package octez-plonk
Plonk zero-knowledge proving system
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-17.3.tar.gz
sha256=7062cd57addd452852598a2214ade393130efa087b99068d53713bdf912b3680
sha512=08e4091144a03ce3c107fb91a66501bd8b65ca3278917c455a2eaac6df3e108ade63f6ab8340a4bb152d60f404326e464d0ec95d26cafe8e82f870465d24a5fc
doc/src/octez-plonk.plonk-test/helpers.ml.html
Source file helpers.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
(*****************************************************************************) (* *) (* MIT License *) (* Copyright (c) 2022 Nomadic Labs <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) let with_seed (f : unit -> unit) = (* Seed for deterministic pseudo-randomness: If the environment variable RANDOM_SEED is set, then its value is used as as seed. Otherwise, a random seed is used. WARNING: using [Random.self_init] elsewhere in the tests breaks thedeterminism. *) let seed = match Sys.getenv_opt "RANDOM_SEED" with | None -> Random.self_init () ; Random.int 1073741823 | Some v -> ( try int_of_string v with _ -> failwith (Format.sprintf "Invalid random seed '%s'. Maybe you need to run '$ unset \ RANDOM_SEED' in your terminal?" v)) in Printf.printf "Random seed: %d\n" seed ; Random.init seed ; f () let output_buffer = ref stdout let with_output_to_file (f : unit -> unit) = output_buffer := open_out "test.output" ; f () ; close_out !output_buffer let set_seed s = Random.init s let bigstring_of_file filename ~hash = let bs = let fd = Unix.openfile filename [Unix.O_RDONLY] 0o440 in Bigarray.array1_of_genarray @@ Unix.map_file fd Bigarray.char Bigarray.c_layout false [|(* [-1] means read the whole file *) -1|] in let computed_hash = let st = Hacl_star.EverCrypt.Hash.init ~alg:Hacl_star.SharedDefs.HashDefs.BLAKE2b in let len = 48 (* works for both g1 and g2 *) in let msg = Bytes.create len in for i = 0 to (Bigstringaf.length bs / len) - 1 do Bigstringaf.blit_to_bytes bs ~src_off:(i * len) msg ~dst_off:0 ~len ; Hacl_star.EverCrypt.Hash.update ~st ~msg done ; Hacl_star.EverCrypt.Hash.finish ~st in let hash = Hex.to_bytes (`Hex hash) in if computed_hash <> hash then failwith ("Invalid hash: " ^ filename) ; bs let load_real_srs prefix = let open Octez_bls12_381_polynomial.Bls12_381_polynomial.Srs in let ( // ) s1 s2 = s1 ^ "/" ^ s2 in ( ( Srs_g1.of_bigstring (bigstring_of_file (prefix // "srs_filecoin_g1_21") ~hash: "25281025229b67eed4bcf4451dca0e5ac3fc6c5bf5934f54449105a7feba8049cf0e9f390f23528d5f860387c07a6b374f2ef6dad6fd73b051e4cc4699974738") ~len:(1 lsl 21) |> Result.get_ok, Srs_g2.of_bigstring (bigstring_of_file (prefix // "srs_filecoin_g2_1") ~hash: "ee034f5e6d3d9dc2097861ffb278438573f0a9c84afd6806a5b53b158b0e6e6847dc8a84e1b01c3c161ed4593816d59bf4817c797ffad6fffbea143987e340a4") ~len:2 |> Result.get_ok ), ( Srs_g1.of_bigstring (bigstring_of_file (prefix // "srs_zcash_g1_1") ~hash: "435fd5b85e1e3271c8e241b25da799df3e312e67d06c9e009fb967a8d597ed37897047aa48659526ce10db857ee02c64e6f577ef80485d34d7506fff40a901b4") ~len:2 |> Result.get_ok, Srs_g2.of_bigstring (bigstring_of_file (prefix // "srs_zcash_g2_10") ~hash: "39ebc126d18caade1bee9294124292a089746441cee6b80efb37f0a1e6a37e8acabfa3c0a3b0c6ce15ea3a46a5f5373be222bb1a54b332d43e25f489c66dec49") ~len:(1 lsl 10) |> Result.get_ok ) ) let make_fake_srs () = let open Octez_bls12_381_polynomial.Bls12_381_polynomial in (Srs.generate_insecure 14 1, Srs.generate_insecure 1 14) let srs = match Sys.getenv_opt "SRS_DIR" with | None -> make_fake_srs () | Some prefix -> load_real_srs prefix let rec repeat n f = if n <= 0 then () else ( f () ; repeat (n - 1) f) let must_fail f = let exception Local in try (try f () with _ -> raise Local) ; assert false with | Local -> () | _ -> assert false let string_of_bytes bytes = if bytes <= 1024. then Printf.sprintf "%3.2f B " bytes else let kilobytes = bytes /. 1024. in if kilobytes <= 1024. then Printf.sprintf "%3.2f KB" kilobytes else let megabytes = kilobytes /. 1024. in if megabytes <= 1024. then Printf.sprintf "%3.2f MB" megabytes else let gigabytes = megabytes /. 1024. in Printf.sprintf "%.2f GB" gigabytes let hash_of_repr t v = let serialized_bytes = Bytes.of_string @@ Repr.(unstage @@ to_bin_string t) v in Hacl_star.Hacl.Blake2b_32.hash serialized_bytes 32 |> Hex.of_bytes |> Hex.show let get_input_com_secrets private_inputs input_com_sizes = let secrets, _ = List.fold_left (fun (secrets, l) size -> (Array.sub private_inputs l size :: secrets, l + size)) ([], 0) input_com_sizes in List.rev secrets module Time = struct type data = {n : int; sum : float; sum_squares : float; last : float} let str_time = ref "" let zero_data = {n = 0; sum = 0.; sum_squares = 0.; last = 0.} let setup = ref zero_data let prove = ref zero_data let verify = ref zero_data let reset () = setup := zero_data ; prove := zero_data ; verify := zero_data let update data time = let sum = time +. !data.sum in let sum_squares = (time *. time) +. !data.sum_squares in data := {n = !data.n + 1; sum; sum_squares; last = time} let mean data = !data.sum /. float_of_int !data.n let var data = let m = mean data in (!data.sum_squares /. float_of_int !data.n) -. (m *. m) let std data = sqrt (var data) let string_of_time t = if t > 60. then Printf.sprintf "%3.2f m " (t /. 60.) else if t > 1. then Printf.sprintf "%3.2f s " t else if t > 0.001 then Printf.sprintf "%3.2f ms" (t *. 1_000.) else Printf.sprintf "%3.0f µs" (t *. 1_000_000.) let time description f = Gc.full_major () ; let st1 = Gc.stat () in let start = Unix.gettimeofday () in let res = f () in let stop = Unix.gettimeofday () in let d = stop -. start in let () = match description with | "setup" -> update setup d | "prove" -> update prove d | "verify" -> update verify d | _ -> () in let t_str = string_of_time d in let st2 = Gc.stat () in let allocations = (st2.minor_words +. st2.major_words -. st2.promoted_words -. (st1.minor_words +. st1.major_words -. st1.promoted_words)) *. 8. |> string_of_bytes in let top_heap_words = if st2.top_heap_words > st1.top_heap_words then st2.top_heap_words |> float_of_int |> Float.mul 8. |> string_of_float else "?" in Printf.printf "%-8s: Time: %8s Allocations %6s MaxHeap: %s\n%!" description t_str allocations top_heap_words ; res let reset_str () = str_time := "" let update_str ?header () = let header = match header with None -> "" | Some header -> header ^ "\n" in str_time := !str_time ^ Printf.sprintf "%s%f\n%f\n%f\n" header !setup.last !prove.last !verify.last let print_time_in_file file = let oc = open_out file in Printf.fprintf oc "%s" !str_time ; close_out oc let bench_test_circuit ~nb_rep func () = reset () ; repeat nb_rep func ; assert (nb_rep = !setup.n && nb_rep = !prove.n && nb_rep = !verify.n) ; Printf.printf "\nTimes over %d repetitions (95%% confidence interval):\n\n" nb_rep ; let pp = string_of_time in let z = 1.96 in Printf.printf " Setup : %s ± %s\n" (pp (mean setup)) (pp (z *. std setup)) ; Printf.printf " Prove : %s ± %s\n" (pp (mean prove)) (pp (z *. std prove)) ; Printf.printf " Verify: %s ± %s\n" (pp (mean verify)) (pp (z *. std verify)) ; Printf.printf "\n" let time_if_verbose verbose description f = if verbose then time description f else f () end module Make (Main : Plonk.Main_protocol.S) = struct open Plonk.Circuit module Singleton = struct include Main let setup ~zero_knowledge circuit ~srs = let circuits_map = Plonk.SMap.singleton "" (circuit, 1) in Main.setup ~zero_knowledge circuits_map ~srs let prove pp ~(inputs : circuit_prover_input list) = let inputs = Plonk.SMap.singleton "" inputs in Main.prove pp ~inputs let verify pp ~inputs proof = let inputs = Plonk.SMap.singleton "" inputs in Main.verify pp ~inputs proof end let multi_input_commit pp input_commitment_secrets = List.fold_left (fun (cmts, shift) secret -> (Main.input_commit ~shift pp secret :: cmts, shift + Array.length secret)) ([], 0) input_commitment_secrets |> fst |> List.rev let print_info name zero_knowledge proof pp_prover pp_verifier = let proof_size = Data_encoding.Binary.length Main.proof_encoding proof |> Float.of_int in let proof_hash = hash_of_repr Main.proof_t proof in let prover_pp_hash = hash_of_repr Main.prover_public_parameters_t pp_prover in let verifier_pp_hash = hash_of_repr Main.verifier_public_parameters_t pp_verifier in Printf.fprintf !output_buffer "%s:\n\ Proof size: %s\n\ Proof hash: %s\n\ Prover_pp hash: %s\n\ Verifier_pp hash: %s\n\n" (if zero_knowledge then "zk-" ^ name else name) (string_of_bytes proof_size) proof_hash prover_pp_hash verifier_pp_hash let make_secret pp_prover input_com_sizes witness = let open Main in let input_com_secrets = get_input_com_secrets witness input_com_sizes in let input_commitments = multi_input_commit pp_prover input_com_secrets in {witness; input_commitments} let test_circuits ~name ?(zero_knowledge = false) ?(outcome = Cases.Valid) ?(verbose = false) circuit_map private_inputs = let time_if_verbose verbose description f = if verbose then Time.time description f else f () in if verbose then Plonk.SMap.iter (fun cname (circuit, _n) -> Format.printf "circuit '%s' has %d constraints\n" cname circuit.circuit_size) circuit_map ; let pp_prover, pp_verifier = time_if_verbose verbose "setup" (fun () -> Main.setup ~zero_knowledge circuit_map ~srs) in let prover_inputs = Plonk.SMap.mapi (fun c_name -> let c = fst (Plonk.SMap.find c_name circuit_map) in List.map (make_secret pp_prover c.input_com_sizes)) private_inputs in let verifier_inputs = Main.to_verifier_inputs pp_prover prover_inputs in match outcome with | Valid -> ( let proof = time_if_verbose verbose "prove" (fun () -> Main.prove pp_prover ~inputs:prover_inputs) in Gc.full_major () ; let v = time_if_verbose verbose "verify" (fun () -> Main.verify pp_verifier ~inputs:verifier_inputs proof) in assert v ; print_info name zero_knowledge proof pp_prover pp_verifier ; (* Test that verification fails if we mutate public inputs *) match Main.Internal_for_tests.mutate_vi verifier_inputs with | None -> () (* No public inputs *) | Some verifier_inputs -> let v = Main.verify pp_verifier ~inputs:verifier_inputs proof in assert (not v)) | _ -> ( try let proof = Main.prove pp_prover ~inputs:prover_inputs in assert (not (Main.verify pp_verifier ~inputs:verifier_inputs proof)) with | Main.Rest_not_null _ -> if outcome = Proof_error then () else raise (Invalid_argument "Proving error: incorrect witness") | Main.Entry_not_in_table _ -> if outcome = Lookup_error then () else raise (Invalid_argument "Proving error: incorrect lookup") | e -> raise e) (* generator must be n-th root of unity n must be in the form 2^i for k number of gates a_c, b_c, c_c, ql, qr, qo, qm, qc must be lists of length k x is an array of length m = 3+2(k-1) l between 0 and m-1, l first parameters will be taken as public inputs n = k+l valid_proof is true if the proof is expected valid, false if it must fail if verbose print run times when valid_proof is true *) let test_circuit ~name ?zero_knowledge ?outcome ?verbose circuit private_inputs = let circuit_map = Plonk.SMap.singleton name (circuit, 1) in let inputs = Plonk.SMap.singleton name [private_inputs] in test_circuits ~name ?zero_knowledge ?outcome ?verbose circuit_map inputs let run_test_case ~zero_knowledge ?verbose Cases.{name; circuit; witness; outcome} () = test_circuit ~name ~zero_knowledge ~outcome ?verbose circuit witness let test_aggregated_cases ?(prefix = "") cases = let name, circuits_map, inputs_map, outcome = Cases.aggregate_cases ~prefix cases in ( name, fun ~zero_knowledge () -> test_circuits ~name ~zero_knowledge circuits_map inputs_map ~outcome ) end module Plompiler_Helpers = struct open Plompiler module CS = Plonk.Circuit type test_info = {valid : bool; name : string; flamegraph : bool} module type Test = functor (L : LIB) -> sig open L val tests : ((unit -> unit repr t) * test_info) list end let to_test ?plonk ?(optimize = true) test () = let module Test = (val test : Test) in let circuits = let module E1 = Test (LibCircuit) in E1.tests in let results = let module E2 = Test (LibResult) in E2.tests in let run_one_test (circuit, info) (result, _) = let LibCircuit.{cs; tables; solver; _} = LibCircuit.(get_cs (circuit ())) in let initial, public_input_size = LibCircuit.(get_inputs (circuit ())) in if info.flamegraph then Plompiler.Utils.dump_label_traces (info.name ^ "_flamegraph") cs ; let pi = try Solver.solve solver initial |> fun x -> Some x with _ -> None in match pi with | None -> assert (not info.valid) | Some private_inputs -> (* Printf.printf "Trace:\n%s\n%s\n" (String.concat "," (List.init (Array.length private_inputs) string_of_int)) (String.concat "," (List.map S.string_of_scalar (Array.to_list private_inputs))) ; Printf.printf "CS:\n%s\n" (CS.to_string cs) ; *) if not info.valid then assert (not @@ CS.sat cs tables private_inputs) else ( Printf.fprintf !output_buffer "%s:\nConstraints: %d\n\n" info.name Array.(concat cs |> length) ; assert (CS.sat cs tables private_inputs) ; let cs, private_inputs = if optimize then ( let LibCircuit.{cs; solver; _} = LibCircuit.(get_cs ~optimize (circuit ())) in Printf.fprintf !output_buffer "%s_optimized:\nConstraints: %d\n\n" info.name Array.(concat cs |> length) ; let private_inputs = Solver.solve solver initial in assert (CS.sat cs tables private_inputs) ; (cs, private_inputs)) else (cs, private_inputs) in if info.flamegraph then Plompiler.Utils.dump_label_traces (info.name ^ "_opt_flamegraph") cs ; let res = LibResult.get_result (result ()) in let serialized_res = LibResult.serialize res in let out_size = Array.length serialized_res in let trace_out = Array.sub private_inputs (Array.length private_inputs - out_size) out_size in (* Compare values obtained from Result and Circuit interpreters *) assert (Array.for_all2 S.( = ) serialized_res trace_out) ; match plonk with | None -> () | Some plonk -> let module Main = (val plonk : Plonk.Main_protocol.S) in let open Make (Main) in let circuit = CS.to_plonk ~public_input_size ~tables cs in test_circuit ~name:info.name ~zero_knowledge:false ~outcome:Valid circuit private_inputs) in List.iter2 run_one_test circuits results module Utils (L : LIB) = struct open L (* We test equality for Num, Bool, lists, tuples *) let test_equal x z () = let* x = input ~kind:`Public x in let* z = input z in assert_equal x z let si x = Input.scalar @@ S.of_string @@ string_of_int x let test ~valid ?(name = "test") ?(flamegraph = false) x = (x, {valid; name; flamegraph}) end end include Plompiler_Helpers
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>