package octez-plonk
Plonk zero-knowledge proving system
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-17.3.tar.gz
sha256=7062cd57addd452852598a2214ade393130efa087b99068d53713bdf912b3680
sha512=08e4091144a03ce3c107fb91a66501bd8b65ca3278917c455a2eaac6df3e108ade63f6ab8340a4bb152d60f404326e464d0ec95d26cafe8e82f870465d24a5fc
doc/src/octez-plonk.distribution/polynomial_protocol.ml.html
Source file polynomial_protocol.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
(*****************************************************************************) (* *) (* MIT License *) (* Copyright (c) 2022 Nomadic Labs <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) open Plonk.Bls module type S = sig module PC : Kzg.PC_for_distribution_sig include Plonk.Polynomial_protocol.S with module PC := PC (** [compute_t ~n ~alpha evaluations] returns a polynomial T splitted in chunks, where [T(X) = (sum_i alpha^i evaluations[i]) / (X^n - 1)] and the returned chunks [{ 'T_0' -> T0; 'T_1' -> T1; 'T_2' -> T2 }] are such that [T = T0 + X^n T1 + X^{2n} T2]. *) val compute_t : n:int -> alpha:Scalar.t -> nb_of_t_chunks:int -> Evaluations.t Plonk.SMap.t -> Evaluations.polynomial Plonk.SMap.t end module type Super = sig module PC : Kzg_pack.Super_PC_sig include Aggregation.Polynomial_protocol.S with module PC := PC (** [compute_t ~n ~alpha evaluations] returns a polynomial T splitted in chunks, where [T(X) = (sum_i alpha^i evaluations[i]) / (X^n - 1)] and the returned chunks [{ 'T_0' -> T0; 'T_1' -> T1; 'T_2' -> T2 }] are such that [T = T0 + X^n T1 + X^{2n} T2]. *) val compute_t : n:int -> alpha:Scalar.t -> nb_of_t_chunks:int -> Evaluations.t Plonk.SMap.t -> Evaluations.polynomial Plonk.SMap.t end module Make (PC : Kzg.PC_for_distribution_sig) : S with module PC = PC = struct module PP = Plonk.Polynomial_protocol.Make_impl (PC) module PC = PC let compute_t = PP.compute_t include (PP : Plonk.Polynomial_protocol.S with module PC := PC) end module MakeSuper (PC : Kzg_pack.Super_PC_sig) (Answers_commitment : Plonk.Input_commitment.S) : Super with module PC = PC with module Answers_commitment = Answers_commitment = struct module PP = Aggregation.Polynomial_protocol.Make_impl (PC) (Answers_commitment) module PC = PC module Answers_commitment = Answers_commitment include ( PP : module type of PP with module PC := PC with module Answers_commitment := Answers_commitment) end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>