Source file owl_maths_root.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# 1 "src/base/maths/owl_maths_root.ml"
(** Root finding algorithms for nonlinear functions *)
(** type definition *)
type solver =
| Bisec
| FalsePos
| Ridder
| Brent
let bisec ?(max_iter=1000) ?(xtol=1e-6) f a b =
let fa = f a in
let fb = f b in
assert (fa *. fb < 0.);
if fa = 0. then a
else if fb = 0. then b
else (
let x, d = match fa < 0. with
| true -> ref a, ref (b -. a)
| false -> ref b, ref (a -. b)
in
try
for _i = 1 to max_iter do
d := !d *. 0.5;
let c = !x +. !d in
let fc = f c in
if fc <= 0. then x := c;
assert ((abs_float !d >= xtol) && fc != 0.)
done;
!x
with _ -> !x;
)
let false_pos ?(max_iter=1000) ?(xtol=1e-6) f a b =
let fa = f a in
let fb = f b in
assert (fa *. fb < 0.);
if fa = 0. then a
else if fb = 0. then b
else (
let xa, xb, fa, fb = match fa < 0. with
| true -> ref a, ref b, ref fa, ref fb
| false -> ref b, ref a, ref fb, ref fa
in
let x = ref infinity in
let e = ref infinity in
try
for _i = 1 to max_iter do
let d = !xb -. !xa in
x := !xa +. d *. !fa /. (!fa -. !fb);
let fc = f !x in
if fc < 0. then (
e := !xa -. !x;
xa := !x;
fa := fc;
)
else (
e := !xb -. !x;
xb := !x;
fb := fc;
);
assert ((abs_float !e >= xtol) && fc != 0.)
done;
!x
with _ -> !x;
)
let ridder ?(max_iter=1000) ?(xtol=1e-6) f a b =
let fa = f a in
let fb = f b in
assert (fa *. fb < 0.);
if fa = 0. then a
else if fb = 0. then b
else (
let xa = ref a in
let xb = ref b in
let fa = ref fa in
let fb = ref fb in
let x = ref infinity in
try
for _i = 1 to max_iter do
let dm = 0.5 *. (!xb -. !xa) in
let xm = !xa +. dm in
let fm = f xm in
let s = sqrt(fm *. fm -. !fa *. !fb) in
assert (s <> 0.);
let sgn = if !fa < !fb then -1. else 1. in
x := xm +. sgn *. dm *. fm /. s;
let fn = f !x in
if Owl_base_maths.same_sign fn fm = false then (
xa := !x;
xb := xm;
fa := fn;
fb := fm;
)
else if Owl_base_maths.same_sign fn !fa = false then (
xb := !x;
fb := fn;
)
else (
xa := !x;
fa := fn;
);
assert ((abs_float (!xb -. !xa) >= xtol) && fn != 0.)
done;
!x
with _ -> !x;
)
let brent ?(max_iter=1000) ?(xtol=1e-6) f a b =
let fa = f a in
let fb = f b in
assert (fa *. fb < 0.);
if fa = 0. then a
else if fb = 0. then b
else (
let xa = ref a in
let xb = ref b in
let xc = ref b in
let fc = ref fb in
let fa = ref fa in
let fb = ref fb in
let d = ref infinity in
let e = ref infinity in
let p = ref infinity in
let q = ref infinity in
let r = ref infinity in
let eps = 3e-16 in
try
for _i = 1 to max_iter do
if (!fb > 0. && !fc > 0.) || (!fb < 0. && !fc < 0.) then (
xc := !xa;
fc := !fa;
d := !xb -. !xa;
e := !d;
);
if (abs_float !fc < abs_float !fb) then (
xa := !xb;
xb := !xc;
xc := !xa;
fa := !fb;
fb := !fc;
fc := !fa;
);
let tol = 2. *. eps *. (abs_float !xb) +. 0.5 *. xtol in
let xm = 0.5 *. (!xc -. !xb) in
assert ((abs_float xm >= tol) && !fb != 0.);
if (abs_float !e >= tol) && (abs_float !fa > abs_float !fb) then (
let s = !fb /. !fa in
if !xa = !xc then (
p := 2. *. xm *. s;
q := 1. -. s;
)
else (
q := !fa /. !fc;
r := !fb /. !fc;
p := s *. (2. *. xm *. !q *. (!q -. !r) -. (!xb -. !xa) *. (!r -. 1.));
q := (!q -. 1.) *. (!r -. 1.) *. (s -. 1.);
);
if !p > 0. then q := -.(!q);
p := abs_float !p;
let min1 = 3. *. xm *. !q -. abs_float (tol *. !q) in
let min2 = abs_float (!e *. !q) in
if (2. *. !p) < (min min1 min2) then (
e := !d;
d := !p /. !q;
)
else (
d := xm;
e := !d;
)
)
else (
d := xm;
e := !d;
);
xa := !xb;
fa := !fb;
if (abs_float !d) > tol then xb := !xb +. !d
else xb := !xb +. (if tol > 0. then xm else -.xm);
fb := f !xb;
done;
!xb
with _ -> !xb;
)
let fzero ?(solver=Brent) ?(max_iter=1000) ?(xtol=1e-6) f a b =
match solver with
| Bisec -> bisec ~max_iter ~xtol f a b
| FalsePos -> false_pos ~max_iter ~xtol f a b
| Ridder -> ridder ~max_iter ~xtol f a b
| Brent -> brent ~max_iter ~xtol f a b
let bracket_expand ?(rate=1.6) ?(max_iter=100) f a b =
assert (a < b);
let xa = ref a in
let xb = ref b in
let fa = ref (f a) in
let fb = ref (f b) in
(
try
for _i = 1 to max_iter do
assert (Owl_base_maths.same_sign !fa !fb);
let d = (!xb -. !xa) *. rate in
xa := !xa -. d;
xb := !xb +. d;
fa := f !xa;
fb := f !xb;
done
with _ -> ()
);
if Owl_base_maths.same_sign !fa !fb then None
else Some (!xa, !xb)