Source file liquidity_baking_machine.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
open Protocol
open Alpha_context
(** To implement the interface of this module, as described and
documented in the related MLI file, we rely on the OCaml module
system. More precisely, most of the implementation of the two
public machines ([ValidationMachine] and [SymbolicMachine]) is
derived by means of functors.
The machines provide two key functions which can be used in a
test suite:
- [M.build specs] which allows to construct an initial state of
a machine [M] that satisfies the properties described by
[specs] (along with the so-called “environment” of the
machine)
- [M.step s env state] (resp. [M.run]) which allows to execute a
so-called scenario [step] (resp. a sequence of [step]s, {i
i.e.}, a complete scenario) by the machine [M] from the state
[state].
The module is organized as follows:
1. We introduce the necessary abstractions we later use to
specify the properties the initial state of a given machine
needs to satisfy (most notably the [specs] type).
2. Then, we introduce the [step] type, which describes the
various actions we can make a machine perform as part of a
more complete scenario.
3. We introduce the [MACHINE] module type which lists the
necessary types and functions we need to derive a machine
capable of executing scenarios, and the [Machine.Make]
functor that we can use to derive such a machine
automatically.
4. We introduce the [MACHINE_WITH_INIT] module type which is a
superset of [MACHINE], extended with an [init] function
(analogous to {! Context.init_n}) to create an initial, mostly
blank state, and the [MachineBuilder.Make] functor that we
can use to derive a machine with a [build] function.
5. We construct the [ConcreteMachine], that allows to
asynchronously execute scenarios against the Tezos
blockchain.
6. We implement the [AbstractMachine.Make] functor, which we
can use to construct machines that can simulate the
execution scenarios completely off-chains, by reimplementing
the LB features logic in pure OCaml.
7. We use [AbstractMachine.Make] to create the [SymbolicMachine].
8. We use the [AbstractMachine.Make] functor in conjuction with
the [ConcreteMachine] to introduce the [ValidationMachine].
_
/ \ A warning for developers willing to modify this module:
/ | \ dealing with the subsidy of the Liquidity Baking (LB)
/ · \ feature is probably the main source of complexity and
/_______\ fragility of this module.
At several places (marked with a /!\ note), we need to predict the
xtz pool of the CPMM contract, in order to compute the amount of
tzBTC token it will provide or request. To make this prediction,
we need to determine how many blocks have been/will be baked. This
means that each time we modify the code of the machine functors,
we will probably have to modify the code marked with /!\ too.
To reduce the potential to get things wrong, we have introduced
constants to prevent the use of “magic numbers” (numbers whose
meaning cannot be guessed only by looking at the formula). The
value of these constants is not statically checked, so pay extra
attention before modifying them.
Ideally, we could probably compute these magic numbers using a
dedicated machine, whose purpose would be to count the number of
call to the [bake] function. For the sake of simplicity, we do not
do it currently. *)
(** The number of blocks baked in order to execute the {!
AddLiquidity} step. *)
let blocks_per_add_liquidity_step = 2L
(** The number of blocks baked by the [init] function. Since
Tenderbake, we need to compensate for deposits, so the number is
no longer constant. It is linear wrt. the number of accounts. *)
let blocks_during_init len = Int64.add 3L len
(** The number of blocks baked by the [mint_tzbtc] functions *)
let blocks_per_mint_tzbtc = 1L
(** A timestamp “far in the future” which should not be exceeded when
running tests. *)
let far_future = Script_timestamp.of_zint (Z.of_int 42_000)
(** {1 Miscellaneous Helpers} *)
module List_helpers = struct
let rec zip l r =
match (l, r) with
| xl :: rstl, xr :: rstr -> (xl, xr) :: zip rstl rstr
| _ -> []
let nth_exn l n =
match List.nth l n with
| Some x -> x
| _ -> raise (Invalid_argument "nth_exn")
let assoc_exn c l =
match List.assoc ~equal:( = ) c l with
| Some x -> x
| _ -> raise (Invalid_argument "assoc_exn")
end
(** {1 Characterizing Initial Machines States} *)
(** In order to run so-called scenarios against our machines, we first
need to characterize their initial state. *)
type xtz = int64
type tzbtc = int
type liquidity = int
type balances = {xtz : xtz; tzbtc : tzbtc; liquidity : liquidity}
let pp_balances fmt b =
Format.fprintf
fmt
"@[<h>{xtz = %a; tzbtc = %d; liquidity = %d}@]"
Tez.pp
(Tez.of_mutez_exn b.xtz)
b.tzbtc
b.liquidity
let xtz {xtz; _} = xtz
type specs = {
cpmm_min_xtz_balance : xtz;
cpmm_min_tzbtc_balance : tzbtc;
accounts_balances : balances list;
}
let pp_specs fmt specs =
Format.(
fprintf
fmt
"@[<v>{@ @[<v>cpmm = {min_xtz = %a; min_tzbtc = %d}@ @[<v 2>accounts = \
[@ %a@ ]@]@]@ }@]"
Tez.pp
(Tez.of_mutez_exn specs.cpmm_min_xtz_balance)
specs.cpmm_min_tzbtc_balance
(pp_print_list ~pp_sep:pp_print_space pp_balances)
specs.accounts_balances)
(** {1 Scenario [step] }*)
type 'a step =
| SellTzBTC of {source : 'a; destination : 'a; tzbtc_deposit : tzbtc}
| BuyTzBTC of {source : 'a; destination : 'a; xtz_deposit : xtz}
| AddLiquidity of {source : 'a; destination : 'a; xtz_deposit : xtz}
| RemoveLiquidity of {source : 'a; destination : 'a; lqt_burned : liquidity}
let pp_step pp_contract fmt = function
| SellTzBTC p ->
Format.(
fprintf
fmt
"@[<h>SellTzBTC(%a, %dtz₿, %a)@]"
pp_contract
p.source
p.tzbtc_deposit
pp_contract
p.destination)
| BuyTzBTC p ->
Format.(
fprintf
fmt
"@[<h>BuyTzBTC(%a, %aꜩ, %a)@]"
pp_contract
p.source
Tez.pp
(Tez.of_mutez_exn p.xtz_deposit)
pp_contract
p.destination)
| AddLiquidity p ->
Format.(
fprintf
fmt
"@[<h>AddLiquidity(%a, %aꜩ, %a)@]"
pp_contract
p.source
Tez.pp
(Tez.of_mutez_exn p.xtz_deposit)
pp_contract
p.destination)
| RemoveLiquidity p ->
Format.(
fprintf
fmt
"@[<h>RemoveLiquidity(%a, %d lqt, %a)@]"
pp_contract
p.source
p.lqt_burned
pp_contract
p.destination)
type contract_id =
| Cpmm
| Holder
| TzBTC
| TzBTCAdmin
| Liquidity
| LiquidityAdmin
| ImplicitAccount of int
let contract_id_to_string = function
| Holder -> "holder"
| Cpmm -> "cpmm"
| TzBTC -> "tzbtc"
| TzBTCAdmin -> "tzbtc_admin"
| Liquidity -> "lqt"
| LiquidityAdmin -> "lqt_admin"
| ImplicitAccount i -> Format.sprintf "#%d" i
let pp_contract_id fmt c = Format.(fprintf fmt "[%s]" (contract_id_to_string c))
(** {1 Machines} *)
(** {2 Machine Environment} *)
type 'a env = {
cpmm_contract : 'a;
tzbtc_contract : 'a;
tzbtc_admin : 'a;
liquidity_contract : 'a;
liquidity_admin : 'a;
implicit_accounts : 'a list;
holder : 'a;
subsidy : xtz;
}
let refine_contract env = function
| Cpmm -> env.cpmm_contract
| TzBTC -> env.tzbtc_contract
| TzBTCAdmin -> env.tzbtc_admin
| Liquidity -> env.liquidity_contract
| LiquidityAdmin -> env.liquidity_admin
| Holder -> env.holder
| ImplicitAccount i -> List_helpers.nth_exn env.implicit_accounts i
let refine_step env step =
match step with
| SellTzBTC p ->
SellTzBTC
{
p with
source = refine_contract env p.source;
destination = refine_contract env p.destination;
}
| BuyTzBTC p ->
BuyTzBTC
{
p with
source = refine_contract env p.source;
destination = refine_contract env p.destination;
}
| AddLiquidity p ->
AddLiquidity
{
p with
source = refine_contract env p.source;
destination = refine_contract env p.destination;
}
| RemoveLiquidity p ->
RemoveLiquidity
{
p with
source = refine_contract env p.source;
destination = refine_contract env p.destination;
}
(** {2 Machine Module Type} *)
module type MACHINE = sig
type 'a m
type contract
type t
type operation
val pp_contract : Format.formatter -> contract -> unit
val ( let* ) : 'a m -> ('a -> 'b m) -> 'b m
val fold_m : ('a -> 'b -> 'a m) -> 'a -> 'b list -> 'a m
val pure : 'a -> 'a m
val get_balances : contract -> contract env -> t -> balances m
val get_xtz_balance : contract -> t -> xtz m
val get_tzbtc_balance : contract -> contract env -> t -> tzbtc m
val get_liquidity_balance : contract -> contract env -> t -> liquidity m
val get_cpmm_total_liquidity : contract env -> t -> liquidity m
val bake :
invariant:(contract env -> t -> bool m) ->
baker:contract ->
operation list ->
contract env ->
t ->
t m
val transaction : src:contract -> contract -> xtz -> t -> operation m
val token_to_xtz :
src:contract -> contract -> tzbtc -> contract env -> t -> operation m
val xtz_to_token :
src:contract -> contract -> xtz -> contract env -> t -> operation m
val mint_or_burn_tzbtc :
contract -> liquidity -> contract env -> t -> operation m
(** [approve_tzbtc contract amount env state] will construct an
operation to authorize the CPMM contract to spend [amount] tzbtc
on behalf of [contract] *)
val approve_tzbtc : contract -> tzbtc -> contract env -> t -> operation m
val add_liquidity :
src:contract -> contract -> xtz -> tzbtc -> contract env -> t -> operation m
val remove_liquidity :
src:contract -> contract -> liquidity -> contract env -> t -> operation m
val reveal : Account.t -> t -> operation m
end
(** {2 Tezos Constants} *)
let default_subsidy =
let open Tezos_protocol_018_Proxford_parameters in
let c = Default_parameters.constants_test in
Tez.to_mutez
@@ Delegate.Rewards.For_RPC.reward_from_constants
c
~reward_kind:Liquidity_baking_subsidy
let security_deposit = 640_000_000L
let total_xtz = 32_000_000_000_000L
let tzbtc_admin_account : Account.t =
{
pkh =
Signature.Public_key_hash.of_b58check_exn
"tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx";
pk =
Signature.Public_key.of_b58check_exn
"edpkuBknW28nW72KG6RoHtYW7p12T6GKc7nAbwYX5m8Wd9sDVC9yav";
sk =
Signature.Secret_key.of_b58check_exn
"edsk3gUfUPyBSfrS9CCgmCiQsTCHGkviBDusMxDJstFtojtc1zcpsh";
}
let cpmm_initial_balance = {xtz = 100L; tzbtc = 1; liquidity = 0}
let cpmm_initial_liquidity_supply = 100
(** {2 Machine Functor} *)
module Machine = struct
module Make (S : MACHINE) = struct
open S
let mint_tzbtc destination ~invariant amount env state =
let* op = mint_or_burn_tzbtc destination amount env state in
bake ~invariant ~baker:env.holder [op] env state
let add_liquidity ~invariant src dst xtz_deposit tzbtc_deposit env state =
let* lqt_op = approve_tzbtc src tzbtc_deposit env state in
let* state = bake ~invariant ~baker:env.holder [lqt_op] env state in
let* cpmm_op =
add_liquidity ~src dst xtz_deposit tzbtc_deposit env state
in
bake ~invariant ~baker:env.holder [cpmm_op] env state
let remove_liquidity ~invariant src dst lqt_burned env state =
let* cpmm_op = remove_liquidity ~src dst lqt_burned env state in
bake ~invariant ~baker:env.holder [cpmm_op] env state
let sell_tzbtc ~invariant src dst tzbtc_deposit env state =
let* tzbtc_op = approve_tzbtc src tzbtc_deposit env state in
let* state = bake ~invariant ~baker:env.holder [tzbtc_op] env state in
let* cpmm_op = token_to_xtz ~src dst tzbtc_deposit env state in
bake ~invariant ~baker:env.holder [cpmm_op] env state
let buy_tzbtc ~invariant src dst xtz_deposit env state =
let* cpmm_op = xtz_to_token ~src dst xtz_deposit env state in
bake ~invariant ~baker:env.holder [cpmm_op] env state
let check_state_satisfies_specs (env : S.contract env) (state : S.t)
(specs : specs) =
let implicit_accounts_targets =
List_helpers.zip env.implicit_accounts specs.accounts_balances
in
let* () =
fold_m
(fun _ acc ->
let expected =
List_helpers.assoc_exn acc implicit_accounts_targets
in
let* amount = get_balances acc env state in
assert (expected = amount) ;
pure ())
()
env.implicit_accounts
in
let* cpmm_tzbtc_balance = get_tzbtc_balance env.cpmm_contract env state in
assert (specs.cpmm_min_tzbtc_balance <= cpmm_tzbtc_balance) ;
let* current_cpmm_xtz = get_xtz_balance env.cpmm_contract state in
assert (
Int64.(to_int specs.cpmm_min_xtz_balance <= to_int @@ current_cpmm_xtz)) ;
pure ()
(** [predict_required_tzbtc_deposit xtz_deposit env state]
predicts the tzbtc deposit which will be required by the CPMM
contract for a deposit of [xtz_deposit].
This function is used by the machines to make the according
call to the [approve] entrypoint of the TzBTC contract. *)
let predict_required_tzbtc_deposit xtz_deposit env state =
let* xtzPool = get_xtz_balance env.cpmm_contract state in
let xtzPool =
Tez.of_mutez_exn
Int64.(add xtzPool (mul blocks_per_add_liquidity_step env.subsidy))
in
let* tokenPool = get_tzbtc_balance env.cpmm_contract env state in
let tokenPool = Z.of_int tokenPool in
let* lqtTotal = get_cpmm_total_liquidity env state in
let lqtTotal = Z.of_int lqtTotal in
let amount = Tez.of_mutez_exn xtz_deposit in
let _, tokens_deposited =
Cpmm_logic.Simulate_raw.addLiquidity
~tokenPool
~xtzPool
~lqtTotal
~amount
in
pure (Z.to_int tokens_deposited)
let step ?(invariant = fun _ _ -> pure true) s env state =
match s with
| SellTzBTC {source; destination; tzbtc_deposit} ->
sell_tzbtc ~invariant source destination tzbtc_deposit env state
| BuyTzBTC {source; destination; xtz_deposit} ->
buy_tzbtc ~invariant source destination xtz_deposit env state
| AddLiquidity {source; destination; xtz_deposit} ->
let* tzbtc_deposit =
predict_required_tzbtc_deposit xtz_deposit env state
in
add_liquidity
~invariant
source
destination
xtz_deposit
tzbtc_deposit
env
state
| RemoveLiquidity {source; destination; lqt_burned} ->
remove_liquidity ~invariant source destination lqt_burned env state
let run ?(invariant = fun _ _ -> pure true) scenario env state =
fold_m
(fun state s -> step ~invariant (refine_step env s) env state)
state
scenario
end
end
let initial_xtz_repartition accounts_balances =
let distributed_xtz = List.fold_left Int64.add 0L accounts_balances in
let bootstrap1_xtz = Int64.sub total_xtz distributed_xtz in
let bootstrap_balances = bootstrap1_xtz :: accounts_balances in
let n = List.length bootstrap_balances in
(n, bootstrap_balances)
(** {1 Machines with a [build] Function} *)
module type MACHINE_WITH_INIT = sig
include MACHINE
(** [init balances] will create an “initial” state wherein the
[balances] have been distributed to [n] implicit contracts ([n]
being the size of the [balances] list). This function also
creates a [holder] implicit account which has the rest of the
xtz liquidity (the test framework forces the sum of xtz balances
to be equal to [total_xtz]). [init] also accepts an optional
argument [subsidy] to modify the default value of the subsidy
minted by the protocol in favor of the CPMM. *)
val init :
invariant:(contract env -> t -> bool m) ->
?subsidy:xtz ->
xtz list ->
(t * contract env) m
end
(** [initial_xtz_pool] balances predicts the value of the CPMM’s xtz
pool just before we start using the [add_liquidity] entrypoint to
provide to each implicit accounts the necessary liquidity
tokens. *)
let initial_xtz_pool balances subsidy =
let len = Int64.of_int (List.length balances) in
Int64.(
add
cpmm_initial_balance.xtz
(mul
(add (blocks_during_init len) (mul blocks_per_mint_tzbtc len))
subsidy))
(** [predict_initial_balances xtz_pool tzbtc_pool lqt_total balances]
evaluates the extra xtz and tzbtc tokens to add to each balance of
the list [balances] so that the related implicit accounts can call
the [add_liquidity] entrypoint in order to have the required
liquidity token.
For instance, for a balance [b] such that [b.liquidity = 10], we
compute [xtz_etra] and [tzbtc_extra] so that the implicit account
will be able to buy [10] liquidity tokens, and replace [b] with
[{b with xtz = b.xtz + xtz_extra; tzbtc = b.tzbtc + tzbtc_extra}]
in the returned list.
The implementation of this function is made more complex than it
should due to the mechanism of subsidy of LB. In particular, it is
depends on the number of block baked to buy liquidities. *)
let predict_initial_balances balances subsidy =
let open Z in
let subsidy_z = of_int64 subsidy in
let xtz_pool lqt_total liquidity_target =
let rec aux xtz_candidate =
let liquidity_z = xtz_candidate * lqt_total / xtz_pool in
if liquidity_z = liquidity_target then xtz_candidate
else aux (xtz_candidate + Z.one)
in
let xtz_extra_candidate = liquidity_target * xtz_pool / lqt_total in
aux xtz_extra_candidate
in
let rec predict_initial_balances xtz_pool tzbtc_pool lqt_total = function
| {xtz; tzbtc; liquidity} :: rst ->
let xtz_pool =
xtz_pool + (Z.of_int64 blocks_per_add_liquidity_step * subsidy_z)
in
let xtz_z = of_int64 xtz in
let tzbtc_z = of_int tzbtc in
let liquidity_z = of_int liquidity in
let = find_xtz_extra xtz_pool lqt_total liquidity_z in
let = cdiv (xtz_extra * tzbtc_pool) xtz_pool in
let xtz = to_int64 (xtz_z + xtz_extra) in
let tzbtc = to_int (tzbtc_z + tzbtc_extra) in
let liquidity = to_int liquidity_z in
let xtz_pool' = xtz_pool + xtz_extra in
let tzbtc_pool' = tzbtc_pool + tzbtc_extra in
let lqt_total' = lqt_total + liquidity_z in
{xtz; tzbtc; liquidity}
:: predict_initial_balances xtz_pool' tzbtc_pool' lqt_total' rst
| [] -> []
in
predict_initial_balances
(of_int64 @@ initial_xtz_pool balances subsidy)
(of_int cpmm_initial_balance.tzbtc)
(of_int cpmm_initial_liquidity_supply)
balances
module MachineBuilder = struct
module Make (S : MACHINE_WITH_INIT) = struct
open S
include Machine.Make (S)
let build :
?invariant:(S.contract env -> S.t -> bool m) ->
?subsidy:xtz ->
specs ->
(S.t * S.contract env) m =
fun ?(invariant = fun _ _ -> pure true)
?(subsidy = default_subsidy)
({cpmm_min_xtz_balance; accounts_balances; cpmm_min_tzbtc_balance} as
specs) ->
let =
predict_initial_balances accounts_balances subsidy
in
let = List.map xtz accounts_balances_with_extra in
let* state, env = init ~invariant ~subsidy xtz_balances_with_extra in
let* cond = invariant env state in
assert cond ;
let accounts =
List_helpers.zip
env.implicit_accounts
(List_helpers.zip accounts_balances accounts_balances_with_extra)
in
let* state =
fold_m
(fun state (address, (_, balances)) ->
mint_tzbtc ~invariant address balances.tzbtc env state)
state
accounts
in
let* state =
fold_m
(fun state (address, (target_balances, )) ->
let xtz = Int64.sub balances_with_extra.xtz target_balances.xtz in
let tzbtc = balances_with_extra.tzbtc - target_balances.tzbtc in
add_liquidity ~invariant address address xtz tzbtc env state)
state
accounts
in
let* current_cpmm_tzbtc_balance =
get_tzbtc_balance env.cpmm_contract env state
in
let tzbtc_missing = cpmm_min_tzbtc_balance - current_cpmm_tzbtc_balance in
let* state =
if 0 < tzbtc_missing then
let* state =
mint_tzbtc ~invariant env.holder tzbtc_missing env state
in
sell_tzbtc ~invariant env.holder env.holder tzbtc_missing env state
else pure state
in
let* current_cpmm_xtz_balance = get_xtz_balance env.cpmm_contract state in
let xtz_missing =
Int64.sub cpmm_min_xtz_balance current_cpmm_xtz_balance
in
let* state =
if 0L < xtz_missing then
let* op =
transaction ~src:env.holder env.cpmm_contract xtz_missing state
in
bake ~invariant ~baker:env.holder [op] env state
else pure state
in
let* () = check_state_satisfies_specs env state specs in
pure (state, env)
end
end
module ConcreteBaseMachine :
MACHINE_WITH_INIT
with type 'a m = 'a tzresult Lwt.t
and type contract = Contract.t
and type t = Block.t = struct
type 'a m = 'a tzresult Lwt.t
type contract = Contract.t
type operation = packed_operation
type t = Block.t
let pp_contract = Contract.pp
let ( let* ) = Lwt_result_syntax.( let* )
let fold_m = Environment.List.fold_left_es
let pure = return
let get_xtz_balance contract blk =
let* x = Context.Contract.balance (B blk) contract in
pure @@ Tez.to_mutez x
let get_tzbtc_balance contract env blk =
let destination = Destination.Contract contract in
let* mamount =
Lqt_fa12_repr.Storage.getBalance_opt
(B blk)
~contract:env.tzbtc_contract
{destination; entrypoint = Entrypoint.default}
in
pure (Option.value (Option.map Z.to_int mamount) ~default:0)
let get_liquidity_balance contract env blk =
let destination = Destination.Contract contract in
let* mamount =
Lqt_fa12_repr.Storage.getBalance_opt
(B blk)
~contract:env.liquidity_contract
{destination; entrypoint = Entrypoint.default}
in
pure (Option.value (Option.map Z.to_int mamount) ~default:0)
let get_cpmm_total_liquidity env blk =
let* cpmm_storage =
Cpmm_repr.Storage.get (B blk) ~contract:env.cpmm_contract
in
pure @@ Z.to_int cpmm_storage.lqtTotal
let get_balances contract env blk =
let* xtz = get_xtz_balance contract blk in
let* tzbtc = get_tzbtc_balance contract env blk in
let* liquidity = get_liquidity_balance contract env blk in
pure {xtz; tzbtc; liquidity}
let bake ~invariant ~baker ops env blk =
let* incr =
Incremental.begin_construction
~policy:(Block.By_account (Context.Contract.pkh baker))
blk
in
let* incr = fold_m Incremental.add_operation incr ops in
let* blk = Incremental.finalize_block incr in
let* cond = invariant env blk in
assert cond ;
return blk
let reveal (account : Account.t) blk = Op.revelation (B blk) account.pk
let transaction ~src dst amount blk =
Op.transaction (B blk) src dst (Tez.of_mutez_exn amount)
let token_to_xtz ~src dst tzbtc_deposit env blk =
Cpmm_repr.transaction
(B blk)
~src
~contract:env.cpmm_contract
(Cpmm_repr.Parameter.TokenToXtz
{
to_ = dst;
minXtzBought = Tez.zero;
tokensSold = Z.of_int tzbtc_deposit;
deadline = far_future;
})
let xtz_to_token ~src dst amount env blk =
Cpmm_repr.transaction
(B blk)
~src
~contract:env.cpmm_contract
(Cpmm_repr.Parameter.XtzToToken
{to_ = dst; minTokensBought = Z.zero; deadline = far_future})
~amount:(Tez.of_mutez_exn amount)
let approve_tzbtc src tzbtc env blk =
let maxTokensDeposited = Z.of_int tzbtc in
Lqt_fa12_repr.transaction
(B blk)
~src
~contract:env.tzbtc_contract
(Lqt_fa12_repr.Parameter.Approve
{spender = env.cpmm_contract; value = maxTokensDeposited})
let mint_or_burn_tzbtc target amount env blk =
let quantity = Z.of_int amount in
let ctxt = Context.B blk in
Lqt_fa12_repr.transaction
ctxt
~src:env.tzbtc_admin
~contract:env.tzbtc_contract
(Lqt_fa12_repr.Parameter.mintOrBurn {target; quantity})
let add_liquidity ~src dst xtz_deposit tzbtc_deposit env blk =
let amount = Tez.of_mutez_exn xtz_deposit in
let maxTokensDeposited = Z.of_int tzbtc_deposit in
Cpmm_repr.transaction
(B blk)
~src
~contract:env.cpmm_contract
~amount
(Cpmm_repr.Parameter.AddLiquidity
{
owner = dst;
maxTokensDeposited;
minLqtMinted = Z.zero;
deadline = far_future;
})
let remove_liquidity ~src dst lqt_burned env blk =
let lqtBurned = Z.of_int lqt_burned in
Cpmm_repr.transaction
(B blk)
~src
~contract:env.cpmm_contract
(Cpmm_repr.Parameter.RemoveLiquidity
{
to_ = dst;
lqtBurned;
minXtzWithdrawn = Tez.zero;
minTokensWithdrawn = Z.zero;
deadline = far_future;
})
let reveal_tzbtc_admin ~invariant env state =
Account.add_account tzbtc_admin_account ;
let* op1 = transaction ~src:env.holder env.tzbtc_admin 1L state in
let* state = bake ~invariant ~baker:env.holder [op1] env state in
let* op2 = reveal tzbtc_admin_account state in
bake ~invariant ~baker:env.holder [op2] env state
let init ~invariant ?subsidy accounts_balances =
let liquidity_baking_subsidy =
Option.value ~default:default_subsidy subsidy |> Tez.of_mutez_exn
in
let block_delay =
Period.to_seconds
Tezos_protocol_018_Proxford_parameters.Default_parameters.constants_test
.minimal_block_delay
|> Int64.to_int
in
let n, bootstrap_balances = initial_xtz_repartition accounts_balances in
let* result =
Context.init_n
n
~consensus_threshold:0
~bootstrap_balances
~cost_per_byte:Tez.zero
~issuance_weights:
{
base_total_issued_per_minute =
Tez.(div_exn (mul_exn liquidity_baking_subsidy 60) block_delay);
attesting_reward_weight = 0;
baking_reward_fixed_portion_weight = 0;
baking_reward_bonus_weight = 0;
seed_nonce_revelation_tip_weight = 0;
vdf_revelation_tip_weight = 0;
liquidity_baking_subsidy_weight = 1;
}
~origination_size:0
~blocks_per_cycle:10_000l
~cycles_per_voting_period:1l
()
in
match result with
| blk, holder :: accounts ->
let ctxt = Context.B blk in
let* cpmm_contract = Context.get_liquidity_baking_cpmm_address ctxt in
let* storage = Context.Contract.storage ctxt cpmm_contract in
let storage = Cpmm_repr.Storage.of_expr_exn (Micheline.root storage) in
let tzbtc_contract = storage.tokenAddress in
let liquidity_contract = storage.lqtAddress in
let* storage = Context.Contract.storage ctxt tzbtc_contract in
let storage =
Lqt_fa12_repr.Storage.of_expr_exn (Micheline.root storage)
in
let tzbtc_admin = storage.admin in
let* storage = Context.Contract.storage ctxt liquidity_contract in
let storage =
Lqt_fa12_repr.Storage.of_expr_exn (Micheline.root storage)
in
let liquidity_admin = storage.admin in
let* subsidy = Context.get_liquidity_baking_subsidy (B blk) in
let env =
{
cpmm_contract = Contract.Originated cpmm_contract;
tzbtc_contract = Contract.Originated tzbtc_contract;
tzbtc_admin;
liquidity_contract = Contract.Originated liquidity_contract;
liquidity_admin;
implicit_accounts = accounts;
holder;
subsidy = Tez.to_mutez subsidy;
}
in
let* blk =
reveal_tzbtc_admin ~invariant:(fun _ _ -> pure true) env blk
in
let* op =
mint_or_burn_tzbtc
env.cpmm_contract
cpmm_initial_balance.tzbtc
env
blk
in
let* blk =
bake ~invariant:(fun _ _ -> pure true) ~baker:env.holder [op] env blk
in
let* blk =
List.fold_left_i_es
(fun idx blk contract ->
match List.nth accounts_balances idx with
| Some target ->
let* balance = get_xtz_balance contract blk in
let delta = Int64.(sub target balance) in
if Compare.Int64.(0L = delta) then
bake
~invariant:(fun _ _ -> pure true)
~baker:env.holder
[]
env
blk
else if Compare.Int64.(0L < delta) then
let* op = transaction ~src:env.holder contract delta blk in
bake
~invariant:(fun _ _ -> pure true)
~baker:env.holder
[op]
env
blk
else assert false
| None -> assert false)
blk
accounts
in
let* cond = invariant env blk in
assert cond ;
pure (blk, env)
| _ -> assert false
end
module ConcreteMachine = struct
include ConcreteBaseMachine
include Machine.Make (ConcreteBaseMachine)
include MachineBuilder.Make (ConcreteBaseMachine)
end
(** {1 Abstract Machines} *)
type 'a state = {
cpmm_total_liquidity : liquidity;
accounts_balances : ('a * balances) list;
}
let refine_state env state =
{
cpmm_total_liquidity = state.cpmm_total_liquidity;
accounts_balances =
List.map
(fun (c, b) -> (refine_contract env c, b))
state.accounts_balances;
}
let update_balances account f state =
match List.assoc ~equal:( = ) account state.accounts_balances with
| Some b ->
{
state with
accounts_balances =
(account, f b)
:: List.remove_assoc ~equal:( = ) account state.accounts_balances;
}
| _ -> assert false
let update_xtz_balance account f =
update_balances account (fun b -> {b with xtz = f b.xtz})
let update_tzbtc_balance account f =
update_balances account (fun b -> {b with tzbtc = f b.tzbtc})
let update_liquidity_balance account f =
update_balances account (fun b -> {b with liquidity = f b.liquidity})
let transfer_xtz_balance src dest d st =
update_xtz_balance src (fun b -> Int64.sub b d) st
|> update_xtz_balance dest (fun b -> Int64.add b d)
let transfer_tzbtc_balance src dest d st =
update_tzbtc_balance src (fun b -> b - d) st
|> update_tzbtc_balance dest (fun b -> d + b)
module AbstractMachine = struct
module type C = sig
type t
val pp : Format.formatter -> t -> unit
end
module Make (C : C) :
MACHINE with type 'a m = 'a and type contract = C.t and type t = C.t state =
struct
type 'a m = 'a
type contract = C.t
type t = C.t state
type operation = t -> t
let pp_contract = C.pp
let ( let* ) x f = f x
let pure = Fun.id
let fold_m = List.fold_left
let get_balances account state =
match List.assoc ~equal:( = ) account state.accounts_balances with
| Some x -> x
| _ -> assert false
let get_xtz_balance account state = (get_balances account state).xtz
let get_tzbtc_balance account _env state =
(get_balances account state).tzbtc
let get_liquidity_balance account _env state =
(get_balances account state).liquidity
let get_balances account _env state = get_balances account state
let get_cpmm_total_liquidity _env state = state.cpmm_total_liquidity
let reveal _pk _state state = state
let transaction ~src dst amount _ state =
transfer_xtz_balance src dst amount state
let xtz_bought tzbtc env state =
let xtzPool =
Tez.of_mutez_exn @@ get_xtz_balance env.cpmm_contract state
in
let tokenPool =
Z.of_int @@ get_tzbtc_balance env.cpmm_contract env state
in
let tokensSold = Z.of_int tzbtc in
let xtz_bought, xtz_net_bought =
Cpmm_logic.Simulate_raw.tokenToXtz ~xtzPool ~tokenPool ~tokensSold
in
(Z.to_int64 xtz_net_bought, Tez.to_mutez xtz_bought)
let token_to_xtz ~src dst amount env _ state =
let xtz_bought, xtz_net_bought = xtz_bought amount env state in
state
|> transfer_tzbtc_balance src env.cpmm_contract amount
|> update_xtz_balance env.cpmm_contract (fun b -> Int64.sub b xtz_bought)
|> update_xtz_balance dst (Int64.add xtz_net_bought)
let tzbtc_bought env state amount =
let xtzPool =
Tez.of_mutez_exn @@ get_xtz_balance env.cpmm_contract state
in
let tokenPool =
Z.of_int @@ get_tzbtc_balance env.cpmm_contract env state
in
let amount = Tez.of_mutez_exn amount in
let tzbtc_bought, xtz_earnt =
Cpmm_logic.Simulate_raw.xtzToToken ~xtzPool ~tokenPool ~amount
in
(Z.to_int tzbtc_bought, Z.to_int64 xtz_earnt)
let xtz_to_token ~src dst amount env _ state =
let tzbtc_bought, xtz_earnt = tzbtc_bought env state amount in
update_xtz_balance src (fun b -> Int64.sub b amount) state
|> update_xtz_balance env.cpmm_contract (Int64.add xtz_earnt)
|> transfer_tzbtc_balance env.cpmm_contract dst tzbtc_bought
let mint_or_burn_tzbtc target amount _ _ =
update_tzbtc_balance target (( + ) amount)
let approve_tzbtc _contract _amount _env _state = Fun.id
let add_liquidity ~src dst xtz_deposit _tzbtc_deposit env _ state =
let xtzPool =
Tez.of_mutez_exn (get_xtz_balance env.cpmm_contract state)
in
let tokenPool =
Z.of_int (get_tzbtc_balance env.cpmm_contract env state)
in
let lqtTotal = Z.of_int state.cpmm_total_liquidity in
let amount = Tez.of_mutez_exn xtz_deposit in
let lqt_minted, tokens_deposited =
Cpmm_logic.Simulate_raw.addLiquidity
~tokenPool
~xtzPool
~lqtTotal
~amount
in
let lqt_minted = Z.to_int lqt_minted in
let tokens_deposited = Z.to_int tokens_deposited in
let state =
transfer_xtz_balance src env.cpmm_contract xtz_deposit state
|> transfer_tzbtc_balance src env.cpmm_contract tokens_deposited
|> update_liquidity_balance dst (( + ) lqt_minted)
in
{
state with
cpmm_total_liquidity = state.cpmm_total_liquidity + lqt_minted;
}
let remove_liquidity ~src dst lqt_burned env _ state =
let xtzPool =
Tez.of_mutez_exn (get_xtz_balance env.cpmm_contract state)
in
let tokenPool =
Z.of_int (get_tzbtc_balance env.cpmm_contract env state)
in
let lqtTotal = Z.of_int state.cpmm_total_liquidity in
let lqtBurned = Z.of_int lqt_burned in
let xtz_withdrawn, tokens_withdrawn =
Cpmm_logic.Simulate_raw.removeLiquidity
~tokenPool
~xtzPool
~lqtTotal
~lqtBurned
in
let xtz_withdrawn = Tez.to_mutez xtz_withdrawn in
let tokens_withdrawn = Z.to_int tokens_withdrawn in
let state =
update_xtz_balance dst (fun b -> Int64.add b xtz_withdrawn) state
|> update_tzbtc_balance dst (( + ) tokens_withdrawn)
|> update_liquidity_balance src (fun b -> b - lqt_burned)
|> update_xtz_balance env.cpmm_contract (fun b ->
Int64.sub b xtz_withdrawn)
|> update_tzbtc_balance env.cpmm_contract (fun b ->
b - tokens_withdrawn)
in
{
state with
cpmm_total_liquidity = state.cpmm_total_liquidity - lqt_burned;
}
let bake ~invariant ~baker operations env state =
let state =
update_xtz_balance env.cpmm_contract (Int64.add env.subsidy) state
|> (fun state -> List.fold_left ( |> ) state operations)
|> update_xtz_balance baker (fun b -> Int64.sub b security_deposit)
in
assert (invariant env state) ;
state
end
end
(** {1 Symbolic Machine} *)
module SymbolicBaseMachine :
MACHINE_WITH_INIT
with type 'a m = 'a
and type contract = contract_id
and type t = contract_id state = struct
include AbstractMachine.Make (struct
type t = contract_id
let pp = pp_contract_id
end)
let init ~invariant:_ ?(subsidy = default_subsidy) accounts_balances =
let _, bootstrap_balances = initial_xtz_repartition accounts_balances in
let len = Int64.of_int (List.length accounts_balances) in
match bootstrap_balances with
| holder_xtz :: accounts ->
let xtz_cpmm =
Int64.(
add cpmm_initial_balance.xtz (mul (blocks_during_init len) subsidy))
in
( {
cpmm_total_liquidity = cpmm_initial_liquidity_supply;
accounts_balances =
(Cpmm, {cpmm_initial_balance with xtz = xtz_cpmm})
:: (Holder, {xtz = holder_xtz; tzbtc = 0; liquidity = 0})
:: (TzBTCAdmin, {xtz = 0L; tzbtc = 0; liquidity = 0})
:: List.mapi
(fun i xtz ->
(ImplicitAccount i, {xtz; tzbtc = 0; liquidity = 0}))
accounts;
},
{
cpmm_contract = Cpmm;
tzbtc_contract = TzBTC;
tzbtc_admin = TzBTCAdmin;
liquidity_contract = Liquidity;
liquidity_admin = LiquidityAdmin;
implicit_accounts =
List.mapi (fun i _ -> ImplicitAccount i) accounts;
holder = Holder;
subsidy;
} )
| [] -> assert false
end
module SymbolicMachine = struct
include SymbolicBaseMachine
include Machine.Make (SymbolicBaseMachine)
include MachineBuilder.Make (SymbolicBaseMachine)
end
(** {1 Validation Machine} *)
module ValidationBaseMachine :
MACHINE_WITH_INIT
with type 'a m = 'a ConcreteBaseMachine.m
and type t = ConcreteBaseMachine.t * Contract.t state
and type contract = Contract.t = struct
module GhostMachine = AbstractMachine.Make (struct
type t = Contract.t
let pp = Contract.pp
end)
type 'a m = 'a ConcreteBaseMachine.m
type t = ConcreteBaseMachine.t * GhostMachine.t
type contract = Contract.t
type operation = ConcreteBaseMachine.operation * GhostMachine.operation
let pp_contract = Contract.pp
let ( let* ) = ConcreteBaseMachine.( let* )
let fold_m = ConcreteBaseMachine.fold_m
let pure = ConcreteBaseMachine.pure
let get_balances contract env (_, state) =
pure (GhostMachine.get_balances contract env state)
let get_xtz_balance contract (_, state) =
pure (GhostMachine.get_xtz_balance contract state)
let get_tzbtc_balance contract env (_, state) =
pure (GhostMachine.get_tzbtc_balance contract env state)
let get_liquidity_balance contract env (_, state) =
pure (GhostMachine.get_liquidity_balance contract env state)
let get_cpmm_total_liquidity env (_, state) =
pure (GhostMachine.get_cpmm_total_liquidity env state)
let bake ~invariant ~baker ops env (blk, state) =
let cops = List.map fst ops in
let rops = List.map snd ops in
let* blk =
ConcreteBaseMachine.(
bake ~invariant:(fun _ _ -> pure true) ~baker cops env blk)
in
let state =
GhostMachine.bake ~invariant:(fun _ _ -> true) ~baker rops env state
in
let* cond = invariant env (blk, state) in
assert cond ;
pure (blk, state)
let transaction ~src dst xtz (blk, state) =
let* cop = ConcreteBaseMachine.transaction ~src dst xtz blk in
pure (cop, GhostMachine.transaction ~src dst xtz state)
let token_to_xtz ~src dst tzbtc env (blk, state) =
let* cop = ConcreteBaseMachine.token_to_xtz ~src dst tzbtc env blk in
pure (cop, GhostMachine.token_to_xtz ~src dst tzbtc env state)
let xtz_to_token ~src dst xtz env (blk, state) =
let* cop = ConcreteBaseMachine.xtz_to_token ~src dst xtz env blk in
pure (cop, GhostMachine.xtz_to_token ~src dst xtz env state)
let mint_or_burn_tzbtc dst tzbtc env (blk, state) =
let* cop = ConcreteBaseMachine.mint_or_burn_tzbtc dst tzbtc env blk in
pure (cop, GhostMachine.mint_or_burn_tzbtc dst tzbtc env state)
let approve_tzbtc dst tzbtc env (blk, state) =
let* cop = ConcreteBaseMachine.approve_tzbtc dst tzbtc env blk in
pure (cop, GhostMachine.approve_tzbtc dst tzbtc env state)
let add_liquidity ~src dst xtz_deposit tzbtc_deposit env (blk, state) =
let* cop =
ConcreteBaseMachine.add_liquidity
~src
dst
xtz_deposit
tzbtc_deposit
env
blk
in
pure
( cop,
GhostMachine.add_liquidity ~src dst xtz_deposit tzbtc_deposit env state
)
let remove_liquidity ~src dst lqt_burned env (blk, state) =
let* cop =
ConcreteBaseMachine.remove_liquidity ~src dst lqt_burned env blk
in
pure (cop, GhostMachine.remove_liquidity ~src dst lqt_burned env state)
let reveal account (blk, state) =
let* cop = ConcreteBaseMachine.reveal account blk in
pure (cop, GhostMachine.reveal account state)
let init ~invariant ?subsidy balances =
let* blk, env =
ConcreteBaseMachine.init
~invariant:(fun _ _ -> return_true)
?subsidy
balances
in
let state, _ =
SymbolicBaseMachine.init ~invariant:(fun _ _ -> true) ?subsidy balances
in
let state = refine_state env state in
let* cond = invariant env (blk, state) in
assert cond ;
pure ((blk, state), env)
end
module ValidationMachine = struct
include ValidationBaseMachine
include Machine.Make (ValidationBaseMachine)
include MachineBuilder.Make (ValidationBaseMachine)
module Symbolic = struct
let get_xtz_balance = get_xtz_balance
let get_tzbtc_balance = get_tzbtc_balance
let get_liquidity_balance = get_liquidity_balance
let get_cpmm_total_liquidity = get_cpmm_total_liquidity
end
module Concrete = struct
let get_xtz_balance contract (blk, _) =
ConcreteMachine.get_xtz_balance contract blk
let get_tzbtc_balance contract env (blk, _) =
ConcreteMachine.get_tzbtc_balance contract env blk
let get_liquidity_balance contract env (blk, _) =
ConcreteMachine.get_liquidity_balance contract env blk
let get_cpmm_total_liquidity env (blk, _) =
ConcreteMachine.get_cpmm_total_liquidity env blk
end
end