n in
  Array.init (n + 1) (fun i -> bmin +. float_of_int i *. db)


(* find start of upward iteration *)
let init_sorted bins x =
  (* Number of bins (not boundaries) *)
  let n = Array.length bins - 1 in
  if n < 1 then failwith "Need at least two bin boundaries!";
  let m = Array.length x in
  let bs = Owl_utils_array.bsearch ~cmp:fcmp in
  let i, j =
  if fcmp bins.(0) x.(0) < 1 then
    bs x.(0) bins, 0
  else
    0, 1 + bs bins.(0) x in
  assert (0 <= i && i <= n);
  assert (0 <= j && j < m);
  n, m, ref i, ref j


let hist_sorted bins x =
  let n, m, bin_i, x_j = init_sorted bins x in
  let c = Array.make n 0 in
  (* now iterate up the bins.
   * to the second-to-last bin since we look ahead by one. *)
  while !bin_i <= n - 1 do
    while !x_j < m && fcmp x.%(!x_j) bins.%(!bin_i + 1) < 0 do
      c.%(!bin_i) <- c.%(!bin_i) + 1;
      incr x_j
    done;
    incr bin_i
  done;
  (* last bin is right-inclusive... *)
  while !x_j < m && fcmp x.%(!x_j) bins.%(n) = 0 do
    c.%(n-1) <- c.%(n-1) + 1;
    incr x_j
  done;
  bins, c


let hist_weighted_sorted bins w x =
  if Array.(length x <> length w) then
    failwith  "Data and weights must have the same length.";
  let n, m, bin_i, x_j = init_sorted bins x in
  let c = Array.make n 0 in
  let wc = Array.make n 0. in
  while !bin_i <= n - 1 do
    while !x_j < m && fcmp x.%(!x_j) bins.%(!bin_i + 1) < 0 do
      c.%(!bin_i)  <- c.%(!bin_i) + 1;
      wc.%(!bin_i) <- wc.%(!bin_i) +. w.%(!x_j);
      incr x_j
    done;
    incr bin_i
  done;
  (* last bin is right-inclusive... *)
  while !x_j < m && fcmp x.%(!x_j) bins.%(n) = 0 do
    c.%(n-1)  <- c.%(n-1) + 1;
    wc.%(n-1) <- wc.%(n-1) +. w.%(!x_j);
    incr x_j
  done;
  (bins, c), Some wc


let hist_to_string { bins; counts; weighted_counts; normalised_counts; density } =
  let n_counts = Array.fold_left (+) 0 counts in
  let n = Array.length bins - 1 in
  let w = match weighted_counts with
    | None -> ""
    | Some wc ->
      let tot = Array.fold_left (+.) 0. wc in
      Printf.sprintf "; tot. weight: %g" tot in
  let norm = match normalised_counts with
    | None -> ""
    | Some _ -> "; normalised" in
  let pdf = match density with
    | None -> ""
    | Some _ -> "; density" in
  Printf.sprintf "[ N: %i; N_bins: %i%s%s%s ]"
  n_counts n w norm pdf


(* now the external api *)

let histogram
    (bins:[`N of int|`Bins of float array])
    ?weights x =
  let (bins, counts), weighted_counts = match bins, weights with
    | `N n, None      -> hist_uniform n x, None
    | `Bins b, None   -> hist_nonuniform b x, None
    | `N n, Some w    -> hist_weighted_uniform n x w
    | `Bins b, Some w -> hist_weighted_nonuniform b w x in
  {bins; counts; weighted_counts;
   normalised_counts=None; density=None}


let histogram_sorted
    (bins:[`N of int|`Bins of float array])
    ?weights x =
  let bins = match bins with
    | `N n    -> make_uniform_bins_from_sorted n x
    | `Bins b -> b in
  let (bins, counts), weighted_counts = match weights with
    | None   -> hist_sorted bins x, None
    | Some w -> hist_weighted_sorted bins w x in
  {bins; counts; weighted_counts;
   normalised_counts=None; density=None}


let normalise ({counts; weighted_counts; _} as h) =
  let nc = match weighted_counts with
    | None ->
        let total = Array.fold_left (+) 0 counts |> float_of_int in
        Array.map (fun c -> float_of_int c /. total) counts
    | Some wcounts ->
        let total = Array.fold_left (+.) 0. wcounts in
        Array.map (fun wc -> wc /. total) wcounts in
  {h with normalised_counts=Some nc}


let normalise_density ({bins; counts; weighted_counts; _} as h) =
  let ds = match weighted_counts with
    | None ->
        let total = Array.fold_left (+) 0 counts |> float_of_int in
        Array.mapi (fun i c ->
            float_of_int c /. (bins.(i+1) -. bins.(i)) /. total) counts
    | Some wcounts ->
        let total = Array.fold_left (+.) 0. wcounts in
        Array.mapi (fun i wc ->
            wc /. (bins.(i+1) -. bins.(i)) /. total) wcounts in
  {h with density=Some ds}


let pp_hist formatter hist =
  Format.open_box 0;
  Format.fprintf formatter "%s" (hist_to_string hist);
  Format.close_box ()



let quantile x =
  let y = sort ~inc:true x in
  let n = Array.length y in
  fun p ->
    if p < 0. || p > 1. then
      raise (Invalid_argument "Owl_base_stats.quantile: expected float between 0 and 1")
    else
      let index = p *. (float_of_int (n - 1)) in
      let lhs = int_of_float index in
      let delta = index -. (float_of_int lhs) in

      if n = 0 then 0.
      else (
        if lhs = n - 1 then y.(lhs)
        else (1. -. delta) *. y.(lhs) +. delta *. y.(lhs + 1)
      )


let percentile x p = quantile x (p /. 100.)


let median x = percentile x 50.


let first_quartile x = percentile x 25.


let third_quartile x = percentile x 75.


let interquartile x =
    third_quartile x -. first_quartile x


let tukey_fences ?(k=1.5) arr =
  let first_quartile = first_quartile arr in
  let third_quartile = third_quartile arr in
  let offset = k *. (third_quartile -. first_quartile) in
  first_quartile -. offset, third_quartile +. offset


let build_kernel = function
  | `Gaussian ->
    fun h p v ->
      let u = (v -. p) /. h in
      (1. /. (Owl_const.(sqrt2 *. sqrtpi))) *. exp (-. Owl_base_maths.sqr u /. 2.)

let build_points n_points h kernel vs =
  let (min, max) = minmax vs in
  let (a, b) = match kernel with
    | `Gaussian -> (min -. 3. *. h, max +. 3. *. h)
  in

  let points = Array.make n_points 0. in
  let step = (b -. a) /. float_of_int n_points in

  for i = 0 to n_points - 1 do
    Array.unsafe_set points i (a +. (float_of_int i) *. step)
  done;

  points


let gaussian_kde ?(bandwidth=`Scott) ?(n_points=512) vs =
  if Array.length vs < 2 then
    invalid_arg "estimate_pdf: sample should have multiple elements";

  let n = float_of_int (Array.length vs) in
  let s = min [|(std vs); (interquartile vs /. 0.34)|] in
  let h = match bandwidth with
    | `Silverman -> 0.90 *. s *. (n ** -0.2)
    | `Scott     -> 1.06 *. s *. (n ** -0.2)
  in

  let kernel = `Gaussian in
  let points = build_points n_points h kernel vs in
  let k      = build_kernel kernel in
  let f      = 1. /. (h *. n) in
  let pdf    = Array.make n_points 0. in

  for i = 0 to n_points - 1 do
    let p = Array.unsafe_get points i in
    Array.unsafe_set pdf i
      (f *. Array.fold_left (fun acc v -> acc +. k h p v) 0. vs)
  done;

  (points, pdf)



(* ends here *)
OCaml

Innovation. Community. Security.