Source file tez_staking_helpers.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
(** [Tez_staking_helpers] defines different kinds of tez Modules that
manipulate them in different ways. They involve more complicated operations,
as they are related to staking, thus are represented as partial amounts,
and are related to pseudotokens. *)
module Cycle = Protocol.Alpha_context.Cycle
module Tez = struct
include Tez_helpers
include Tez_helpers.Compare
end
(** Representation of Tez with non integer values *)
module Partial_tez = struct
include Q
let of_tez a = Tez.to_mutez a |> of_int64
let to_tez_rem {num; den} =
let tez, rem = Z.div_rem num den in
(Tez.of_z tez, rem /// den)
let to_tez ~round = Tez.of_q ~round
let get_rem a = snd (to_tez_rem a)
let pp fmt a =
let tez, rem = to_tez_rem a in
Format.fprintf fmt "%a ( +%aµꜩ )" Tez.pp tez Q.pp_print rem
end
(** [Frozen_tez] represents frozen stake and frozen unstaked funds.
Properties:
- sum of all current partial tez is an integer
- Can only add integer amounts
- Can always subtract integer amount (if lower than frozen amount)
- If subtracting partial amount, must be the whole frozen amount (for given contract).
The remainder is then distributed equally amongst remaining accounts, to keep property 1.
- All entries of current are positive, non zero.
*)
module Frozen_tez = struct
type t = {
delegate : string;
initial : Tez.t;
self_current : Tez.t;
co_current : Partial_tez.t String.Map.t;
}
let pp fmt {delegate; initial; self_current; co_current} =
Format.fprintf
fmt
"Delegate: %s, Initial: %a, Self_current: %a, Co_current: %a"
delegate
Tez.pp
initial
Tez.pp
self_current
(fun fmt ->
String.Map.iter (fun k v ->
Format.fprintf fmt "%s: %a, " k Partial_tez.pp v))
co_current
let zero =
{
delegate = "";
initial = Tez.zero;
self_current = Tez.zero;
co_current = String.Map.empty;
}
let init amount account delegate =
if account = delegate then
{
delegate;
initial = amount;
self_current = amount;
co_current = String.Map.empty;
}
else
{
delegate;
initial = amount;
self_current = Tez.zero;
co_current = String.Map.singleton account (Partial_tez.of_tez amount);
}
let union a b =
assert (a.delegate = b.delegate) ;
{
delegate = a.delegate;
initial = Tez.(a.initial +! b.initial);
self_current = Tez.(a.self_current +! b.self_current);
co_current =
String.Map.union
(fun _ x y -> Some Partial_tez.(x + y))
a.co_current
b.co_current;
}
let get account frozen_tez =
if account = frozen_tez.delegate then
Partial_tez.of_tez frozen_tez.self_current
else
match String.Map.find account frozen_tez.co_current with
| None -> Partial_tez.zero
| Some p -> p
let total_co_current_q co_current =
String.Map.fold
(fun _ x acc -> Partial_tez.(x + acc))
co_current
Partial_tez.zero
let total_co_current t =
let r = total_co_current_q t.co_current in
let tez, rem = Partial_tez.to_tez_rem r in
assert (Q.(equal rem zero)) ;
tez
let total_current t = Tez.(t.self_current +! total_co_current t)
let total_current_with_limits ~limit_of_staking_over_baking t =
let max_co_current =
Tez.mul_q t.self_current limit_of_staking_over_baking
|> Tez.of_q ~round:`Down
in
let co_current = Tez.min (total_co_current t) max_co_current in
Tez.(t.self_current +! co_current)
let add_q_to_all_co_current quantity co_current =
let s = total_co_current_q co_current in
if Q.(equal quantity zero) then co_current
else
let f p_amount =
let q = Q.div p_amount s in
Partial_tez.add p_amount (Q.mul quantity q)
in
String.Map.map f co_current
let add_tez_to_all_current ~edge tez a =
let self_portion = Tez.ratio a.self_current (total_current a) in
let self_quantity = Tez.mul_q tez self_portion |> Tez.of_q ~round:`Up in
let remains = Tez.(tez -! self_quantity) in
let bakers_edge = Tez.mul_q remains edge |> Tez.of_q ~round:`Up in
let self_quantity = Tez.(self_quantity +! bakers_edge) in
let co_quantity = Partial_tez.of_tez Tez.(tez -! self_quantity) in
let co_current = add_q_to_all_co_current co_quantity a.co_current in
{a with co_current; self_current = Tez.(a.self_current +! self_quantity)}
let sub_tez_from_all_current tez a =
let self_portion = Tez.ratio a.self_current (total_current a) in
let self_quantity = Tez.mul_q tez self_portion |> Tez.of_q ~round:`Up in
let self_current =
if Tez.(self_quantity >= a.self_current) then Tez.zero
else Tez.(a.self_current -! self_quantity)
in
let co_quantity = Tez.(tez -! self_quantity) in
let s = total_co_current_q a.co_current in
if Partial_tez.(geq (of_tez co_quantity) s) then
{a with self_current; co_current = String.Map.empty}
else
let f p_amount =
let q = Q.div p_amount s in
Partial_tez.sub p_amount (Tez.mul_q co_quantity q)
in
{a with self_current; co_current = String.Map.map f a.co_current}
let add_current_q amount account a =
if account = a.delegate then (
let amount, rem = Partial_tez.to_tez_rem amount in
assert (Q.(equal rem zero)) ;
{a with self_current = Tez.(a.self_current +! amount)})
else
{
a with
co_current =
String.Map.update
account
(function
| None -> Some amount | Some q -> Some Partial_tez.(add q amount))
a.co_current;
}
let add_current amount account a =
add_current_q (Partial_tez.of_tez amount) account a
let add_self_current amount a =
let self_current = Tez.(a.self_current +! amount) in
{a with self_current}
let add_init amount account a = union a (init amount account a.delegate)
let sub_current amount account a =
if account = a.delegate then
let amount = Tez.min amount a.self_current in
({a with self_current = Tez.(a.self_current -! amount)}, amount)
else
match String.Map.find account a.co_current with
| None -> (a, Tez.zero)
| Some frozen ->
let amount_q = Partial_tez.of_tez amount in
if Q.(geq amount_q frozen) then
let removed, remainder = Partial_tez.to_tez_rem frozen in
let co_current = String.Map.remove account a.co_current in
let co_current = add_q_to_all_co_current remainder co_current in
({a with co_current}, removed)
else
let co_current =
String.Map.add account Q.(frozen - amount_q) a.co_current
in
({a with co_current}, amount)
let sub_current_q amount_q account a =
if account = a.delegate then assert false
else
match String.Map.find account a.co_current with
| None -> assert false
| Some frozen ->
if Q.(geq amount_q frozen) then
let co_current = String.Map.remove account a.co_current in
{a with co_current}
else
let co_current =
String.Map.add account Q.(frozen - amount_q) a.co_current
in
{a with co_current}
let sub_current_and_init amount account a =
let a, amount = sub_current amount account a in
({a with initial = Tez.(a.initial -! amount)}, amount)
let slash cst base_amount (pct : Protocol.Percentage.t) a =
Log.info
"Slashing frozen tez for delegate %s with percentage %a"
a.delegate
Q.pp_print
@@ Protocol.Percentage.to_q pct ;
let pct_q = Protocol.Percentage.to_q pct in
let total_current = total_current a in
let slashed_amount =
Tez.mul_q base_amount pct_q
|> Tez.of_q ~round:`Down |> Tez.min total_current
in
let rat =
cst.Protocol.Alpha_context.Constants.Parametric.adaptive_issuance
.global_limit_of_staking_over_baking + 2
in
let rewarded_amount =
Tez.mul_q slashed_amount Q.(1 // rat) |> Tez.of_q ~round:`Down
in
let burnt_amount = Tez.(slashed_amount -! rewarded_amount) in
Log.info
"Total current: %a, slashed amount: %a, rewarded amount: %a, burnt \
amount: %a"
Tez.pp
total_current
Tez.pp
slashed_amount
Tez.pp
rewarded_amount
Tez.pp
burnt_amount ;
if total_current > Tez.zero then
let a = sub_tez_from_all_current burnt_amount a in
let a = sub_tez_from_all_current rewarded_amount a in
(a, burnt_amount, rewarded_amount)
else (a, Tez.zero, Tez.zero)
end
(** Representation of Unstaked frozen deposits *)
module Unstaked_frozen = struct
type r = {
cycle : Cycle.t;
initial : Tez.t;
current : Tez.t;
requests : Tez.t String.Map.t;
slash_pct : int;
}
type t = r list
type get_info = {cycle : Cycle.t; request : Tez.t; current : Tez.t}
type get_info_list = get_info list
type finalizable_info = {
amount : Tez.t;
slashed_requests : Tez.t String.Map.t;
}
let zero = []
let init_r cycle request account =
{
cycle;
initial = request;
current = request;
requests = String.Map.singleton account request;
slash_pct = 0;
}
let apply_slash_to_request slash_pct amount =
let slashed_amount =
Tez.mul_q amount Q.(slash_pct // 100) |> Tez.of_q ~round:`Up
in
Tez.(amount -! slashed_amount)
let apply_slash_to_current cst slash_pct initial current =
let slashed_amount =
Tez.mul_q initial Q.(slash_pct // 100)
|> Tez.of_q ~round:`Down |> Tez.min current
in
let rat =
cst.Protocol.Alpha_context.Constants.Parametric.adaptive_issuance
.global_limit_of_staking_over_baking + 2
in
let rewarded_amount =
Tez.mul_q slashed_amount Q.(1 // rat) |> Tez.of_q ~round:`Down
in
let burnt_amount = Tez.(slashed_amount -! rewarded_amount) in
let actual_slashed_amount = Tez.(rewarded_amount +! burnt_amount) in
let remaining =
Tez.sub_opt current actual_slashed_amount
|> Option.value ~default:Tez.zero
in
(remaining, burnt_amount, rewarded_amount)
let remove_zeros (a : t) : t =
List.filter (fun ({current; _} : r) -> Tez.(current > zero)) a
let get account unstaked : get_info_list =
List.filter_map
(fun {cycle; requests; slash_pct; _} ->
String.Map.find account requests
|> Option.map (fun request ->
{
cycle;
request;
current = apply_slash_to_request slash_pct request;
}))
unstaked
let get_total account unstaked =
get account unstaked
|> List.fold_left
(fun acc ({current; _} : get_info) -> Tez.(acc +! current))
Tez.zero
let sum_current unstaked =
List.fold_left
(fun acc ({current; _} : r) -> Tez.(acc +! current))
Tez.zero
unstaked
let rec add_unstake cycle amount account : t -> t = function
| [] -> [init_r cycle amount account]
| ({cycle = c; requests; initial; current; slash_pct} as h) :: t ->
let open Tez in
if Cycle.equal c cycle then (
assert (Int.equal slash_pct 0) ;
{
cycle;
initial = initial +! amount;
current = current +! amount;
slash_pct;
requests =
String.Map.update
account
(function
| None -> Some amount | Some x -> Some Tez.(x +! amount))
requests;
}
:: t)
else h :: add_unstake cycle amount account t
let sub_unstake amount account : r -> r =
fun {cycle; requests; initial; current; slash_pct} ->
assert (slash_pct = 0) ;
let open Tez in
{
cycle;
initial = initial -! amount;
current = current -! amount;
slash_pct;
requests =
String.Map.update
account
(function
| None ->
assert (Tez.(amount = zero)) ;
None
| Some x ->
if Tez.(x = amount) then None else Some Tez.(x -! amount))
requests;
}
let rec pop_cycle cycle : t -> finalizable_info * t = function
| [] -> ({amount = Tez.zero; slashed_requests = String.Map.empty}, [])
| ({cycle = c; requests; initial = _; current; slash_pct} as h) :: t ->
if Cycle.(c = cycle) then
let amount = current in
let slashed_requests =
String.Map.map (apply_slash_to_request slash_pct) requests
in
({amount; slashed_requests}, t)
else if Cycle.(c < cycle) then
Stdlib.failwith
"Unstaked_frozen: found unfinalized cycle before given [cycle]. \
Make sure to call [apply_unslashable] every cycle"
else
let info, rest = pop_cycle cycle t in
(info, h :: rest)
let slash cst ~slashable_deposits_period slashed_cycle pct_times_100 a =
remove_zeros a
|> List.map
(fun
({cycle; requests = _; initial; current; slash_pct = old_slash_pct}
as r)
->
if
Cycle.(
cycle > slashed_cycle
|| add cycle slashable_deposits_period < slashed_cycle)
then (r, (Tez.zero, Tez.zero))
else
let new_current, burnt, rewarded =
apply_slash_to_current cst pct_times_100 initial current
in
let slash_pct = min 100 (pct_times_100 + old_slash_pct) in
({r with slash_pct; current = new_current}, (burnt, rewarded)))
|> List.split
end
(** Representation of unstaked finalizable tez *)
module Unstaked_finalizable = struct
type t = {map : Tez.t String.Map.t; remainder : Tez.t}
let zero = {map = String.Map.empty; remainder = Tez.zero}
let add_from_poped_ufd
({amount; slashed_requests} : Unstaked_frozen.finalizable_info)
{map; remainder} =
let total_requested =
String.Map.fold (fun _ x acc -> Tez.(x +! acc)) slashed_requests Tez.zero
in
let remainder = Tez.(remainder +! amount -! total_requested) in
let map =
String.Map.union (fun _ a b -> Some Tez.(a +! b)) map slashed_requests
in
{map; remainder}
let total {map; remainder} =
String.Map.fold (fun _ x acc -> Tez.(x +! acc)) map remainder
let get account {map; _} =
match String.Map.find account map with None -> Tez.zero | Some x -> x
end
(** Pseudotoken helpers *)
let tez_to_pseudo ~round amount staking_delegate_denominator frozen_deposits =
let total_q = Frozen_tez.(total_co_current_q frozen_deposits.co_current) in
let total, rem = Partial_tez.to_tez_rem total_q in
assert (Q.(equal rem zero)) ;
if Tez.(equal total zero) then Tez.to_z amount
else
let r = Tez.ratio amount total in
let p = Q.(r * of_bigint staking_delegate_denominator) in
Tez.(of_q ~round p |> to_z)
let pseudo_to_partial_tez amount_pseudo staking_delegate_denominator
frozen_deposits =
let total_q = Frozen_tez.(total_co_current_q frozen_deposits.co_current) in
let total, rem = Partial_tez.to_tez_rem total_q in
assert (Q.(equal rem zero)) ;
if Z.(equal staking_delegate_denominator zero) then Q.of_bigint amount_pseudo
else
let q = Q.(amount_pseudo /// staking_delegate_denominator) in
Tez.mul_q total q
let stake_values_real amount staking_delegate_denominator frozen_deposits =
let pseudo =
tez_to_pseudo
~round:`Down
amount
staking_delegate_denominator
frozen_deposits
in
let tez_q =
pseudo_to_partial_tez pseudo staking_delegate_denominator frozen_deposits
in
(pseudo, tez_q)
let unstake_values_real amount staking_delegate_denominator frozen_deposits =
let pseudo =
tez_to_pseudo ~round:`Up amount staking_delegate_denominator frozen_deposits
in
let tez_q =
pseudo_to_partial_tez pseudo staking_delegate_denominator frozen_deposits
in
if Tez.equal (Tez.of_q ~round:`Down tez_q) amount then (pseudo, tez_q)
else
let pseudo = Z.(pseudo - one) in
( pseudo,
pseudo_to_partial_tez pseudo staking_delegate_denominator frozen_deposits
)