package octez-plonk
Plonk zero-knowledge proving system
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-17.3.tar.gz
sha256=7062cd57addd452852598a2214ade393130efa087b99068d53713bdf912b3680
sha512=08e4091144a03ce3c107fb91a66501bd8b65ca3278917c455a2eaac6df3e108ade63f6ab8340a4bb152d60f404326e464d0ec95d26cafe8e82f870465d24a5fc
doc/src/octez-plonk.plonk-test/cases.ml.html
Source file cases.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
open Plonk module Scalar = Bls.Scalar let ( ! ) = List.map Scalar.of_int let ( !! ) l = List.map Scalar.of_int l |> Array.of_list type outcome = Valid | Proof_error | Lookup_error type case = { name : string; circuit : Circuit.t; witness : Scalar.t array; outcome : outcome; } (* This function aggregates cases ; if several cases concern the same circuit, it becomes a circuit with several statements *) let aggregate_cases ?(prefix = "") cases = let outcome = (List.hd cases).outcome in let name, circuits_map, inputs_map, outcome = List.fold_left (fun (name, circuits_map, inputs_map, outcome) case -> assert (outcome = case.outcome) ; let circuit = case.circuit in let other_inputs = Option.value ~default:[] @@ SMap.find_opt case.name inputs_map in let inputs = case.witness :: other_inputs in SMap. ( (if name = "" then case.name else name ^ "+" ^ case.name), add case.name (circuit, List.length inputs) circuits_map, add case.name inputs inputs_map, outcome )) SMap.(prefix, empty, empty, outcome) cases in let inputs_map = SMap.map List.rev inputs_map in (name, circuits_map, inputs_map, outcome) module Unit_tests_for_each_selector = struct (* ---- Unit tests for each selector. ---- We make circuits with 2 constraints, as circuits with 1 constraint are not supported. *) let qc = let name = "qc" in let witness = !![0; 1] in let circuit = let wires = let a = [0; 0] in let b = [0; 0] in let c = [0; 1] in [|a; b; c|] in let qo = ![0; -1] in let gates = Circuit.make_gates ~linear:[(2, qo)] ~qc:![0; 1] () in Circuit.make ~wires ~gates ~public_input_size:0 () in {name; circuit; witness; outcome = Valid} let linear_selector_test i = (* We don't have a test for "qo" *) assert (i <> 2) ; let name = Plompiler.Csir.linear_selector_name i in let witness = !![0; 1] in let circuit = let wires = Array.init Plompiler.Csir.nb_wires_arch (fun j -> if j = i || j = 2 then [0; 1] else [0; 0]) in let q_linear = ![1; 1] in let qo = ![0; -1] in let linear = [(i, q_linear); (2, qo)] in let gates = Circuit.make_gates ~linear () in Circuit.make ~wires ~gates ~public_input_size:0 () in {name; circuit; witness; outcome = Valid} let next_linear_selector_test i = let name = Plompiler.Csir.(linear_selector_name i |> add_next_wire_suffix) in let witness = !![0; 1] in let circuit = let wires = Array.init Plompiler.Csir.nb_wires_arch (fun j -> if j = 2 then if i = 2 then [1; 1] else [1; 0] else if j = i then [0; 1] else [0; 0]) in let gates = Circuit.make_gates ~linear:[(2, ![-1; 0])] ~linear_g:[(i, ![1; 0])] () in Circuit.make ~wires ~gates ~public_input_size:0 () in {name; circuit; witness; outcome = Valid} let qm = let name = "qm" in let witness = !![0; 1] in let circuit = let wires = let a = [0; 1] in let b = [1; 1] in let c = [0; 1] in [|a; b; c|] in let gates = Circuit.make_gates ~qm:![1; 1] ~linear:[(2, ![0; -1])] () in Circuit.make ~wires ~gates ~public_input_size:0 () in {name; circuit; witness; outcome = Valid} let qx2b = let name = "qx2b" in let witness = !![0; -3; 3; 9] in let circuit = let wires = let a = [0; 0; 0] in let b = [0; 1; 2] in let c = [0; 3; 3] in [|a; b; c|] in let gates = Circuit.make_gates ~qx2b:![1; 1; 1] ~linear:[(2, ![0; -1; -1])] () in Circuit.make ~wires ~gates ~public_input_size:0 () in {name; circuit; witness; outcome = Valid} let qx5a = let name = "qx5a" in let witness = !![0; 2; 32] in let circuit = let wires = let a = [0; 1] in let b = [0; 0] in let c = [0; 2] in [|a; b; c|] in let gates = Circuit.make_gates ~qx5a:![1; 1] ~linear:[(2, ![0; -1])] () in Circuit.make ~wires ~gates ~public_input_size:0 () in {name; circuit; witness; outcome = Valid} let qx5c = let name = "qx5c" in let witness = !![0; 243; 3] in let circuit = let wires = let a = [0; 1] in let b = [0; 0] in let c = [0; 2] in [|a; b; c|] in let gates = Circuit.make_gates ~qx5c:![1; 1] ~linear:[(0, ![0; -1])] () in Circuit.make ~wires ~gates ~public_input_size:0 () in {name; circuit; witness; outcome = Valid} let qecc_ws_add = let name = "qecc_ws_add" in (* We check that: (3,1) + (4,4) = (2,2). These are dummy points, they do not belong to a specific curve. *) let witness = !![1; 2; 3; 4] in let circuit = let wires = let a = [2; 0] in let b = [3; 3] in let c = [1; 1] in [|a; b; c|] in let gates = Circuit.make_gates ~qecc_ws_add:![1; 0] () in Circuit.make ~wires ~gates ~public_input_size:0 () in {name; circuit; witness; outcome = Valid} let qecc_ed_add = let name = "qecc_ed_add" in let witness = !![0; 1] in let circuit = let wires = let a = [0; 1] in let b = [0; 1] in let c = [0; 1] in [|a; b; c|] in let gates = Circuit.make_gates ~qecc_ed_add:![1; 0] () in Circuit.make ~wires ~gates ~public_input_size:0 () in {name; circuit; witness; outcome = Valid} let qecc_ed_cond_add = let name = "qecc_cond_ed_add" in (* In the first 2 constraints we are doing A(0;1) + 0B(2;3) = C(1;2); in the other 2, A(0;1) + 1B(0;1) = C(0;1) *) let witness = !![0; 1; 2; 3] in let circuit = let wires = let a = [0; 0; 1; 0] in let b = [2; 0; 0; 0] in let c = [3; 0; 1; 0] in let d = [1; 1; 0; 0] in let e = [2; 2; 1; 1] in [|a; b; c; d; e|] in let gates = Circuit.make_gates ~qecc_ed_cond_add:![1; 0; 1; 0] () in Circuit.make ~wires ~gates ~public_input_size:0 () in {name; circuit; witness; outcome = Valid} let qbool = let name = "qbool" in let witness = !![0; 1] in let circuit = let wires = let a = [0; 1] in let b = [0; 0] in let c = [0; 0] in [|a; b; c|] in let gates = Circuit.make_gates ~qbool:![1; 1] () in Circuit.make ~wires ~gates ~public_input_size:0 () in {name; circuit; witness; outcome = Valid} let qcond_swap = let name = "qcond_swap" in let witness = !![0; 1; 2] in let circuit = let wires = let a = [0; 1] in let b = [1; 1] in let c = [2; 2] in let d = [1; 2] in let e = [2; 1] in [|a; b; c; d; e|] in let gates = Circuit.make_gates ~qcond_swap:![1; 1] () in Circuit.make ~wires ~gates ~public_input_size:0 () in {name; circuit; witness; outcome = Valid} let q_anemoi = let name = "q_anemoi" in let x0 = "1" in let y0 = "1" in let x1 = "39027417478195954763090966714903261667484379123570980405377627458504913299628" in let y1 = "12807118572207854608879870979725669075358379219019309928321803168748017551407" in let x2 = "16347289160862248212893857406118677211322091184422502665988411845410114556281" in let y2 = "7279269625797671375403766084307099687590046281141194129086784189878517048332" in let kx1 = Scalar.of_string "39" in let ky1 = Scalar.of_string "14981678621464625851270783002338847382197300714436467949315331057125308909900" in let kx2 = Scalar.of_string "41362478282768062297187132445775312675360473883834860695283235286481594490621" in let ky2 = Scalar.of_string "28253420209785428420233456008091632509255652343634529984400816700490470131093" in let witness = Array.map Scalar.of_string [|"0"; x0; y0; x1; y1; x2; y2|] in let circuit = let wires = let a = [0; 0; 0; 0] in let b = [0; 0; 3; 0] in let c = [0; 0; 4; 0] in let d = [0; 0; 1; 5] in let e = [0; 0; 2; 6] in [|a; b; c; d; e|] in let precomputed_advice = SMap.of_list [ ("qadv0", Scalar.[zero; zero; kx1; zero]); ("qadv1", Scalar.[zero; zero; ky1; zero]); ("qadv2", Scalar.[zero; zero; kx2; zero]); ("qadv3", Scalar.[zero; zero; ky2; zero]); ] in let gates = Circuit.make_gates ~q_anemoi:Scalar.[zero; zero; one; zero] ~linear:[(0, ![1; 1; 0; 0]); (1, ![1; 0; 0; 0])] ~precomputed_advice () in Circuit.make ~wires ~gates ~public_input_size:0 () in {name; circuit; witness; outcome = Valid} let list = let wires = List.init Plompiler.Csir.nb_wires_arch Fun.id in (qc :: List.map linear_selector_test (List.filter (fun i -> i <> 2) wires)) @ List.map next_linear_selector_test wires @ [ qm; qx2b; qx5a; qx5c; qecc_ws_add; qecc_ed_add; qecc_ed_cond_add; qbool; qcond_swap; q_anemoi; ] end module General_circuits = struct let bnot = let name = "bnot" in let witness = !![0; 1] in let circuit = let wires = let a = [0; 0] in let b = [0; 0] in let c = [1; 0] in [|a; b; c|] in let gates = Circuit.make_gates ~linear:[(2, ![-1; -1])] ~qc:![1; 0] () in Circuit.make ~wires ~gates ~public_input_size:1 () in {name; circuit; witness; outcome = Valid} let list = [bnot] end module General = struct (* General tests *) (* Proving the relations x10 = x0 + x1 * (x2 + x3 * (x4 + x5)) & P(x2, x0) + Q(x3, x3) = R(x1, x1) Using intermediary variables: x10 = x0 + x1 * (x2 + x3 * x6) x10 = x0 + x1 * (x2 + x7) x10 = x0 + x1 * x8 x10 = x0 + x9 <=> Constraints: 1*x0 + 1*x9 - 1*x10 + 0*x0*x9 + 0 = 0 0*x1 + 0*x8 - 1*x9 + 1*x1*x8 + 0 = 0 1*x2 + 1*x7 - 1*x8 + 0*x2*x7 + 0 = 0 0*x3 + 0*x6 - 1*x7 + 1*x3*x6 + 0 = 0 1*x4 + 1*x5 - 1*x6 + 0*x4*x5 + 0 = 0 F_add_weirestrass(x2, x3, x1, x0, x3, x1) = 0 *) (* Base circuit proves that: 95 = 1 + 2 * (3 + 4 * (5 + 6)) with 1 public input *) let wires = let a = [0; 1; 2; 3; 4; 2; 0] in let b = [9; 8; 7; 6; 5; 3; 3] in let c = [10; 9; 8; 7; 6; 1; 1] in [|a; b; c|] let gates = Circuit.make_gates ~linear: [ (0, ![1; 0; 1; 0; 1; 0; 0]); (1, ![1; 0; 1; 0; 1; 0; 0]); (2, ![-1; -1; -1; -1; -1; 0; 0]); ] ~qm:![0; 1; 0; 1; 0; 0; 0] ~qecc_ws_add:![0; 0; 0; 0; 0; 1; 0] () let circuit = Circuit.make ~wires ~gates ~public_input_size:1 () let witness = !![1; 2; 3; 4; 5; 6; 11; 44; 47; 94; 95] let zero_values = let name = "zero_values" in let witness = Array.make 11 (Scalar.of_int 0) in {name; circuit; witness; outcome = Valid} let non_zero_values = let name = "non_zero_values" in {name; circuit; witness; outcome = Valid} (* Same test with no public inputs *) let no_public_inputs = let name = "no_public_inputs" in let circuit = Circuit.make ~wires ~gates ~public_input_size:0 () in {name; circuit; witness; outcome = Valid} let wrong_values = let name = "wrong_values" in let witness = !![1; 2; 3; 4; 5; 6; 11; 44; 47; 94; 94] (* """mistake""" here *) in {name; circuit; witness; outcome = Proof_error} let input_com = let name = "input_commitment" in let circuit = Circuit.make ~wires ~gates ~public_input_size:0 ~input_com_sizes:[3; 1] () in {name; circuit; witness; outcome = Valid} let list = [zero_values; non_zero_values; no_public_inputs; wrong_values; input_com] let list_one_public_input = [zero_values; non_zero_values; wrong_values] end module Big_circuit = struct (* generates circuit with 2^k - 1 constraints that adds 2^(k + 1) inputs 4 by 4, then adds 2^(k-1) inputs 2 by 2, then multiplies 2^(k-2) inputs 2 by 2, and repeat the two last steps until there is 1 output left. At each gate of the circuit, a random scalar is also added. There is a total of k-1 layers of gates, i-th layer contains 2^i gates (starting from the "output layer", numbering from 0 to i-1) IMPORTANT : with aPlonK, this case is intended to fit PI_rollup_example module, which means 2 public inputs and the first element of each witness equal to the second element of the previous witness. *) let make ~nb_proofs ~public_input_size ~k = let name = Format.sprintf "big_circuit.%i.%i" public_input_size k in let len_fst_layer = 1 lsl (k - 1) in (* for wires d & e : [[d₁ ; e₁] ; [d₂ ; e₂] ; …]. They are handled separately because they are only in the first gate & we don’t want to involve them in the loop *) let e_d = Array.init len_fst_layer (fun _ -> Scalar.[|random (); random ()|]) in let witness nb_proofs k qc = let rec build_w (acc_w_left, acc_w_right) = let l = List.hd acc_w_left in let r = List.hd acc_w_right in let len_l = Array.length l in assert (Array.(len_l = length r)) ; let op = if List.length acc_w_left mod 2 = 0 then Scalar.mul else Scalar.add in let add_qc i = let i_constraint = let lens = List.(fold_left (fun i l -> i + Array.length l)) 0 (acc_w_left @ acc_w_right) in lens - (1 lsl k) + i in Scalar.(add qc.(i_constraint)) in if len_l = 1 then (* We are at the last layer, there is only 1 gate left *) let last = add_qc 0 (op l.(0) r.(0)) in Array.( concat List.(rev acc_w_left @ rev acc_w_right @ [[|last|]] @ to_list e_d)) else if len_l = len_fst_layer then let wl = Array.init (len_l / 2) (fun i -> let j = 2 * i in add_qc j Scalar.(l.(j) + r.(j) + e_d.(j).(0) + e_d.(j).(1))) in let wr = Array.init (len_l / 2) (fun i -> let j = (2 * i) + 1 in add_qc j Scalar.(l.(j) + r.(j) + e_d.(j).(0) + e_d.(j).(1))) in build_w (wl :: acc_w_left, wr :: acc_w_right) else let wl = Array.init (len_l / 2) (fun i -> add_qc (2 * i) (op l.(2 * i) r.(2 * i))) in let wr = Array.init (len_l / 2) (fun i -> add_qc ((2 * i) + 1) (op l.((2 * i) + 1) r.((2 * i) + 1))) in build_w (wl :: acc_w_left, wr :: acc_w_right) in let open Stdlib (* to recover the ! deref operator *) in let w0 = ref (Scalar.random ()) in List.init nb_proofs (fun _ -> let w = let w_left = Array.init len_fst_layer (fun i -> if i = 0 then !w0 else Scalar.random ()) in let w_right = Array.init len_fst_layer (fun _ -> Scalar.random ()) in build_w ([w_left], [w_right]) in w0 := w.(1) ; w) in let n = (1 lsl k) - 1 in let qc = List.init n (fun _ -> Scalar.random ()) in let circuit = let wires = let last_c = 2 * n in let a = List.init n Fun.id in let b = List.init n (fun i -> n + i) in let c = List.init (n / 2) (fun i -> let i = (1 lsl (k - 1)) + i in [i; n + i]) @ [[last_c]] |> List.concat in let d = List.init n (fun i -> if i < len_fst_layer then last_c + ((2 * i) + 1) else 0) in let e = List.mapi (fun i x -> if i < len_fst_layer then x + 1 else 0) d in [|a; b; c; d; e|] in let gates = let is_add k n i = let dist = k - Z.(log2 (of_int (Int.sub n i))) in if dist mod 2 = 0 then false else true in let qm = List.init n (fun i -> if is_add k n i then 0 else 1) in let ql = List.init n (fun i -> if is_add k n i then 1 else 0) in let qr = ql in let qo = List.init n (fun _ -> -1) in let qd = List.init n (fun i -> if i < 1 lsl (k - 1) then 1 else 0) in let qe = qd in Circuit.Circuit.make_gates ~qm:!qm ~linear:[(0, !ql); (1, !qr); (2, !qo); (3, !qd); (4, !qe)] ~qc () in Circuit.make ~wires ~gates ~public_input_size () in let witnesses = witness nb_proofs k (Array.of_list qc) in List.map (fun witness -> {name; circuit; witness; outcome = Valid}) witnesses let list = make ~nb_proofs:2 ~public_input_size:2 ~k:5 let list_slow = make ~nb_proofs:2 ~public_input_size:2 ~k:16 end let list = Unit_tests_for_each_selector.list @ General_circuits.list @ General.list @ Big_circuit.list let list_slow = Big_circuit.list_slow module Lookup = struct (* Tables corresponding to addition of digits mod m to perform tests on. *) let table_add_mod_m m = let m2 = m * m in let t_1 = List.init m2 (fun i -> i / m) in let t_2 = List.init m2 (fun i -> i mod m) in let t_3 = List.init m2 (fun i -> ((i / m) + i) mod m) in [!!t_1; !!t_2; !!t_3] let table_add_mod_5 = table_add_mod_m 5 let table_add_mod_10 = table_add_mod_m 10 (* ---- Unit tests for each selector. ---- *) let qplookup = let name = "qplookup" in let witness = !![0; 1; 2] in let circuit = let a = [1] in let b = [1] in let c = [2] in let wires = [|a; b; c|] in let gates = Circuit.make_gates ~q_plookup:![1] ~q_table:![0] () in let tables = [table_add_mod_5] in Circuit.make ~tables ~wires ~gates ~public_input_size:0 () in {name; circuit; witness; outcome = Valid} (* ---- Test with 2 tables. ---- *) let qplookup_two_tables = let name = "qplookup_two_tables" in let witness = !![0; 1; 3; 9] in let circuit = let wires = let a = [2; 3] in let b = [2; 1] in let c = [1; 0] in [|a; b; c|] in let gates = Circuit.make_gates ~q_plookup:![1; 1] ~q_table:![0; 1] () in let tables = [table_add_mod_5; table_add_mod_10] in Circuit.make ~tables ~wires ~gates ~public_input_size:0 () in {name; circuit; witness; outcome = Valid} (* ---- General test with correct and incorrect witness. ---- *) let wires = let a = [1; 1; 4; 2; 4; 3; 1] in let b = [2; 1; 2; 2; 3; 4; 4] in let c = [3; 1; 1; 4; 2; 2; 2] in [|a; b; c|] let gates = Circuit.make_gates ~linear:[(2, ![0; -1; 0; -1; 0; 0; 0])] ~qm:![0; 1; 0; 1; 0; 0; 0] ~qecc_ws_add:![0; 0; 0; 0; 0; 1; 0] ~q_plookup:![1; 0; 1; 0; 1; 0; 0] ~q_table:![0; 0; 0; 0; 0; 0; 0] () let tables = [table_add_mod_5] let circuit = (* Proving the relations with addition mod 5 using lookups x8 = x7 + x1 * (x3 + x4 * (x5 + x6)) R(x2, x2) = P(x3, x1) + Q(x4, x4) <- these are dummy points with 1 public input <=> Constraints: lookup: x1 (+) x7 = x8 1*x1*x7 - 1*x7 = 0 lookup: x3 (+) x4 = x7 1*x4*x1 - x4 = 0 lookup: x5 (+) x6 = x1 F_add_weirestrass(x3, x4, x2, x1, x4, x2) = 0 *) Circuit.make ~tables ~wires ~gates ~public_input_size:1 () (* Base witness proves that: 3 = 2 + 1 * (2 + 2 * (3 + 4)) addition modulo 5 R(2,2) = P(3,1) + Q(4,4) weierstrass point addition *) let witness = !![0; 1; 2; 3; 4] let lookup_zero_values = let name = "lookup_zero_values" in let witness = !!(List.init 5 (fun _i -> 0)) in {name; circuit; witness; outcome = Valid} let lookup_non_zero_values = let name = "lookup_non_zero_values" in {name; circuit; witness; outcome = Valid} let lookup_no_public_inputs = let name = "lookup_no_public_inputs" in let circuit = Circuit.make ~tables ~wires ~gates ~public_input_size:0 () in {name; circuit; witness; outcome = Valid} let lookup_wrong_arith_values = let name = "lookup_wrong_arith_values" in let wires = let a = [1; 1; 4; 2; 4; 3; 1] in let b = [2; 1; 2; 2; 3; 4; 4] in let c = [3; 1; 1; 3; 2; 2; 2] in [|a; b; c|] (* """mistake""" here in arith. constraint *) in let circuit = Circuit.make ~tables ~wires ~gates ~public_input_size:1 () in {name; circuit; witness; outcome = Proof_error} let wrong_plookup_values = let name = "wrong_plookup_values" in let wires = let a = [0; 1; 4; 2; 4; 3; 1] in let b = [2; 1; 2; 2; 3; 4; 4] in let c = [3; 1; 1; 4; 2; 2; 2] in [|a; b; c|] (* """mistake""" here in lookup constraint *) in let circuit = Circuit.make ~tables ~wires ~gates ~public_input_size:1 () in {name; circuit; witness; outcome = Lookup_error} let list = [ qplookup; qplookup_two_tables; lookup_zero_values; lookup_non_zero_values; lookup_no_public_inputs; lookup_wrong_arith_values; wrong_plookup_values; ] end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>